Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(3): e1011224, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996041

RESUMO

Mosquito transmission of dengue viruses to humans starts with infection of skin resident cells at the biting site. There is great interest in identifying transmission-enhancing factors in mosquito saliva in order to counteract them. Here we report the discovery of high levels of the anti-immune subgenomic flaviviral RNA (sfRNA) in dengue virus 2-infected mosquito saliva. We established that sfRNA is present in saliva using three different methods: northern blot, RT-qPCR and RNA sequencing. We next show that salivary sfRNA is protected in detergent-sensitive compartments, likely extracellular vesicles. In support of this hypothesis, we visualized viral RNAs in vesicles in mosquito saliva and noted a marked enrichment of signal from 3'UTR sequences, which is consistent with the presence of sfRNA. Furthermore, we show that incubation with mosquito saliva containing higher sfRNA levels results in higher virus infectivity in a human hepatoma cell line and human primary dermal fibroblasts. Transfection of 3'UTR RNA prior to DENV2 infection inhibited type I and III interferon induction and signaling, and enhanced viral replication. Therefore, we posit that sfRNA present in salivary extracellular vesicles is delivered to cells at the biting site to inhibit innate immunity and enhance dengue virus transmission.


Assuntos
Aedes , Culicidae , Dengue , Flavivirus , Animais , Humanos , Flavivirus/genética , RNA Subgenômico , Saliva/metabolismo , Regiões 3' não Traduzidas , Replicação Viral , RNA Viral/genética , RNA Viral/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012987

RESUMO

Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Dengue/virologia , Comportamento Alimentar/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Comportamento Animal/fisiologia , Análise Multivariada
3.
BMC Genomics ; 25(1): 186, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365592

RESUMO

BACKGROUND: Venom systems are ideal models to study genetic regulatory mechanisms that underpin evolutionary novelty. Snake venom glands are thought to share a common origin, but there are major distinctions between venom toxins from the medically significant snake families Elapidae and Viperidae, and toxin gene regulatory investigations in elapid snakes have been limited. Here, we used high-throughput RNA-sequencing to profile gene expression and microRNAs between active (milked) and resting (unmilked) venom glands in an elapid (Eastern Brown Snake, Pseudonaja textilis), in addition to comparative genomics, to identify cis- and trans-acting regulation of venom production in an elapid in comparison to viperids (Crotalus viridis and C. tigris). RESULTS: Although there is conservation in high-level mechanistic pathways regulating venom production (unfolded protein response, Notch signaling and cholesterol homeostasis), there are differences in the regulation of histone methylation enzymes, transcription factors, and microRNAs in venom glands from these two snake families. Histone methyltransferases and transcription factor (TF) specificity protein 1 (Sp1) were highly upregulated in the milked elapid venom gland in comparison to the viperids, whereas nuclear factor I (NFI) TFs were upregulated after viperid venom milking. Sp1 and NFI cis-regulatory elements were common to toxin gene promoter regions, but many unique elements were also present between elapid and viperid toxins. The presence of Sp1 binding sites across multiple elapid toxin gene promoter regions that have been experimentally determined to regulate expression, in addition to upregulation of Sp1 after venom milking, suggests this transcription factor is involved in elapid toxin expression. microRNA profiles were distinctive between milked and unmilked venom glands for both snake families, and microRNAs were predicted to target a diversity of toxin transcripts in the elapid P. textilis venom gland, but only snake venom metalloproteinase transcripts in the viperid C. viridis venom gland. These results suggest differences in toxin gene posttranscriptional regulation between the elapid P. textilis and viperid C. viridis. CONCLUSIONS: Our comparative transcriptomic and genomic analyses between toxin genes and isoforms in elapid and viperid snakes suggests independent toxin regulation between these two snake families, demonstrating multiple different regulatory mechanisms underpin a venomous phenotype.


Assuntos
Crotalus , MicroRNAs , Toxinas Biológicas , Serpentes Peçonhentas , Viperidae , Humanos , Animais , Elapidae/genética , Venenos de Serpentes/química , Venenos de Serpentes/genética , Venenos de Serpentes/metabolismo , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Viperidae/genética , Viperidae/metabolismo , Transcriptoma , Fatores de Transcrição/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338961

RESUMO

Aedes aegypti is a major vector that transmits arboviruses through the saliva injected into the host. Salivary proteins help in uninterrupted blood intake and enhance the transmission of pathogens. We studied Niemann-Pick Type C2 (NPC2) proteins, a superfamily of saliva proteins that play an important role in arbovirus infections. In vertebrates, a single conserved gene encodes for the NPC2 protein that functions in cholesterol trafficking. Arthropods, in contrast, have several genes that encode divergent NPC2 proteins. We compared the sequences of 20 A. aegypti NPC2 proteins to the cholesterol-binding residues of human and bovine, and fatty-acid-binding residues of ant NPC2 protein. We identified four mosquito NPC2 proteins as potential sterol-binding proteins. Two of these proteins (AAEL006854 and/or AAEL020314) may play a key role in ecdysteroid biosynthesis and moulting. We also identified one mosquito NPC2 protein as a potential fatty-acid-binding protein. Through molecular modelling, we predicted the structures of the potential sterol- and fatty-acid-binding proteins and compared them to the reference proteins.


Assuntos
Aedes , Animais , Bovinos , Humanos , Aedes/metabolismo , Glicoproteínas/metabolismo , Proteínas de Transporte Vesicular , Mosquitos Vetores , Colesterol/metabolismo , Esteróis/química , Relação Estrutura-Atividade
5.
Langmuir ; 39(21): 7249-7257, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37201193

RESUMO

Living organisms develop functional hard structures such as teeth, bones, and shells from calcium salts through mineralization for managing vital functions to sustain life. However, the exact mechanism or role of biomolecules such as proteins and peptides in the biomineralization process to form defect-free hierarchical structures in nature is poorly understood. In this study, we have extracted, purified, and characterized five major peptides (CBP1-CBP5) from the soluble organic materials (SOMs) of cuttlefish bone (CB) and used for the in vitro mineralization of calcium carbonate crystals. The SOMs induced nucleation of the calcite phase at low concentrations and the vaterite phase at high concentrations. The purified peptides nucleated calcite crystals and enhanced aggregation under laboratory conditions. Among five peptides, only CBP2 and CBP3 showed concentration-dependent nucleation, aggregation, and morphological changes of the calcite crystals within 12 h. Circular dichroism studies showed that the peptides CBP2 and CBP3 are in alpha helix and ß-sheet conformation, respectively, in solution. CBP1 and CBP4 and CBP5 are in random coil and ß-sheet conformation, respectively. In addition, the peptides showed different sizes in solution in the absence (∼27 nm, low aggregation) and presence (∼118 nm, high aggregation) of calcium ions. Aragonite crystals with needle-type morphologies were nucleated in the presence of Mg2+ ions in solution. Overall, exploring the activities of such intramineral peptides from CB help to unravel the mechanism of calcium salt deposition in nature.


Assuntos
Biomineralização , Cálcio , Peptídeos/química , Carbonato de Cálcio/química , Íons
6.
Cell Mol Life Sci ; 79(5): 233, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35397701

RESUMO

Tripartite motif (TRIM) E3 ligases target specific substrates, including viral proteins, for proteasomal degradation, and are thus essential regulators of the innate antiviral response. TRIM69 ubiquitinates the non-structural NS3 protein of Dengue virus for its degradation by the host machinery. This antiviral strategy abrogates the immunosuppression mediated by the NS2B-NS3 protease complex. To understand how this host-driven antiviral response against Dengue virus, we sought to define the mode of interaction between human TRIM69 and Dengue NS2B-NS3 and the subsequent polyubiquitination of the protease by the E3 ligase. We show that NS2B-NS3Δpro is sufficient as a substrate for ubiquitination by TRIM69 using ELISA and in vitro assays. Using hydrogen-deuterium exchange mass spectrometry (HDXMS), we mapped the interface of the interaction between TRIM69 and NS2B-NS3Δpro, and propose a rationale for the binding and subsequent ubiquitination process. Furthermore, through sequence analysis, we showed that the regions targeted by TRIM69 on the DENV-2 NS3 protease (NS3Δpro) are well conserved across DENV serotypes and other flaviviruses, including Zika virus, West Nile virus, and Japanese encephalitis virus. Our results show the direct interactions of TRIM69 with viral proteins, provide mechanistic insights at a molecular level, and highlight the functional relevance of TRIM69 interacting with the Dengue viral protein. Collectively, our findings suggest that TRIM69 may act as a pan-antiflaviviral restriction factor.


Assuntos
Vírus da Dengue , Serina Endopeptidases , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas não Estruturais Virais , Dengue , Vírus da Dengue/fisiologia , Medição da Troca de Deutério , Humanos , Espectrometria de Massas , Serina Endopeptidases/química , Proteínas com Motivo Tripartido/química , Ubiquitina-Proteína Ligases/química , Proteínas não Estruturais Virais/química
7.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003582

RESUMO

In many animals belonging to different taxa, venoms evolved as a means of defense and/or a means of attack/hunting [...].


Assuntos
Venenos de Crotalídeos , Toxinas Biológicas , Animais , Antivenenos/farmacologia
8.
PLoS Pathog ; 16(8): e1008754, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776975

RESUMO

Arbovirus infection of Aedes aegypti salivary glands (SGs) determines transmission. However, there is a dearth of knowledge on SG immunity. Here, we characterized SG immune response to dengue, Zika and chikungunya viruses using high-throughput transcriptomics. We also describe a transcriptomic response associated to apoptosis, blood-feeding and lipid metabolism. The three viruses differentially regulate components of Toll, Immune deficiency (IMD) and c-Jun N- terminal Kinase (JNK) pathways. However, silencing of the Toll and IMD pathway components showed variable effects on SG infection by each virus. In contrast, regulation of the JNK pathway produced consistent responses in both SGs and midgut. Infection by the three viruses increased with depletion of the activator Kayak and decreased with depletion of the negative regulator Puckered. Virus-induced JNK pathway regulates the complement factor, Thioester containing protein-20 (TEP20), and the apoptosis activator, Dronc, in SGs. Individual and co-silencing of these genes demonstrate their antiviral effects and that both may function together. Co-silencing either TEP20 or Dronc with Puckered annihilates JNK pathway antiviral effect. Upon infection in SGs, TEP20 induces antimicrobial peptides (AMPs), while Dronc is required for apoptosis independently of TEP20. In conclusion, we revealed the broad antiviral function of JNK pathway in SGs and showed that it is mediated by a TEP20 complement and Dronc-induced apoptosis response. These results expand our understanding of the immune arsenal that blocks arbovirus transmission.


Assuntos
Aedes/imunologia , Apoptose , Febre de Chikungunya/imunologia , Proteínas do Sistema Complemento/imunologia , Dengue/imunologia , Sistema de Sinalização das MAP Quinases , Glândulas Salivares/imunologia , Infecção por Zika virus/imunologia , Aedes/virologia , Animais , Febre de Chikungunya/metabolismo , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Proteínas do Sistema Complemento/metabolismo , Dengue/metabolismo , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/imunologia , Feminino , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/imunologia , Insetos Vetores/virologia , Glândulas Salivares/virologia , Transcriptoma , Replicação Viral , Zika virus/imunologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
9.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34845981

RESUMO

Dengue virus (DENV), like other viruses, closely interacts with the host cell machinery to complete its life cycle. Over the course of infection, DENV interacts with several host factors with pro-viral activities to support its infection. Meanwhile, it has to evade or counteract host factors with anti-viral activities which inhibit its infection. These molecular virus-host interactions play a crucial role in determining the success of DENV infection. Deciphering such interactions is thus paramount to understanding viral fitness in its natural hosts. While DENV-mammalian host interactions have been extensively studied, not much has been done to characterize DENV-mosquito host interactions despite its importance in controlling DENV transmission. Here, to provide a snapshot of our current understanding of DENV-mosquito interactions, we review the literature that identified host factors and cellular processes related to DENV infection in its mosquito vectors, Aedes aegypti and Aedes albopictus, with a particular focus on DENV-mosquito omics studies. This knowledge provides fundamental insights into the DENV life cycle, and could contribute to the development of novel antiviral strategies.


Assuntos
Vírus da Dengue/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Mosquitos Vetores/virologia , Aedes/virologia , Animais , Linhagem Celular , Dengue/transmissão , Dengue/virologia , Humanos , Estágios do Ciclo de Vida , Transcriptoma , Replicação Viral
10.
Biochem J ; 477(20): 3951-3962, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33000863

RESUMO

Snake venoms are complex mixtures of enzymes and nonenzymatic proteins that have evolved to immobilize and kill prey animals or deter predators. Among them, three-finger toxins (3FTxs) belong to the largest superfamily of nonenzymatic proteins. They share a common structure of three ß-stranded loops extending like fingers from a central core containing all four conserved disulfide bonds. Most 3FTxs are monomers and through subtle changes in their amino acid sequences, they interact with different receptors, ion channels and enzymes to exhibit a wide variety of biological effects. The 3FTxs have further expanded their pharmacological space through covalent or noncovalent dimerization. Synergistic-type toxins (SynTxs) isolated from the deadly mamba venoms, although nontoxic, have been known to enhance the toxicity of other venom proteins. However, the details of three-dimensional structure and molecular mechanism of activity of this unusual class of 3FTxs are unclear. We determined the first three-dimensional structure of a SynTx isolated from Dendroaspis jamesoni jamesoni (Jameson's mamba) venom. The SynTx forms a unique homodimer that is held together by an interchain disulfide bond. The dimeric interface is elaborate and encompasses loops II and III. In addition to the inter-subunit disulfide bond, the hydrogen bonds and hydrophobic interactions between the monomers contribute to the dimer formation. Besides, two sulfate ions that mediate interactions between the monomers. This unique quaternary structure is evolved through noncovalent homodimers such as κ-bungarotoxins. This novel dimerization further enhances the diversity in structure and function of 3FTxs.


Assuntos
Dendroaspis/metabolismo , Venenos Elapídicos/química , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Cristalografia por Raios X , Dimerização , Dissulfetos/química , Venenos Elapídicos/isolamento & purificação , Elapidae/metabolismo , Evolução Molecular , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas em Tandem
11.
J Proteome Res ; 19(4): 1731-1749, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32073270

RESUMO

Herein, we report on the venom proteome of Vipera anatolica senliki, a recently discovered and hitherto unexplored subspecies of the critically endangered Anatolian meadow viper endemic to the Antalya Province of Turkey. Integrative venomics, including venom gland transcriptomics as well as complementary bottom-up and top-down proteomics analyses, were applied to fully characterize the venom of V. a. senliki. Furthermore, the classical top-down venomics approach was extended to elucidate the venom proteome by an alternative in-source decay (ISD) proteomics workflow using the reducing matrix 1,5-diaminonaphthalene. Top-down ISD proteomics allows for disulfide bond counting and effective de novo sequencing-based identification of high-molecular-weight venom constituents, both of which are difficult to achieve by commonly established top-down approaches. Venom gland transcriptome analysis identified 96 toxin transcript annotations from 18 toxin families. Relative quantitative snake venomics revealed snake venom metalloproteinases (42.9%) as the most abundant protein family, followed by several less dominant toxin families. Online mass profiling and top-down venomics provide a detailed insight into the venom proteome of V. a. senliki and facilitate a comparative analysis of venom variability for the closely related subspecies, Vipera anatolica anatolica.


Assuntos
Pradaria , Viperidae , Animais , Humanos , Metaloproteases , Proteoma , Venenos de Víboras
12.
J Proteome Res ; 19(4): 1800-1811, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32182430

RESUMO

Using an integrated transcriptomic and proteomic approach, we characterized the venom peptidome of the European red ant, Manica rubida. We identified 13 "myrmicitoxins" that share sequence similarities with previously identified ant venom peptides, one of them being identified as an EGF-like toxin likely resulting from a threonine residue modified by O-fucosylation. Furthermore, we conducted insecticidal assays of reversed-phase HPLC venom fractions on the blowfly Lucilia caesar, permitting us to identify six myrmicitoxins (i.e., U3-, U10-, U13-, U20-MYRTX-Mri1a, U10-MYRTX-Mri1b, and U10-MYRTX-Mri1c) with an insecticidal activity. Chemically synthesized U10-MYRTX-Mri1a, -Mri1b, -Mri1c, and U20-MYRTX-Mri1a irreversibly paralyzed blowflies at the highest doses tested (30-125 nmol·g-1). U13-MYRTX-Mri1a, the most potent neurotoxic peptide at 1 h, had reversible effects after 24 h (150 nmol·g-1). Finally, U3-MYRTX-Mri1a has no insecticidal activity, even at up to 55 nmol·g-1. Thus, M. rubida employs a paralytic venom rich in linear insecticidal peptides, which likely act by disrupting cell membranes.


Assuntos
Venenos de Formiga , Formigas , Animais , Peptídeos , Proteômica , Peçonhas
13.
Pharmacol Res ; 155: 104687, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057893

RESUMO

Heart failure (HF) affects over 26 million people world-wide. It is a syndrome triggered by loss of normal cardiac function due to many acute (eg myocardial infarction) and/or chronic (eg hypertension) causes and characterized by mixed beneficial and deleterious activation of a complex of multifaceted neurohormonal systems the net effect of which frequently is further adverse disruption of pressure-volume homeostasis. Unlike the situation in chronic heart failure, current strategies for treatment of acute heart failure are empirical and lack a strong evidence base. Management includes any of a combination of vasodilators, diuretics and ionotropic agents depending on the hemodynamic profile of the patient. Despite the improvement in the options available to improve outcomes in patients with chronic HF, for several decades little gain has been made in the treatment of the acute decompensated state. Morbidity and mortality rates remain high necessitating new therapeutic agents. The cardiac natriuretic peptides (NPs) are key hormones in pressure-volume homoeostasis. There are three isoforms of mammalian NPs, namely ANP, BNP and CNP. These peptides bind to membrane-bound NP receptors (NPRs) on the heart, vasculature and kidney to lower blood pressure and circulating volume. Intravenous infusion of NPs in HF patients improves hemodynamic status but is associated with occasional severe hypotension. Apart from mammalian NPs, snake venom NPs are an excellent source of pharmacologically distinct ligands that offer the possibility of engineering NPs for therapeutic purposes. Venom NPs have long half-lives, differential NPR activation profiles and varied NPR specificity. The scaffolds of venom NPs encode the molecular information for designing NPs with longer half-lives and improved and differential vascular and renal functions. This review focuses on the structure-function paradigm of mammalian and venom NPs and the different peptide engineering strategies that have been utilized in the design of clinically relevant new NP-analogues.


Assuntos
Produtos Biológicos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Peptídeos Natriuréticos/uso terapêutico , Peçonhas , Animais , Desenho de Fármacos , Humanos
14.
Biochem J ; 476(10): 1515-1520, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138769

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that play crucial roles in neurotransmission and regulate complex processes in brain functions, including anxiety, learning and memory, food intake, drug addiction, cognition and nociception. To perform these and other functions, a diverse array of nAChR subtypes are generated by homomeric or heteromeric assembly of 17 homologous nAChR subunits. Agonists, acetylcholine and nicotine, bind to the interface formed between two α subunits and between α and non-α subunits to activate the nAChR and allow cation influx. The diversity of subunit interfaces determines the channel properties, the responses to different agonists/antagonists, desensitization and downstream signaling and thus, define specialized properties and functions. Over the last several decades, snake venom neurotoxins have contributed to the purification, localization and characterization of molecular details of various nAChRs. Utkin et al. have described the purification and characterization of αδ-bungarotoxins, a novel class of neurotoxins in a recent paper published in the Biochemical Journal [Biochem. J. (2019) 476, 1285-1302]. These toxins from Bungarus candidus venom preferably bind to α-δ site with two orders of magnitude higher affinity compared with α-γ or α-ε sites. The subtle changes in the structure of αδ-bungarotoxins led to variation in interface selectivity. Such new classes of antagonists will offer us great opportunity to delineate the pharmacophores and design new highly selective antagonists. Thus, their findings provide new impetus to re-evaluate molecular details of pharmacological properties of α-neurotoxins with careful consideration towards subtype-, interface- and species-selectivity.


Assuntos
Bungarotoxinas/química , Receptores Nicotínicos , Animais , Sítios de Ligação , Bungarotoxinas/toxicidade , Humanos , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo
15.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29593049

RESUMO

Alphaviruses are transmitted to humans via bites of infected mosquitoes. Although alphaviruses have caused a wide range of outbreaks and crippling disease, the availability of licensed vaccines or antiviral therapies remains limited. Mosquito vectors such as Aedes and Culex are the main culprits in the transmission of alphaviruses. This review explores how mosquito saliva may promote alphavirus infection. Identifying the roles of mosquito-derived factors in alphavirus pathogenesis will generate novel tools to circumvent and control mosquito-borne alphavirus infections in humans.


Assuntos
Aedes/virologia , Infecções por Alphavirus/transmissão , Alphavirus/imunologia , Culex/virologia , Saliva/virologia , Imunidade Adaptativa/imunologia , Alphavirus/crescimento & desenvolvimento , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/patologia , Animais , Humanos , Imunidade Inata/imunologia , Terapia de Imunossupressão , Pele/imunologia , Pele/virologia
16.
Biochem J ; 475(2): 399-413, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29229756

RESUMO

Heart failure (HF) is associated with high morbidity and mortality. Dysfunction of blood pressure and/or volume homeostatic processes result in lower perfusion and/or congestion. Treatment strategies exerting differential effects on pressure and volume mechanisms are critical in handling patients with HF. Atrial natriuretic peptides (ANPs) are a key hormone in maintaining circulation. It binds to NP receptor-A (NPR-A) on vasculature, kidneys and nervous system to lowers blood pressure and volume. It exerts a concentration-dependent pharmacological activity, and only increased renal excretion of water and sodium at low doses and vasodilation along with renal effects at slightly higher doses. Recently, we showed that K-Ring (conserved ring of krait venom NP) elicited only vasodilatory properties despite its ability to evoke NPR-A. Through systematic analysis of the structure-function relationships of K-Ring, we have delineated the molecular switches that control vasodilatory and diuretic properties of NPs in anesthetized rats. In the process, we have identified residues that - (a) differentiate vascular and renal functions, (b) affect heart rate and pulse pressure, (c) exhibit sustained effect on vasodilatory function and (d) forceful diuresis switches. Furthermore, we have shown these residues to have equivalent effects on ANP scaffold, thereby introducing modularity in designing function-based ANP analogs. By comparing the ability of designed NPs to evoke cGMP levels, we propose a hypothetical mechanism for the observed tissue-specific effects. The present study opens new avenues in the development of suitable therapeutic agents for personalized care for HF patients.


Assuntos
Fator Natriurético Atrial/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Diurese/efeitos dos fármacos , Venenos Elapídicos/química , Frequência Cardíaca/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Fator Natriurético Atrial/isolamento & purificação , Células CHO , Cricetulus , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Coração/efeitos dos fármacos , Coração/fisiologia , Humanos , Rim/efeitos dos fármacos , Rim/fisiologia , Laticauda , Masculino , Ratos , Ratos Sprague-Dawley , Receptores do Fator Natriurético Atrial/metabolismo , Relação Estrutura-Atividade , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia
17.
Angiogenesis ; 21(3): 653-665, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29691683

RESUMO

Anti-angiogenesis therapy is an established therapeutic strategy for cancer. The endogenous angiogenic inhibitor angiostatin contains the first 3-4 kringle domains of plasminogen and inhibits both angiogenesis and vascular permeability. We present here a 10-residue peptide, Angio-3, derived from plasminogen kringle 3, which retains the functions of angiostatin in inhibiting both angiogenesis and vascular permeability. NMR studies indicate that Angio-3 holds a solution structure similar to the corresponding region of kringle 3. Mechanistically, Angio-3 inhibited both VEGF- and bFGF-induced angiogenesis by inhibiting EC proliferation and migration while inducing apoptosis. Inhibition of VEGF-induced vascular permeability results from its ability to impede VEGF-induced dissociation of adherens junction and tight junction proteins as well as the formation of actin stress fibers. When administered intravenously, Angio-3 inhibited subcutaneous breast cancer and melanoma growth by suppressing both tumor angiogenesis and intra-tumor vascular permeability. Hence, Angio-3 is a novel dual inhibitor of angiogenesis and vascular permeability. It is valuable as a lead peptide that can be further developed as therapeutics for diseases involving excessive angiogenesis and/or vascular permeability.


Assuntos
Permeabilidade Capilar , Células Endoteliais da Veia Umbilical Humana/patologia , Neoplasias Mamárias Animais , Melanoma Experimental , Neovascularização Patológica/metabolismo , Peptídeos/farmacologia , Plasminogênio/farmacologia , Animais , Apoptose/efeitos dos fármacos , Feminino , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imageamento por Ressonância Magnética , Neoplasias Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/patologia , Peptídeos/síntese química , Peptídeos/química , Plasminogênio/química , Fibras de Estresse/metabolismo , Fibras de Estresse/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Semin Thromb Hemost ; 44(7): 691-706, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29954012

RESUMO

Venomous and hematophagous animals use their venom or saliva for survival, to obtain food, and for self-defense. Venom and saliva from these animals are cocktails of bioactive molecules primarily composed of proteins and peptides. These molecules are called toxins because they cause unwanted consequences on prey. They exhibit unique, diverse, and specific biological activities that perturb normal physiological processes of their prey and host. However, the potential of toxins as inspirations for the development of therapeutic agents or pharmacological tools has also long been recognized. In addition to their small size, the exquisite selectivity and structural stability of toxins make them attractive as starting molecule in the development of therapeutic and diagnostic agents. Drug discovery and development from venomous and hematophagous animals against cardiovascular diseases have been particularly successful. Some of the notable success include antihypertensive (captopril and enalapril) and antiplatelet agents (tirofiban and eptifibatide), as well as anticoagulants (lepirudin and bivalirudin). Highlighted in this review are many venom or saliva-derived cardiovascular-active proteins and peptides of therapeutic interest, including those that are currently in preclinical stages and those that have been approved by FDA and currently in the market. The authors attempt to summarize their structure, function, mechanism of action, and development with respect to cardiovascular diseases.


Assuntos
Anticoagulantes/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Descoberta de Drogas , Inibidores da Agregação Plaquetária/uso terapêutico , Peçonhas/uso terapêutico , Animais , Humanos
19.
FASEB J ; 31(7): 2981-2995, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28363953

RESUMO

Tick saliva is a rich source of antihemostatic compounds. We amplified a cDNA from the salivary glands of the tropical bont tick (Amblyomma variegatum) using primers based on the variegin sequence, which we previously identified as a novel thrombin inhibitor from the same tick species. The transcript encodes a precursor protein comprising a signal peptide and 5 repeats of variegin-like sequences that could be processed into multiple short peptides. These peptides share 31 to 34% identity with variegin. Here, we structurally and functionally characterized one of these peptides named "avathrin." Avathrin is a fast, tight binding competitive inhibitor with an affinity of 545 pM for thrombin and is 4 orders of magnitude more selective towards thrombin than to the other serine proteases of the coagulation cascade. The crystal structure of thrombin-avathrin complex at 2.09 Å revealed that avathrin interacts with the thrombin active site and exosite-I. Although avathrin is cleaved by thrombin, the C-terminal cleavage product continues to exert prolonged inhibition. Avathrin is more potent than hirulog-1 in a murine carotid artery thrombosis model. Such precursor proteins that could be processed into multiple thrombin inhibiting peptides appear to be widespread among Amblyomminae, providing an enormous library of molecules for development as potent antithrombotics.-Iyer, J. K., Koh, C. Y., Kazimirova, M., Roller, L., Jobichen, C., Swaminathan, K., Mizuguchi, J., Iwanaga, S., Nuttall, P. A., Chan, M. Y., Kini, R. M. Avathrin: a novel thrombin inhibitor derived from a multicopy precursor in the salivary glands of the ixodid tick, Amblyomma variegatum.


Assuntos
Ixodidae/metabolismo , Peptídeos/farmacologia , Glândulas Salivares/metabolismo , Trombina/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes , Trombose das Artérias Carótidas/induzido quimicamente , Trombose das Artérias Carótidas/tratamento farmacológico , Bovinos , Cloretos/toxicidade , Clonagem Molecular , Feminino , Compostos Férricos/toxicidade , Fibrinogênio/metabolismo , Humanos , Calicreínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ninfa , Glândulas Salivares/química , Tripsina/metabolismo
20.
FASEB J ; 30(6): 2411-25, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26985007

RESUMO

Trocarin D (TroD), a venom prothrombin activator from Tropidechis carinatus, shares similar structure and function with blood coagulation factor Xa [Tropidechis carinatus FX (TrFX) a]. Their distinct physiologic roles are due to their distinct expression patterns. The genes of TroD and TrFX are highly similar, except for promoter and intron 1, indicating that TroD has probably evolved by duplication of FX, the plasma counterpart. The promoter insertion in TroD accounts for the elevated but not venom gland-specific expression. Here we examined the roles of 3 insertions and 2 deletions in intron 1 of TroD in the regulation of expression using luciferase as a reporter. By systematic deletions, we showed that a 209 bp region within the second insertion silences expression in mammalian and unmilked venom gland cells. Through bioinformatics analysis, we identified 5 AG-rich motifs in this region. All except the 5th motif are important for silencing function. YY1, Sp3 and HMGB2 were identified to bind these AG-rich motifs and silence gene expression in mammalian cells. Similar AG-rich motif clusters are also found in other toxin genes but not in their physiologic counterparts. Thus, AG-rich motifs contribute to regulation of expression of TroD, and probably other toxin genes.-Han, S. X., Kwong, S., Ge, R., Kolatkar, P. R., Woods, A. E., Blanchet, G., Kini, R. M. Regulation of expression of venom toxins: silencing of prothrombin activator trocarin D by AG-rich motifs.


Assuntos
Venenos Elapídicos/química , Elapidae/fisiologia , Regulação da Expressão Gênica/fisiologia , Protrombina/antagonistas & inibidores , Animais , Sequência de Bases , DNA , Técnicas de Silenciamento de Genes , Inativação Gênica , Células HEK293 , Células Hep G2 , Humanos , Interferência de RNA , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA