Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
MAbs ; 13(1): 1890411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33818299

RESUMO

The therapeutic potential of targeting CD19 in B cell malignancies has garnered attention in the past decade, resulting in the introduction of novel immunotherapy agents. Encouraging clinical data have been reported for T cell-based targeting agents, such as anti-CD19/CD3 bispecific T-cell engager blinatumomab and chimeric antigen receptor (CAR)-T therapies, for acute lymphoblastic leukemia and B cell non-Hodgkin lymphoma (B-NHL). However, clinical use of both blinatumomab and CAR-T therapies has been limited due to unfavorable pharmacokinetics (PK), significant toxicity associated with cytokine release syndrome and neurotoxicity, and manufacturing challenges. We present here a fully human CD19xCD3 bispecific antibody (TNB-486) for the treatment of B-NHL that could address the limitations of the current approved treatments. In the presence of CD19+ target cells and T cells, TNB-486 induces tumor cell lysis with minimal cytokine release, when compared to a positive control. In vivo, TNB-486 clears CD19+ tumor cells in immunocompromised mice in the presence of human peripheral blood mononuclear cells in multiple models. Additionally, the PK of TNB-486 in mice or cynomolgus monkeys is similar to conventional antibodies. This new T cell engaging bispecific antibody targeting CD19 represents a novel therapeutic that induces potent T cell-mediated tumor-cell cytotoxicity uncoupled from high levels of cytokine release, making it an attractive candidate for B-NHL therapy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Linfoma não Hodgkin/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacocinética , Anticorpos Monoclonais Humanizados/farmacocinética , Antígenos CD19/imunologia , Antineoplásicos Imunológicos/farmacocinética , Complexo CD3/antagonistas & inibidores , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Técnicas de Cocultura , Humanos , Células K562 , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/metabolismo , Macaca fascicularis , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Med ; 15(1-2): 11-20, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19048033

RESUMO

The human epidermal growth factor (EGF) receptor (HER) family members cooperate in malignancy. Of this family, HER2 does not bind growth factors and HER3 does not encode an active tyrosine kinase. This diversity creates difficulty in creating pan-specific therapeutic HER family inhibitors. We have identified single amino acid changes in epidermal growth factor receptor (EGFR) and HER3 which create high affinity sequestration of the cognate ligands, and may be used as receptor decoys to downregulate aberrant HER family activity. In silico modeling and high throughput mutagenesis were utilized to identify receptor mutants with very high ligand binding activity. A single mutation (T15S; EGFR subdomain I) enhanced affinity for EGF (two-fold), TGF-alpha (twenty-six-fold), and heparin-binding (HB)-EGF (six-fold). This indicates that T15 is an important, previously undescribed, negative regulatory amino acid for EGFR ligand binding. Another mutation (Y246A; HER 3 subdomain II) enhanced neuregulin (NRG)1-beta binding eight-fold, probably by interfering with subdomain II-IV interactions. Further work revealed that the HER3 subunit of an EGFR:HER3 heterodimer suppresses EGFR ligand binding. Optimization required reversing this suppression by mutation of the EGFR tether domain (G564A; subdomain IV). This mutation resulted in enhanced ligand binding (EGF, ten-fold; TGF-alpha, thirty-four-fold; HB-EGF, seventeen-fold; NRG1-beta, thirty-one-fold). This increased ligand binding was reflected in improved inhibition of in vitro tumor cell proliferation and tumor suppression in a human non-small cell lung cancer xenograft model. In conclusion, amino acid substitutions were identified in the EGFR and HER3 ECDs that enhance ligand affinity, potentially enabling a pan-specific therapeutic approach for downregulating the HER family in cancer.


Assuntos
Engenharia Química/métodos , Receptores ErbB/química , Receptores ErbB/metabolismo , Ligantes , Sequência de Aminoácidos , Animais , Linhagem Celular , Dimerização , Receptores ErbB/genética , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Transplante de Neoplasias , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Células Tumorais Cultivadas
3.
Mol Cancer Ther ; 7(10): 3223-36, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18852126

RESUMO

All four members of the human epidermal growth factor (EGF) receptor (HER) family are implicated in human cancers. Although efficacious in a subset of patients, resistance to single-targeted anti-HER therapy [i.e., cetuximab (Erbitux) and trastuzumab (Herceptin)] is often associated with coexpression of other HER family members. This may be overcome by a HER ligand binding molecule that sequesters multiple EGF-like ligands, preventing ligand-dependent receptor activation. Toward this end, we have combined the HER-1/EGFR and HER-3 ligand binding domains, dimerized with fusion of an Fc fragment of human IgG1. This resulted in a mixture of HER-1/Fc homodimer (HFD100), HER-3/Fc homodimer (HFD300), and HER-1/Fc:HER-3/Fc heterodimer (RB200), also termed Hermodulins. The purified first-generation RB200 bound EGF and neuregulin 1 (NRG1)-beta1 ligands, determined by cross-linking and direct binding studies. The binding affinity for both was approximately 10 nmol/L by dissociation-enhanced lanthanide fluorescence immunoassay using europium (Eu)-labeled ligands. Competition studies with RB200 using Eu-EGF or Eu-NRG1-beta1 revealed that RB200 bound HER-1 ligands, including transforming growth factor-alpha and heparin-binding EGF, and HER-3 ligands NRG1-alpha and NRG1-beta3. RB200 inhibited EGF- and NRG1-beta1-stimulated tyrosine phosphorylation of HER family proteins, proliferation of a diverse range of tumor cells in monolayer cell growth assays, tumor cell proliferation as a single agent and in synergy with tyrosine kinase inhibitors, lysophosphatidic acid-stimulated cell proliferation, and tumor growth in two human tumor xenograft nude mouse models. Taken together, the data reveal that RB200 has the potential to sequester multiple HER ligands and interfere with signaling by HER-1, HER-2, and HER-3.


Assuntos
Fragmentos Fc das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/farmacologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Dimerização , Sinergismo Farmacológico , Fator de Crescimento Epidérmico/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/química , Ligantes , Camundongos , Neuregulina-1/metabolismo , Fosfosserina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Receptor ErbB-2/química , Receptor ErbB-3/química , Trastuzumab
4.
MAbs ; 11(4): 639-652, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30698484

RESUMO

T-cell-recruiting bispecific antibodies (T-BsAbs) have shown potent tumor killing activity in humans, but cytokine release-related toxicities have affected their clinical utility. The use of novel anti-CD3 binding domains with more favorable properties could aid in the creation of T-BsAbs with improved therapeutic windows. Using a sequence-based discovery platform, we identified new anti-CD3 antibodies from humanized rats that bind to multiple epitopes and elicit varying levels of T-cell activation. In T-BsAb format, 12 different anti-CD3 arms induce equivalent levels of tumor cell lysis by primary T-cells, but potency varies by a thousand-fold. Our lead CD3-targeting arm stimulates very low levels of cytokine release, but drives robust tumor antigen-specific killing in vitro and in a mouse xenograft model. This new CD3-targeting antibody underpins a next-generation T-BsAb platform in which potent cytotoxicity is uncoupled from high levels of cytokine release, which may lead to a wider therapeutic window in the clinic.


Assuntos
Anticorpos Biespecíficos/metabolismo , Anticorpos Monoclonais/metabolismo , Complexo CD3/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Animais Endogâmicos , Antígenos de Neoplasias/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica , Feminino , Humanos , Células Jurkat , Ativação Linfocitária , Camundongos , Neoplasias/imunologia , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Immunol ; 9: 889, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740455

RESUMO

We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1). This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs) isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.


Assuntos
Anticorpos Monoclonais/imunologia , Descoberta de Drogas/métodos , Genes de Cadeia Pesada de Imunoglobulina/genética , Genes de Cadeia Leve de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/uso terapêutico , Antígenos/administração & dosagem , Antígenos/imunologia , Linfócitos B/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias kappa de Imunoglobulina/genética , Modelos Animais , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
6.
Front Immunol ; 9: 3037, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666250

RESUMO

Heavy chain-only antibodies (HCAbs) do not associate with light chains and their VH regions are functional as single domains, forming the smallest active antibody fragment. These VH regions are ideal building blocks for a variety of antibody-based biologics because they tolerate fusion to other molecules and may also be attached in series to construct multispecific antibodies without the need for protein engineering to ensure proper heavy and light chain pairing. Production of human HCAbs has been impeded by the fact that natural human VH regions require light chain association and display poor biophysical characteristics when expressed in the absence of light chains. Here, we present an innovative platform for the rapid development of diverse sets of human HCAbs that have been selected in vivo. Our unique approach combines antibody repertoire analysis with immunization of transgenic rats, called UniRats, that produce chimeric HCAbs with fully human VH domains in response to an antigen challenge. UniRats express HCAbs from large transgenic loci representing the entire productive human heavy chain V(D)J repertoire, mount robust immune responses to a wide array of antigens, exhibit diverse V gene usage and generate large panels of stable, high affinity, antigen-specific molecules.


Assuntos
Anticorpos/química , Anticorpos/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Engenharia de Proteínas/métodos , Animais , Afinidade de Anticorpos , Antígenos/imunologia , Linfócitos B/imunologia , Células CHO , Cricetulus , Cristalografia , Citometria de Fluxo , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunização , Cadeias Leves de Imunoglobulina/genética , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Estrutura Secundária de Proteína , Ratos , Ratos Transgênicos , Anticorpos de Domínio Único/química
7.
PLoS One ; 11(6): e0156229, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27299860

RESUMO

Interleukin-10 (IL-10) is a multifunctional cytokine that exerts potent context specific immunostimulatory and immunosuppressive effects. We have investigated the mechanism by which PEGylated rIL-10 regulates plasma cholesterol in mice and humans. In agreement with previous work on rIL-10, we report that PEGylated rIL-10 harnesses the myeloid immune system to control total plasma cholesterol levels. We have discovered that PEG-rMuIL-10's dramatic lowering of plasma cholesterol is dependent on phagocytotic cells. In particular, PEG-rHuIL-10 enhances cholesterol uptake by Kupffer cells. In addition, removal of phagocytotic cells dramatically increases plasma cholesterol levels, suggesting for the first time that immunological cells are implicitly involved in regulating total cholesterol levels. These data suggest that treatment with PEG-rIL-10 potentiates endogenous cholesterol regulating cell populations not currently targeted by standard of care therapeutics. Furthermore, we show that IL-10's increase of Kupffer cell cholesterol phagocytosis is concomitant with decreases in liver cholesterol and triglycerides. This leads to the reversal of early periportal liver fibrosis and facilitates the restoration of liver health. These data recommend PEG-rIL-10 for evaluation in the treatment of fatty liver disease and preventing its progression to non-alcoholic steatohepatitis. In direct confirmation of our in vivo findings in the treatment of hypercholesterolemic mice with PEG-rMuIL-10, we report that treatment of hypercholesterolemic cancer patients with PEG-rHuIL-10 lowers total plasma cholesterol by up to 50%. Taken together these data suggest that PEG-rIL-10's cholesterol regulating biology is consistent between mice and humans.


Assuntos
Colesterol/sangue , Hipercolesterolemia/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Interleucina-10/uso terapêutico , Células de Kupffer/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Colesterol/imunologia , Feminino , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Interleucina-10/química , Interleucina-10/farmacologia , Células de Kupffer/imunologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Adulto Jovem
8.
PLoS One ; 10(5): e0127063, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961845

RESUMO

Expression of matrix metalloproteinase 9 (MMP9) is elevated in a variety of inflammatory and oncology indications, including ulcerative colitis and colorectal cancer. MMP9 is a downstream effector and an upstream mediator of pathways involved in growth and inflammation, and has long been viewed as a promising therapeutic target. However, previous efforts to target matrix metalloproteinases (MMPs), including MMP9, have utilized broad-spectrum or semi-selective inhibitors. While some of these drugs showed signs of efficacy in patients, all MMP-targeted inhibitors have been hampered by dose-limiting toxicity or insufficient clinical benefit, likely due to their lack of specificity. Here, we show that selective inhibition of MMP9 did not induce musculoskeletal syndrome (a characteristic toxicity of pan-MMP inhibitors) in a rat model, but did reduce disease severity in a dextran sodium sulfate-induced mouse model of ulcerative colitis. We also found that MMP9 inhibition decreased tumor growth and metastases incidence in a surgical orthotopic xenograft model of colorectal carcinoma, and that inhibition of either tumor- or stroma-derived MMP9 was sufficient to reduce primary tumor growth. Collectively, these data suggest that selective MMP9 inhibition is a promising therapeutic strategy for treatment of inflammatory and oncology indications in which MMP9 is upregulated and is associated with disease pathology, such as ulcerative colitis and colorectal cancer. In addition, we report the development of a potent and highly selective allosteric MMP9 inhibitor, the humanized monoclonal antibody GS-5745, which can be used to evaluate the therapeutic potential of MMP9 inhibition in patients.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Colite Ulcerativa/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/farmacologia , Regulação Alostérica , Animais , Anticorpos Monoclonais Humanizados/biossíntese , Anticorpos Monoclonais Humanizados/isolamento & purificação , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/enzimologia , Colite Ulcerativa/genética , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Mapeamento de Epitopos , Feminino , Humanos , Hibridomas/imunologia , Masculino , Metaloproteinase 9 da Matriz/administração & dosagem , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/isolamento & purificação , Inibidores de Metaloproteinases de Matriz/metabolismo , Camundongos , Camundongos Nus , Ratos , Ratos Endogâmicos Lew , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nat Med ; 16(9): 1009-17, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20818376

RESUMO

We have identified a new role for the matrix enzyme lysyl oxidase-like-2 (LOXL2) in the creation and maintenance of the pathologic microenvironment of cancer and fibrotic disease. Our analysis of biopsies from human tumors and fibrotic lung and liver tissues revealed an increase in LOXL2 in disease-associated stroma and limited expression in healthy tissues. Targeting LOXL2 with an inhibitory monoclonal antibody (AB0023) was efficacious in both primary and metastatic xenograft models of cancer, as well as in liver and lung fibrosis models. Inhibition of LOXL2 resulted in a marked reduction in activated fibroblasts, desmoplasia and endothelial cells, decreased production of growth factors and cytokines and decreased transforming growth factor-beta (TGF-beta) pathway signaling. AB0023 outperformed the small-molecule lysyl oxidase inhibitor beta-aminoproprionitrile. The efficacy and safety of LOXL2-specific AB0023 represents a new therapeutic approach with broad applicability in oncologic and fibrotic diseases.


Assuntos
Aminoácido Oxirredutases/antagonistas & inibidores , Aminoácido Oxirredutases/efeitos dos fármacos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Aminopropionitrilo/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Lactonas/farmacologia , Camundongos , Camundongos Nus , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Polienos/farmacologia , RNA Interferente Pequeno/genética , Transcrição Gênica , Transfecção , Transplante Heterólogo
10.
Arthritis Res Ther ; 10(4): R73, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18593464

RESUMO

INTRODUCTION: Despite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop alternative therapeutic targets for nonresponders to existing treatments. Soluble receptors occur naturally in vivo, such as the splice variant of the cell surface receptor for vascular endothelial growth factor (VEGF)--a key regulator of angiogenesis in rheumatoid arthritis. Bioinformatics analyses predict that the majority of human genes undergo alternative splicing, generating proteins--many of which may have regulatory functions. The objective of the present study was to identify alternative splice variants (ASV) from cell surface receptor genes, and to determine whether the novel proteins encoded exert therapeutic activity in an in vivo model of arthritis. METHODS: To identify novel splice variants, we performed RT-PCR using an mRNA pool representing major human tissue types and tumors. Novel ASV were identified by alignment of each cloned sequence to its respective genomic sequence in comparison with full-length transcripts. To test whether these ASV have biologic activity, we characterized a subset of them for ligand binding, and for efficacy in an animal model of arthritis. The in vivo study was accomplished using adenoviruses expressing secreted ASV. RESULTS: We cloned 60 novel human ASV from 21 genes, encoding cell surface receptors--many of which are known to be important in the regulation of angiogenesis. The ASV were characterized by exon extension, intron retention and alternative exon utilization. Efficient expression and secretion of selected ASV--corresponding to VEGF receptor type 1, VEGF receptor type 2, VEGF receptor type 3, angiopoietin receptor Tie1, Met (receptor for hepatocyte growth factor), colony-stimulating factor 1 receptor, platelet-derived growth factor receptor beta, fibroblast growth factor receptor 1, Kit, and RAGE--was demonstrated, together with binding to their cognate ligands. Importantly, ASV derived from VEGF receptor type 1 and Tie1, and to a lesser extent from VEGF receptor type 2 and fibroblast growth factor receptor 1, reduced clinical signs of arthritis in vivo. The reduction was paralleled by decreased joint inflammation and destruction. CONCLUSION: The present study shows that unique ASV derived from receptors that play key roles in angiogenesis--namely, VEGF receptor type 1 and, for the first time, Tie1--can markedly reduce arthritis severity. More broadly, our results demonstrate that ASV are a source of novel proteins with therapeutic potential in diseases in which angiogenesis and cellular hyperplasia play a central role, such as rheumatoid arthritis.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Receptores Proteína Tirosina Quinases/uso terapêutico , Receptor de TIE-1/uso terapêutico , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Angiopoietina-1/metabolismo , Animais , Artrite Reumatoide/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos DBA , Neovascularização Fisiológica/fisiologia , Ligação Proteica/fisiologia , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/uso terapêutico , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor de TIE-1/metabolismo , Índice de Gravidade de Doença , Veias Umbilicais/citologia , Veias Umbilicais/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA