Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 581(7808): 283-287, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433617

RESUMO

Traditional metallic alloys are mixtures of elements in which the atoms of minority species tend to be distributed randomly if they are below their solubility limit, or to form secondary phases if they are above it. The concept of multiple-principal-element alloys has recently expanded this view, as these materials are single-phase solid solutions of generally equiatomic mixtures of metallic elements. This group of materials has received much interest owing to their enhanced mechanical properties1-5. They are usually called medium-entropy alloys in ternary systems and high-entropy alloys in quaternary or quinary systems, alluding to their high degree of configurational entropy. However, the question has remained as to how random these solid solutions actually are, with the influence of short-range order being suggested in computational simulations but not seen experimentally6,7. Here we report the observation, using energy-filtered transmission electron microscopy, of structural features attributable to short-range order in the CrCoNi medium-entropy alloy. Increasing amounts of such order give rise to both higher stacking-fault energy and hardness. These findings suggest that the degree of local ordering at the nanometre scale can be tailored through thermomechanical processing, providing a new avenue for tuning the mechanical properties of medium- and high-entropy alloys.

2.
Nature ; 570(7761): 358-362, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31217599

RESUMO

The ability to manipulate the twisting topology of van der Waals structures offers a new degree of freedom through which to tailor their electrical and optical properties. The twist angle strongly affects the electronic states, excitons and phonons of the twisted structures through interlayer coupling, giving rise to exotic optical, electric and spintronic behaviours1-5. In twisted bilayer graphene, at certain twist angles, long-range periodicity associated with moiré patterns introduces flat electronic bands and highly localized electronic states, resulting in Mott insulating behaviour and superconductivity3,4. Theoretical studies suggest that these twist-induced phenomena are common to layered materials such as transition-metal dichalcogenides and black phosphorus6,7. Twisted van der Waals structures are usually created using a transfer-stacking method, but this method cannot be used for materials with relatively strong interlayer binding. Facile bottom-up growth methods could provide an alternative means to create twisted van der Waals structures. Here we demonstrate that the Eshelby twist, which is associated with a screw dislocation (a chiral topological defect), can drive the formation of such structures on scales ranging from the nanoscale to the mesoscale. In the synthesis, axial screw dislocations are first introduced into nanowires growing along the stacking direction, yielding van der Waals nanostructures with continuous twisting in which the total twist rates are defined by the radii of the nanowires. Further radial growth of those twisted nanowires that are attached to the substrate leads to an increase in elastic energy, as the total twist rate is fixed by the substrate. The stored elastic energy can be reduced by accommodating the fixed twist rate in a series of discrete jumps. This yields mesoscale twisting structures consisting of a helical assembly of nanoplates demarcated by atomically sharp interfaces with a range of twist angles. We further show that the twisting topology can be tailored by controlling the radial size of the structure.

3.
J Am Chem Soc ; 146(5): 3160-3170, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38276891

RESUMO

High or enriched-purity O2 is used in numerous industries and is predominantly produced from the cryogenic distillation of air, an extremely capital- and energy-intensive process. There is significant interest in the development of new approaches for O2-selective air separations, including the use of metal-organic frameworks featuring coordinatively unsaturated metal sites that can selectively bind O2 over N2 via electron transfer. However, most of these materials exhibit appreciable and/or reversible O2 uptake only at low temperatures, and their open metal sites are also potential strong binding sites for the water present in air. Here, we study the framework CuI-MFU-4l (CuxZn5-xCl4-x(btdd)3; H2btdd = bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin), which binds O2 reversibly at ambient temperature. We develop an optimized synthesis for the material to access a high density of trigonal pyramidal CuI sites, and we show that this material reversibly captures O2 from air at 25 °C, even in the presence of water. When exposed to air up to 100% relative humidity, CuI-MFU-4l retains a constant O2 capacity over the course of repeated cycling under dynamic breakthrough conditions. While this material simultaneously adsorbs N2, differences in O2 and N2 desorption kinetics allow for the isolation of high-purity O2 (>99%) under relatively mild regeneration conditions. Spectroscopic, magnetic, and computational analyses reveal that O2 binds to the copper(I) sites to form copper(II)-superoxide moieties that exhibit temperature-dependent side-on and end-on binding modes. Overall, these results suggest that CuI-MFU-4l is a promising material for the separation of O2 from ambient air, even without dehumidification.

4.
Nat Mater ; 22(2): 200-206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646794

RESUMO

Crystalline symmetries have played a central role in the identification and understanding of quantum materials. Here we investigate whether an amorphous analogue of a well known three-dimensional strong topological insulator has topological properties in the solid state. We show that amorphous Bi2Se3 thin films host a number of two-dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data are consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin-resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture, confirming the existence of spin-momentum locked surface states. We discuss these experimental results in light of theoretical photoemission spectra obtained with an amorphous topological insulator tight-binding model, contrasting it with alternative explanations. The discovery of spin-momentum locked surface states in amorphous materials opens a new avenue to characterize amorphous matter, and triggers the search for an overlooked subset of quantum materials outside of current classification schemes.

5.
Nano Lett ; 23(5): 1843-1849, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847852

RESUMO

Nonlinear optical response is a fingerprint of various physicochemical properties of materials related to symmetry, including crystallography, interfacial configuration, and carrier dynamics. However, the intrinsically weak nonlinear optical susceptibility and the diffraction limit of far-field optics restrict probing deep-subwavelength-scale nonlinear optics with measurable signal-to-noise ratio. Here, we propose an alternative approach toward efficient second harmonic generation (SHG) nanoscopy for SHG-active sample (zinc oxide nanowire; ZnO NW) using an SHG-active plasmonic nanotip. Our full-wave simulation suggests that the experimentally observed high near-field SHG contrast is possible when the nonlinear response of ZnO NW is enhanced and/or that of the tip is suppressed. This result suggests possible evidence of quantum mechanical nonlinear energy transfer between the tip and the sample, modifying the nonlinear optical susceptibility. Further, this process probes the nanoscale corrosion of ZnO NW, demonstrating potential use in studying various physicochemical phenomena in nanoscale resolution.

6.
Nat Mater ; 21(5): 547-554, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35177785

RESUMO

Constitutive laws underlie most physical processes in nature. However, learning such equations in heterogeneous solids (for example, due to phase separation) is challenging. One such relationship is between composition and eigenstrain, which governs the chemo-mechanical expansion in solids. Here we developed a generalizable, physically constrained image-learning framework to algorithmically learn the chemo-mechanical constitutive law at the nanoscale from correlative four-dimensional scanning transmission electron microscopy and X-ray spectro-ptychography images. We demonstrated this approach on LiXFePO4, a technologically relevant battery positive electrode material. We uncovered the functional form of the composition-eigenstrain relation in this two-phase binary solid across the entire composition range (0 ≤ X ≤ 1), including inside the thermodynamically unstable miscibility gap. The learned relation directly validates Vegard's law of linear response at the nanoscale. Our physics-constrained data-driven approach directly visualizes the residual strain field (by removing the compositional and coherency strain), which is otherwise impossible to quantify. Heterogeneities in the residual strain arise from misfit dislocations and were independently verified by X-ray diffraction line profile analysis. Our work provides the means to simultaneously quantify chemical expansion, coherency strain and dislocations in battery electrodes, which has implications on rate capabilities and lifetime. Broadly, this work also highlights the potential of integrating correlative microscopy and image learning for extracting material properties and physics.

7.
Microsc Microanal ; 29(5): 1628-1638, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37584510

RESUMO

We demonstrate a new focused ion beam sample preparation method for atom probe tomography. The key aspect of the new method is that we use a neon ion beam for the final tip-shaping after conventional annulus milling using gallium ions. This dual-ion approach combines the benefits of the faster milling capability of the higher current gallium ion beam with the chemically inert and higher precision milling capability of the noble gas neon ion beam. Using a titanium-aluminum alloy and a layered aluminum/aluminum-oxide tunnel junction sample as test cases, we show that atom probe tips prepared using the combined gallium and neon ion approach are free from the gallium contamination that typically frustrates composition analysis of these materials due to implantation, diffusion, and embrittlement effects. We propose that by using a focused ion beam from a noble gas species, such as the neon ions demonstrated here, atom probe tomography can be more reliably performed on a larger range of materials than is currently possible using conventional techniques.

8.
Microsc Microanal ; 29(6): 1950-1960, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37851063

RESUMO

In a scanning transmission electron microscope (STEM), producing a high-resolution image generally requires an electron beam focused to the smallest point possible. However, the magnetic lenses used to focus the beam are unavoidably imperfect, introducing aberrations that limit resolution. Modern STEMs overcome this by using hardware aberration correctors comprised of many multipole elements, but these devices are complex, expensive, and can be difficult to tune. We demonstrate a design for an electrostatic phase plate that can act as an aberration corrector. The corrector is comprised of annular segments, each of which is an independent two-terminal device that can apply a constant or ramped phase shift to a portion of the electron beam. We show the improvement in image resolution using an electrostatic corrector. Engineering criteria impose that much of the beam within the probe-forming aperture be blocked by support bars, leading to large probe tails for the corrected probe that sample the specimen beyond the central lobe. We also show how this device can be used to create other STEM beam profiles such as vortex beams and probes with a high degree of phase diversity, which improve information transfer in ptychographic reconstructions.

9.
Nat Mater ; 20(4): 468-472, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33020612

RESUMO

It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti-Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating.

10.
Acc Chem Res ; 54(11): 2543-2551, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33979131

RESUMO

ConspectusScanning electron nanobeam diffraction, or 4D-STEM (four-dimensional scanning transmission electron microscopy), is a flexible and powerful approach to elucidate structure from "soft" materials that are challenging to image in the transmission electron microscope because their structure is easily damaged by the electron beam. In a 4D-STEM experiment, a converged electron beam is scanned across the sample, and a pixelated camera records a diffraction pattern at each scan position. This four-dimensional data set can be mined for various analyses, producing maps of local crystal orientation, structural distortions, crystallinity, or different structural classes. Holding the sample at cryogenic temperatures minimizes diffusion of radicals and the resulting damage and disorder caused by the electron beam. The total fluence of incident electrons can easily be controlled during 4D-STEM experiments by careful use of the beam blanker, steering of the localized electron dose, and by minimizing the fluence in the convergent beam thus minimizing beam damage. This technique can be applied to both organic and inorganic materials that are known to be beam-sensitive; they can be highly crystalline, semicrystalline, mixed phase, or amorphous.One common example is the case for many organic materials that have a π-π stacking of polymer chains or rings on the order of 3.4-4.2 Å separation. If these chains or rings are aligned in some regions, they will produce distinct diffraction spots (as would other crystalline spacings in this range), though they may be weak or diffuse for disordered or weakly scattering materials. We can reconstruct the orientation of the π-π stacking, the degree of π-π stacking in the sample, and the domain size of the aligned regions. This Account summarizes illumination conditions and experimental parameters for 4D-STEM experiments with the goal of producing images of structural features for materials that are beam-sensitive. We will discuss experimental parameters including sample cooling, probe size and shape, fluence, and cameras. 4D-STEM has been applied to a variety of materials, not only as an advanced technique for model systems, but as a technique for the beginning microscopist to answer materials science questions. It is noteworthy that the experimental data acquisition does not require an aberration-corrected TEM but can be produced on a variety of instruments with the right attention to experimental parameters.

11.
Microsc Microanal ; : 1-14, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135651

RESUMO

Crystalline materials used in technological applications are often complex assemblies composed of multiple phases and differently oriented grains. Robust identification of the phases and orientation relationships from these samples is crucial, but the information extracted from the diffraction condition probed by an electron beam is often incomplete. We have developed an automated crystal orientation mapping (ACOM) procedure which uses a converged electron probe to collect diffraction patterns from multiple locations across a complex sample. We provide an algorithm to determine the orientation of each diffraction pattern based on a fast sparse correlation method. We demonstrate the speed and accuracy of our method by indexing diffraction patterns generated using both kinematical and dynamical simulations. We have also measured orientation maps from an experimental dataset consisting of a complex polycrystalline twisted helical AuAgPd nanowire. From these maps we identify twin planes between adjacent grains, which may be responsible for the twisted helical structure. All of our methods are made freely available as open source code, including tutorials which can be easily adapted to perform ACOM measurements on diffraction pattern datasets.

12.
Nano Lett ; 21(9): 3894-3900, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33914543

RESUMO

Strain engineering provides an effective way of tailoring the electronic and optoelectronic properties of semiconductor nanomaterials and nanodevices, giving rise to novel functionalities. Here, we present direct experimental evidence of strain-induced modifications of hole mobility in individual gallium arsenide (GaAs) nanowires, using in situ transmission electron microscopy (TEM). The conductivity of the nanowires varied with applied uniaxial tensile stress, showing an initial decrease of ∼5-20% up to a stress of 1-2 GPa, subsequently increasing up to the elastic limit of the nanowires. This is attributed to a hole mobility variation due to changes in the valence band structure caused by stress and strain. The corresponding lattice strain in the nanowires was quantified by in situ four dimensional scanning TEM and showed a complex spatial distribution at all stress levels. Meanwhile, a significant red shift of the band gap induced by the stress and strain was unveiled by monochromated electron energy loss spectroscopy.

13.
Nano Lett ; 21(15): 6463-6470, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310158

RESUMO

A hierarchy of intramolecular and intermolecular interactions controls the properties of biomedical, photophysical, and novel energy materials. However, multiscale heterogeneities often obfuscate the relationship between microscopic structure and emergent function, and they are generally difficult to access with conventional optical and electron microscopy techniques. Here, we combine vibrational exciton nanoimaging in variable-temperature near-field optical microscopy (IR s-SNOM) with four-dimensional scanning transmission electron microscopy (4D-STEM), and vibrational exciton modeling based on density functional theory (DFT), to link local microscopic molecular interactions to macroscopic three-dimensional order. In the application to poly(tetrafluoroethylene) (PTFE), large spatio-spectral heterogeneities with C-F vibrational energy shifts ranging from sub-cm-1 to ≳25 cm-1 serve as a molecular ruler of the degree of local crystallinity and disorder. Spatio-spectral-structural correlations reveal a previously invisible degree of highly variable local disorder in molecular coupling as the possible missing link between nanoscale morphology and associated electronic, photonic, and other functional properties of molecular materials.


Assuntos
Microscopia , Vibração
14.
Microsc Microanal ; 27(1): 129-139, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33303043

RESUMO

One of the primary uses for transmission electron microscopy (TEM) is to measure diffraction pattern images in order to determine a crystal structure and orientation. In nanobeam electron diffraction (NBED), we scan a moderately converged electron probe over the sample to acquire thousands or even millions of sequential diffraction images, a technique that is especially appropriate for polycrystalline samples. However, due to the large Ewald sphere of TEM, excitation of Bragg peaks can be extremely sensitive to sample tilt, varying strongly for even a few degrees of sample tilt for crystalline samples. In this paper, we present multibeam electron diffraction (MBED), where multiple probe-forming apertures are used to create multiple scanning transmission electron microscopy (STEM) probes, all of which interact with the sample simultaneously. We detail designs for MBED experiments, and a method for using a focused ion beam to produce MBED apertures. We show the efficacy of the MBED technique for crystalline orientation mapping using both simulations and proof-of-principle experiments. We also show how the angular information in MBED can be used to perform 3D tomographic reconstruction of samples without needing to tilt or scan the sample multiple times. Finally, we also discuss future opportunities for the MBED method.

15.
Microsc Microanal ; 27(4): 794-803, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34169813

RESUMO

High-throughput grain mapping with sub-nanometer spatial resolution is demonstrated using scanning nanobeam electron diffraction (also known as 4D scanning transmission electron microscopy, or 4D-STEM) combined with high-speed direct-electron detection. An electron probe size down to 0.5 nm in diameter is used and the sample investigated is a gold­palladium nanoparticle catalyst. Computational analysis of the 4D-STEM data sets is performed using a disk registration algorithm to identify the diffraction peaks followed by feature learning to map the individual grains. Two unsupervised feature learning techniques are compared: principal component analysis (PCA) and non-negative matrix factorization (NNMF). The characteristics of the PCA versus NNMF output are compared and the potential of the 4D-STEM approach for statistical analysis of grain orientations at high spatial resolution is discussed.

16.
Microsc Microanal ; 27(4): 712-743, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34018475

RESUMO

Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and spectroscopy of materials on length scales ranging from microns to atoms. By using a high-speed, direct electron detector, it is now possible to record a full two-dimensional (2D) image of the diffracted electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM datasets are rich in information, including signatures of the local structure, orientation, deformation, electromagnetic fields, and other sample-dependent properties. However, extracting this information requires complex analysis pipelines that include data wrangling, calibration, analysis, and visualization, all while maintaining robustness against imaging distortions and artifacts. In this paper, we present py4DSTEM, an analysis toolkit for measuring material properties from 4D-STEM datasets, written in the Python language and released with an open-source license. We describe the algorithmic steps for dataset calibration and various 4D-STEM property measurements in detail and present results from several experimental datasets. We also implement a simple and universal file format appropriate for electron microscopy data in py4DSTEM, which uses the open-source HDF5 standard. We hope this tool will benefit the research community and help improve the standards for data and computational methods in electron microscopy, and we invite the community to contribute to this ongoing project.

17.
Nano Lett ; 20(1): 449-455, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31804092

RESUMO

In situ bending tests of amorphous Si nanowires (a-Si NWs) found different elastic behavior depending on whether they were straight or curved to begin with. The axially straight NWs exhibit pure elastic deformation; however, the axially curved NWs exhibit obvious anelastic behavior when they are bent in the direction of original curvature. On the basis of STEM-EELS analysis, we propose that the underlying mechanism for this anelastic behavior is a bond-switching assisted redistribution of the nonuniform density (structure) in the curved NWs under the inhomogeneous stress field. This mechanism was further supported by the fact that the originally straight a-Si NWs also display similar anelasticity with the as-grown curved NWs after focused ion beam irradiation that can cause nonuniform structure distribution. As compared to what has been reported in other 1D materials, the anelasticity of a-Si NWs can be tuned by modifying their morphology, controlling the loading direction, or irradiating them via ion beam. Our findings suggest that a-Si NWs could be a promising material in the nanoscale damping systems, especially the semiconductor nanodevices.

18.
Nat Mater ; 18(8): 860-865, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31160799

RESUMO

The properties of organic solids depend on their structure and morphology, yet direct imaging using conventional electron microscopy methods is hampered by the complex internal structure of these materials and their sensitivity to electron beams. Here, we manage to observe the nanocrystalline structure of two organic molecular thin-film systems using transmission electron microscopy by employing a scanning nanodiffraction method that allows for full access to reciprocal space over the size of a spatially localized probe (~2 nm). The morphologies revealed by this technique vary from grains with pronounced segmentation of the structure-characterized by sharp grain boundaries and overlapping domains-to liquid-crystal structures with crystalline orientations varying smoothly over all possible rotations that contain disclinations representing singularities in the director field. The results show how structure-property relationships can be visualized in organic systems using techniques previously only available for hard materials such as metals and ceramics.

19.
Inorg Chem ; 59(3): 2030-2036, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31971379

RESUMO

The octadentate hydroxypyridinone chelator 3,4,3-LI(1,2-HOPO) is a promising therapeutic agent because of its high affinity for f-block elements and noncytotoxicity at medical dosages. The interaction between 3,4,3-LI(1,2-HOPO) and other biomedically relevant metals such as gold, however, has not been explored. Gold nanoparticles functionalized with chelators have demonstrated great potential in theranostics, yet thus far, no protocol that combines 3,4,3-LI(1,2-HOPO) and colloidal gold has been developed. Here, we characterize the solution thermodynamic properties of the complexes formed between 3,4,3-LI(1,2-HOPO) and Au3+ ions and demonstrate how under specific pH conditions the chelator promotes the growth of gold nanoparticles, acting as both reducing and stabilizing agent. 3,4,3-LI(1,2-HOPO) ligands on the nanoparticle surface remain active and selective toward f-block elements, as evidenced by gold nanoparticle selective aggregation. Finally, a new colorimetric assay capable of reaching the detection levels necessary for the quantification of lanthanides in waste from industrial processes is developed based on the inhibition of particle growth by lanthanides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA