Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Bioorg Med Chem Lett ; 27(9): 2069-2073, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284804

RESUMO

Glucokinase (GK, hexokinase IV) is a unique hexokinase that plays a central role in mammalian glucose homeostasis. Glucose phosphorylation by GK in the pancreatic ß-cell is the rate-limiting step that controls glucose-stimulated insulin secretion. Similarly, GK-mediated glucose phosphorylation in hepatocytes plays a major role in increasing hepatic glucose uptake and metabolism and possibly lowering hepatic glucose output. Small molecule GK activators (GKAs) have been identified that increase enzyme activity by binding to an allosteric site. GKAs offer a novel approach for the treatment of Type 2 Diabetes Mellitus (T2DM) and as such have garnered much attention. We now report the design, synthesis, and biological evaluation of a novel series of 2,5,6-trisubstituted indole derivatives that act as highly potent GKAs. Among them, Compound 1 was found to possess high in vitro potency, excellent physicochemical properties, and good pharmacokinetic profile in rodents. Oral administration of Compound 1 at doses as low as 0.03mg/kg led to robust blood glucose lowering efficacy in 3week high fat diet-fed mice.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativadores de Enzimas/química , Ativadores de Enzimas/uso terapêutico , Glucoquinase/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Indóis/química , Indóis/uso terapêutico , Regulação Alostérica/efeitos dos fármacos , Animais , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/farmacocinética , Ativadores de Enzimas/farmacologia , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Indóis/farmacocinética , Indóis/farmacologia , Insulina/sangue , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
2.
Bioorg Med Chem Lett ; 27(9): 2063-2068, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284809

RESUMO

Systemically acting glucokinase activators (GKA) have been demonstrated in clinical trials to effectively lower blood glucose in patients with type II diabetes. However, mechanism-based hypoglycemia is a major adverse effect that limits the therapeutic potential of these agents. We hypothesized that the predominant mechanism leading to hypoglycemia is GKA-induced excessive insulin secretion from pancreatic ß-cells at (sub-)euglycemic levels. We further hypothesized that restricting GK activation to hepatocytes would maintain glucose-lowering efficacy while significantly reducing hypoglycemic risk. Here we report the discovery of a novel series of carboxylic acid substituted GKAs based on pyridine-2-carboxamide. These GKAs exhibit preferential distribution to the liver versus the pancreas in mice. SAR studies led to the identification of a potent and orally active hepatoselective GKA, compound 6. GKA 6 demonstrated robust glucose lowering efficacy in high fat diet-fed mice at doses ⩾10mpk, with ⩾70-fold liver:pancreas distribution, minimal effects on plasma insulin levels, and significantly reduced risk of hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Glucoquinase/metabolismo , Hipoglicemiantes/farmacologia , Piridinas/farmacologia , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Descoberta de Drogas , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacocinética , Ativadores de Enzimas/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Piridinas/química , Piridinas/farmacocinética , Piridinas/uso terapêutico
3.
Am J Physiol Endocrinol Metab ; 311(6): E911-E921, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27651111

RESUMO

Aberrant regulation of glucose production makes a critical contribution to the impaired glycemic control that is observed in type 2 diabetes. Although isotopic tracer methods have proven to be informative in quantifying the magnitude of such alterations, it is presumed that one must rely on venous access to administer glucose tracers which therein presents obstacles for the routine application of tracer methods in rodent models. Since intraperitoneal injections are readily used to deliver glucose challenges and/or dose potential therapeutics, we hypothesized that this route could also be used to administer a glucose tracer. The ability to then reliably estimate glucose flux would require attention toward setting a schedule for collecting samples and choosing a distribution volume. For example, glucose production can be calculated by multiplying the fractional turnover rate by the pool size. We have taken a step-wise approach to examine the potential of using an intraperitoneal tracer administration in rat and mouse models. First, we compared the kinetics of [U-13C]glucose following either an intravenous or an intraperitoneal injection. Second, we tested whether the intraperitoneal method could detect a pharmacological manipulation of glucose production. Finally, we contrasted a potential application of the intraperitoneal method against the glucose-insulin clamp. We conclude that it is possible to 1) quantify glucose production using an intraperitoneal injection of tracer and 2) derive a "glucose production index" by coupling estimates of basal glucose production with measurements of fasting insulin concentration; this yields a proxy for clamp-derived assessments of insulin sensitivity of endogenous production.


Assuntos
Glicemia/metabolismo , Indicadores e Reagentes , Animais , Glicemia/efeitos dos fármacos , Isótopos de Carbono , Dieta Hiperlipídica , Feminino , Técnica Clamp de Glucose , Hipoglicemiantes/farmacologia , Injeções Intraperitoneais , Injeções Intravenosas , Resistência à Insulina , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Rosiglitazona , Tiazolidinedionas/farmacologia
4.
Bioorg Med Chem Lett ; 26(6): 1529-1535, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26898814

RESUMO

MK-4256, a tetrahydro-ß-carboline sstr3 antagonist, was discontinued due to a cardiovascular (CV) adverse effect observed in dogs. Additional investigations revealed that the CV liability (QTc prolongation) was caused by the hERG off-target activity of MK-4256 and was not due to sstr3 antagonism. In this Letter, we describe our extensive SAR effort at the C3 position of the tetrahydro-ß-carboline structure. This effort resulted in identification of 5-fluoro-pyridin-2-yl as the optimal substituent on the imidazole ring to balance sstr3 activity and the hERG off-target liability.


Assuntos
Carbolinas/química , Carbolinas/farmacologia , Receptores de Somatostatina/antagonistas & inibidores , Animais , Carbolinas/síntese química , Cães , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
5.
J Lipid Res ; 53(1): 51-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22021650

RESUMO

In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures. Plasma lipoprotein profiles, eight major plasma lipid fractions, and FA compositions within these lipid fractions were compared both qualitatively and quantitatively across the species. Given the importance of statins in decreasing plasma low-density lipoprotein cholesterol for treatment of dyslipidemia in humans, the responses of these measures to simvastatin treatment were also assessed for each species and compared with dyslipidemic humans. NHPs, followed by dog, were the models that demonstrated closest overall match to dyslipidemic humans. For the subset of the dyslipidemic population with high plasma triglyceride levels, the data also pointed to hamster and db/db mouse as representative models for practical use in target validation. Most traditional models, including rabbit, Zucker diabetic fatty rat, and the majority of mouse models, did not demonstrate overall similarity to dyslipidemic humans in this study.


Assuntos
Modelos Animais de Doenças , Dislipidemias/sangue , Lipídeos/sangue , Animais , Cricetinae , Cães , Dislipidemias/tratamento farmacológico , Ácidos Graxos/sangue , Humanos , Camundongos , Primatas , Sinvastatina/uso terapêutico , Triglicerídeos/sangue
6.
Am J Physiol Endocrinol Metab ; 303(2): E265-71, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22621866

RESUMO

Glucagon-like peptide-1 (GLP-1) and oxyntomodulin (OXM) are peptide hormones secreted postprandially from the gut that stimulate insulin secretion in a glucose-dependent manner. OXM activates both the GLP-1 receptor (GLP1R) and the glucagon receptor (GCGR). It has been suggested that OXM acutely modulates glucose metabolism solely through GLP1R agonism. Because OXM activates the GLP1R with lower affinity than GLP-1, we generated a peptide analog (Q→E, OXMQ3E) that does not exhibit glucagon receptor agonist activity but retains the same affinity as OXM for GLP1R. We compared the effects of OXM and OXMQ3E in a glucose tolerance test and, to better characterize the effect on glucose metabolism, we performed controlled infusions of OXM or OXMQ3E during a hyperglycemic clamp performed in wild-type, Glp1r(-/-), and Gcgr(-/-) mice. Our findings show that OXM, but not OXMQ3E, activates the GCGR in vivo. Second, OXM and OXMQ3E improve glucose tolerance following an acute glucose challenge and during a hyperglycemic clamp in mice. Finally, OXM infusion during a glucose clamp reduces the glucose infusion rate (GIR) despite a simultaneous increase in insulin levels in Glp1r(-/-) mice, whereas OXM and OXMQ3E increase GIR to a similar extent in Gcgr(-/-) mice. In conclusion, activation of the GCGR seems to partially attenuate the acute beneficial effects on glucose and contributes to the insulinotropic action of oxyntomodulin.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/metabolismo , Oxintomodulina/farmacologia , Animais , Glicemia/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo
7.
Bioorg Med Chem Lett ; 21(11): 3390-4, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21514824

RESUMO

The design, synthesis, and structure-activity relationship (SAR) for a series of ß-substituted 3-(4-aryloxyaryl)propanoic acid GPR40 agonists is described. Systematic replacement of the pendant aryloxy group led to identification of potent GPR40 agonists. In order to identify candidates suitable for in vivo validation of the target, serum shifted potency and pharmacokinetic properties were determined for several compounds. Finally, further profiling of compound 7 is presented, including demonstration of enhanced glucose tolerance in an in vivo mouse model.


Assuntos
Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Propionatos/síntese química , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Ciclização , Modelos Animais de Doenças , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Propionatos/química , Propionatos/farmacocinética
8.
Bioorg Med Chem Lett ; 20(3): 1298-301, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20064714

RESUMO

Systematic structure-activity relationship (SAR) studies of a screening lead led to the discovery of a series of thiazolidinediones (TZDs) as potent GPR40 agonists. Among them, compound C demonstrated an acute mechanism-based glucose-lowering in an intraperitoneal glucose tolerance test (IPGTT) in lean mice, while no effects were observed in GPR40 knock-out mice.


Assuntos
Descoberta de Drogas/métodos , Receptores Acoplados a Proteínas G/agonistas , Tiazolidinedionas/química , Animais , Camundongos , Camundongos Knockout , Ligação Proteica/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Tiazolidinedionas/agonistas , Tiazolidinedionas/farmacologia
9.
Bioorg Med Chem Lett ; 19(15): 4097-101, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19539471
10.
J Med Chem ; 51(3): 589-602, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18201067

RESUMO

A series of beta-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC50 = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds with subnanomolar activity against DPP-4 (42b- 49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC50 = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.


Assuntos
Amidas/síntese química , Inibidores da Dipeptidil Peptidase IV , Piperazinas/síntese química , Pirazinas/síntese química , Triazóis/síntese química , Amidas/farmacocinética , Amidas/farmacologia , Animais , Cristalografia por Raios X , Dipeptidil Peptidase 4/química , Cães , Teste de Tolerância a Glucose , Haplorrinos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/farmacocinética , Piperazinas/farmacologia , Pirazinas/farmacocinética , Pirazinas/farmacologia , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/farmacocinética , Triazóis/farmacologia
11.
Assay Drug Dev Technol ; 6(2): 243-53, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18471078

RESUMO

The presence of serum in biological samples often negatively impacts the quality of in vitro assays. However, assays tolerant of serum are useful for assessing the in vivo availability of a small molecule for its target. Electrophysiology assays of ion channels are notoriously sensitive to serum because of their reliance on the interaction of the plasma membrane with a recording electrode. Here we investigate the tolerance of an automated electrophysiology assay for a voltage-gated potassium (K(V)) channel to serum and purified plasma proteins. The delayed rectifier channel, K(V)2.1, stably expressed in Chinese hamster ovary cells produces large, stable currents on the IonWorks Quattro platform (MDS Analytical Technologies, Sunnyvale, CA), making it an ideal test case. K(V)2.1 currents recorded on this platform are highly resistant to serum, allowing recordings in as high as 33% serum. Using a set of compounds related to the K(V) channel blocker, 4-phenyl-4-[3-(2-methoxyphenyl)-3-oxo-2-azaprop-1-yl]cyclohexanone, we show that shifts in compound potency with whole serum or isolated serum proteins can be reliably measured with this assay. Importantly, this assay is also relatively insensitive to plasma, allowing the creation of a bioassay for inhibitors of K(V)2.1 channel activity. Here we show that such a bioassay can quantify the levels of the gating modifier, guangxitoxin-1E, in plasma samples from mice dosed with the peptide. This study demonstrates the utility of using an automated electrophysiology platform for measuring serum shifts and for bioassays of ion channel modulators.


Assuntos
Proteínas Sanguíneas/metabolismo , Canais de Potássio de Retificação Tardia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Autoanálise , Células CHO , Cricetinae , Cricetulus , Interpretação Estatística de Dados , Diálise , Eletrofisiologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Ligação Proteica
12.
Endocrinol Diabetes Metab ; 1(1): e00002, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30815539

RESUMO

AIMS: Since 2006, DPP-4 inhibitors have become established therapy for the treatment of type 2 diabetes. Despite sharing a common mechanism of action, considerable chemical diversity exists amongst members of the DPP-4 inhibitor class, raising the question as to whether structural differences may result in differentiated enzyme inhibition and antihyperglycaemic activity. METHODS: We have compared the binding properties of the most commonly used inhibitors and have investigated the relationship between their inhibitory potency at the level of the enzyme and their acute glucose-lowering efficacy. RESULTS: Firstly, using a combination of published crystal structures and in-house data, we demonstrated that the binding site utilized by all of the DPP-4 inhibitors assessed was the same as that used by neuropeptide Y, supporting the hypothesis that DPP-4 inhibitors are able to competitively inhibit endogenous substrates for the enzyme. Secondly, we ascertained that the enzymatic cleft of DPP-4 is a relatively large cavity which displays conformational flexibility to accommodate structurally diverse inhibitor molecules. Finally, we found that for all inhibitors, irrespective of their chemical structure, the inhibition of plasma DPP-4 enzyme activity correlates directly with acute plasma glucose lowering in mice. CONCLUSION: The common binding site utilized by different DPP-4 inhibitors enables similar competitive inhibition of the cleavage of the endogenous DPP-4 substrates. Furthermore, despite chemical diversity and a range of binding potencies observed amongst the DPP-4 inhibitors, a direct relationship between enzyme inhibition in the plasma and glucose lowering is evident in mice for each member of the classes studied.

13.
Diabetes ; 54(10): 2988-94, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186403

RESUMO

Dipeptidyl peptidase (DPP)-IV inhibitors are a new approach to the treatment of type 2 diabetes. DPP-IV is a member of a family of serine peptidases that includes quiescent cell proline dipeptidase (QPP), DPP8, and DPP9; DPP-IV is a key regulator of incretin hormones, but the functions of other family members are unknown. To determine the importance of selective DPP-IV inhibition for the treatment of diabetes, we tested selective inhibitors of DPP-IV, DPP8/DPP9, or QPP in 2-week rat toxicity studies and in acute dog tolerability studies. In rats, the DPP8/9 inhibitor produced alopecia, thrombocytopenia, reticulocytopenia, enlarged spleen, multiorgan histopathological changes, and mortality. In dogs, the DPP8/9 inhibitor produced gastrointestinal toxicity. The QPP inhibitor produced reticulocytopenia in rats only, and no toxicities were noted in either species for the selective DPP-IV inhibitor. The DPP8/9 inhibitor was also shown to attenuate T-cell activation in human in vitro models; a selective DPP-IV inhibitor was inactive in these assays. Moreover, we found DPP-IV inhibitors that were previously reported to be active in models of immune function to be more potent inhibitors of DPP8/9. These results suggest that assessment of selectivity of potential clinical candidates may be important to an optimal safety profile for this new class of antihyperglycemic agents.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidases/antagonistas & inibidores , Dipeptidil Peptidase 4 , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Hipoglicemiantes , Inibidores de Proteases/uso terapêutico , Animais , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/fisiologia , Cães , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/toxicidade , Isoleucina/análogos & derivados , Isoleucina/química , Isoleucina/uso terapêutico , Isoleucina/toxicidade , Isomerismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Proteases/toxicidade , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Tiazóis/química , Tiazóis/uso terapêutico , Tiazóis/toxicidade
14.
J Med Chem ; 49(12): 3614-27, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16759103

RESUMO

A series of beta-substituted biarylphenylalanine amides were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-4) for the treatment of type 2 diabetes. Optimization of the metabolic profile of early analogues led to the discovery of (2S,3S)-3-amino-4-(3,3-difluoropyrrolidin-1-yl)-N,N-dimethyl-4-oxo-2-(4-[1,2,4]triazolo[1,5-a]pyridin-6-ylphenyl)butanamide (6), a potent, orally active DPP-4 inhibitor (IC(50) = 6.3 nM) with excellent selectivity, oral bioavailability in preclinical species, and in vivo efficacy in animal models. Compound 6 was selected for further characterization as a potential new treatment for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/síntese química , Fenilalanina/análogos & derivados , Inibidores de Proteases/síntese química , Triazóis/síntese química , Administração Oral , Animais , Disponibilidade Biológica , Canais de Cálcio Tipo L/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X , Teste de Tolerância a Glucose , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Proteínas Musculares/antagonistas & inibidores , Músculo Esquelético/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Fenilalanina/síntese química , Fenilalanina/química , Fenilalanina/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Coelhos , Canais de Sódio , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia
15.
ACS Med Chem Lett ; 7(12): 1107-1111, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994747

RESUMO

GPR142 has been identified as a potential glucose-stimulated insulin secretion (GSIS) target for the treatment of type 2 diabetes mellitus (T2DM). A class of triazole GPR142 agonists was discovered through a high throughput screen. The lead compound 4 suffered from poor metabolic stability and poor solubility. Lead optimization strategies to improve potency, efficacy, metabolic stability, and solubility are described. This optimization led to compound 20e, which showed significant reduction of glucose excursion in wild-type but not in GPR142 deficient mice in an oral glucose tolerance test (oGTT) study. These studies provide strong evidence that reduction of glucose excursion through treatment with 20e is GPR142-mediated, and GPR142 agonists could be used as a potential treatment for type 2 diabetes.

16.
J Med Chem ; 48(1): 141-51, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-15634008

RESUMO

A novel series of beta-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC(50) = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Pirazinas/química , Pirazinas/farmacologia , Triazóis/química , Triazóis/farmacologia , Administração Oral , Animais , Sítios de Ligação , Bioquímica/métodos , Glicemia/análise , Cristalografia por Raios X , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Glucagon/sangue , Glucagon/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon , Teste de Tolerância a Glucose , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/efeitos dos fármacos , Conformação Proteica , Precursores de Proteínas/sangue , Precursores de Proteínas/efeitos dos fármacos , Pirazinas/farmacocinética , Ratos , Fosfato de Sitagliptina , Relação Estrutura-Atividade , Triazóis/farmacocinética
17.
ACS Med Chem Lett ; 6(5): 513-7, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005524

RESUMO

The imidazolyl-tetrahydro-ß-carboline class of sstr3 antagonists have demonstrated efficacy in a murine model of glucose excursion and may have potential as a treatment for type 2 diabetes. The first candidate in this class caused unacceptable QTc interval prolongation in oral, telemetrized cardiovascular (CV) dogs. Herein, we describe our efforts to identify an acceptable candidate without CV effects. These efforts resulted in the identification of (1R,3R)-3-(4-(5-fluoropyridin-2-yl)-1H-imidazol-2-yl)-1-(1-ethyl-pyrazol-4-yl)-1-(3-methyl-1,3,4-oxadiazol-3H-2-one-5-yl)-2,3,4,9-tetrahydro-1H-ß-carboline (17e, MK-1421).

18.
ACS Med Chem Lett ; 5(6): 690-5, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944745

RESUMO

A novel class of small-molecule, highly potent, and subtype-selective somatostatin SST3 agonists was discovered through modification of a SST3 antagonist. As an example, (1R,2S)-9 demonstrated not only potent in vitro SST3 agonist activity but also in vivo SST3 agonist activity in a mouse oral glucose tolerance test (OGTT). These agonists may be useful reagents for studying the physiological roles of the SST3 receptor and may potentially be useful as therapeutic agents.

19.
ACS Med Chem Lett ; 5(7): 748-53, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25050159

RESUMO

Antagonism of somatostatin subtype receptor 3 (sstr3) has emerged as a potential treatment of Type 2 diabetes. Unfortunately, the development of our first preclinical candidate, MK-4256, was discontinued due to a dose-dependent QTc (QT interval corrected for heart rate) prolongation observed in a conscious cardiovascular (CV) dog model. As the fate of the entire program rested on resolving this issue, it was imperative to determine whether the observed QTc prolongation was associated with hERG channel (the protein encoded by the human Ether-à-go-go-Related Gene) binding or was mechanism-based as a result of antagonizing sstr3. We investigated a structural series containing carboxylic acids to reduce the putative hERG off-target activity. A key tool compound, 3A, was identified from this SAR effort. As a potent sstr3 antagonist, 3A was shown to reduce glucose excursion in a mouse oGTT assay. Consistent with its minimal hERG activity from in vitro assays, 3A elicited little to no effect in an anesthetized, vagus-intact CV dog model at high plasma drug levels. These results afforded the critical conclusion that sstr3 antagonism is not responsible for the QTc effects and therefore cleared a path for the program to progress.

20.
ACS Med Chem Lett ; 3(4): 289-93, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900466

RESUMO

This letter provides the first pharmacological proof of principle that the sst3 receptor mediates glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells. To enable these studies, we identified the selective sst3 antagonist (1R,3R)-3-(5-phenyl-1H-imidazol-2-yl)-1-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-ß-carboline (5a), with improved ion channel selectivity and mouse pharmacokinetic properties as compared to previously described tetrahydro-ß-carboline imidazole sst3 antagonists. We demonstrated that compound 5a enhances GSIS in pancreatic ß-cells and blocks glucose excursion induced by dextrose challenge in ipGTT and OGTT models in mice. Finally, we provided strong evidence that these effects are mechanism-based in an ipGTT study, showing reduction of glucose excursion in wild-type but not sst3 knockout mice. Thus, we have shown that antagonism of sst3 represents a new mechanism with potential in treating type 2 diabetes mellitus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA