Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 506: 72-84, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110169

RESUMO

The DGCR8 gene, encoding a critical miRNA processing protein, maps within the hemizygous region in patients with 22q11.2 deletion syndrome. Most patients have malformations of the cardiac outflow tract that is derived in part from the anterior second heart field (aSHF) mesoderm. To understand the function of Dgcr8 in the aSHF, we inactivated it in mice using Mef2c-AHF-Cre. Inactivation resulted in a fully penetrant persistent truncus arteriosus and a hypoplastic right ventricle leading to lethality by E14.5. To understand the molecular mechanism for this phenotype, we performed gene expression profiling of the aSHF and the cardiac outflow tract with right ventricle in conditional null versus normal mouse littermates at stage E9.5 prior to morphology changes. We identified dysregulation of mRNA gene expression, of which some are relevant to cardiogenesis. Many pri-miRNA genes were strongly increased in expression in mutant embryos along with reduced expression of mature miRNA genes. We further examined the individual, mature miRNAs that were decreased in expression along with pri-miRNAs that were accumulated that could be direct effects due to loss of Dgcr8. Among these genes, were miR-1a, miR-133a, miR-134, miR143 and miR145a, which have known functions in heart development. These early mRNA and miRNA changes may in part, explain the first steps that lead to the resulting phenotype in Dgcr8 aSHF conditional mutant embryos.


Assuntos
Ventrículos do Coração , MicroRNAs , Humanos , Camundongos , Animais , Ventrículos do Coração/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Mamíferos/metabolismo , RNA Mensageiro
2.
Dev Biol ; 494: 71-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36521641

RESUMO

The morphogenesis of the otic vesicle (OV) to form inner ear organs serves as an excellent model system to understand cell fate acquisition on a single cell level. Tbx2 and Tbx3 (Tbx2/3) encode closely related T-box transcription factors that are expressed widely in the mammalian OV. Inactivation of both genes in the OV (Tbx2/3cKO) results in failed morphogenesis into inner ear organs. To understand the basis of these defects, single cell RNA-sequencing (scRNA-seq) was performed on the OV lineage, in controls versus Tbx2/3cKO embryos. We identified a multipotent population termed otic progenitors in controls that are marked by expression of the known otic placode markers Eya1, Sox2, and Sox3 as well as new markers Fgf18, Cxcl12, and Pou3f3. The otic progenitor population was increased three-fold in Tbx2/3cKO embryos, concomitant with dysregulation of genes in these cells as well as reduced progression to more differentiated states of prosensory and nonsensory cells. An ectopic neural population of cells was detected in the posterior OV of Tbx2/3cKO embryos but had reduced maturation to delaminated neural cells. As all three cell fates were affected in Tbx2/3cKO embryos, we suggest that Tbx2/3 promotes progression of multipotent otic progenitors to more differentiated cell types in the OV.


Assuntos
Orelha Interna , Animais , Diferenciação Celular/genética , Orelha Interna/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Mamíferos/metabolismo , Morfogênese , Sistema Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Domínio T
3.
Hum Mol Genet ; 31(8): 1197-1215, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686881

RESUMO

CRK and CRKL encode cytoplasmic adaptors that contribute to the etiology of congenital heart disease. Neural crest cells (NCCs) are required for cardiac outflow tract (OFT) septation and aortic arch formation. The roles of Crk/Crkl in NCCs during mouse cardiovascular development remain unknown. To test this, we inactivated Crk and/or Crkl in NCCs. We found that the loss of Crk, rather than Crkl, in NCCs resulted in double outlet right ventricle, while loss of both Crk/Crkl in NCCs resulted in severe defects with earlier lethality due to failed OFT septation and severe dilation of the pharyngeal arch arteries (PAAs). We found that these defects are due to altered cell morphology resulting in reduced localization of NCCs to the OFT and failed integrity of the PAAs, along with reduced expression of Integrin signaling genes. Further, molecular studies identified reduced differentiation of vascular smooth muscle cells that may in part be due to altered Notch signaling. Additionally, there is increased cellular stress that leads to modest increase in apoptosis. Overall, this explains the mechanism for the Crk/Crkl phenotype.


Assuntos
Cardiopatias Congênitas , Crista Neural , Animais , Diferenciação Celular/genética , Cardiopatias Congênitas/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Crista Neural/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Transdução de Sinais/genética
4.
Mol Psychiatry ; 28(5): 2071-2080, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869225

RESUMO

22q11.2 deletion is one of the strongest known genetic risk factors for schizophrenia. Recent whole-genome sequencing of schizophrenia cases and controls with this deletion provided an unprecedented opportunity to identify risk modifying genetic variants and investigate their contribution to the pathogenesis of schizophrenia in 22q11.2 deletion syndrome. Here, we apply a novel analytic framework that integrates gene network and phenotype data to investigate the aggregate effects of rare coding variants and identified modifier genes in this etiologically homogenous cohort (223 schizophrenia cases and 233 controls of European descent). Our analyses revealed significant additive genetic components of rare nonsynonymous variants in 110 modifier genes (adjusted P = 9.4E-04) that overall accounted for 4.6% of the variance in schizophrenia status in this cohort, of which 4.0% was independent of the common polygenic risk for schizophrenia. The modifier genes affected by rare coding variants were enriched with genes involved in synaptic function and developmental disorders. Spatiotemporal transcriptomic analyses identified an enrichment of coexpression between modifier and 22q11.2 genes in cortical brain regions from late infancy to young adulthood. Corresponding gene coexpression modules are enriched with brain-specific protein-protein interactions of SLC25A1, COMT, and PI4KA in the 22q11.2 deletion region. Overall, our study highlights the contribution of rare coding variants to the SCZ risk. They not only complement common variants in disease genetics but also pinpoint brain regions and developmental stages critical to the etiology of syndromic schizophrenia.


Assuntos
Síndrome de DiGeorge , Esquizofrenia , Humanos , Adulto Jovem , Adulto , Esquizofrenia/genética , Síndrome de DiGeorge/genética , Encéfalo , Perfilação da Expressão Gênica , Sequenciamento Completo do Genoma
5.
Clin Genet ; 103(1): 109-113, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075864

RESUMO

Prior studies have demonstrated that patients with chromosome 22q11.2 deletion syndrome (22q11.2DS) have lower platelet counts (PC) compared to non-deleted populations. They also have an increased mean platelet volume. The mechanism for this has been postulated to be haploinsufficiency of the GPIBB gene. We examined platelet parameters, deletion size and factors known to influence counts, including status of thyroid hormone and congenital heart disease (CHD), in a population of 825 patients with 22q11.2DS. We also measured surface expression of GPIB-IX complex by flow cytometry. The major determinant of PC was deletion status of GP1BB, regardless of surface expression or other factors. Patients with nested distal chromosome 22q11.2 deletions (those with GP1BB present) had higher PCs than those with proximal deletions where GP1BB is deleted. Patients with 22q11.2DS also demonstrated an accelerated PC decrease with age, occurring in childhood. These data demonstrate that genes within the proximal deletion segment drive PC differences in 22q11.2DS and suggest that PC reference ranges may need to be adjusted for age and deletion size in 22q11.2DS populations. Bleeding did not correlate with either platelet count or GPIb expression. Further studies into drivers of expression of GPIb and associations with severe thrombocytopenia and immune thrombocytopenia are needed to inform clinical care.


Assuntos
Síndrome de DiGeorge , Humanos , Síndrome de DiGeorge/genética
6.
Genome Res ; 29(9): 1389-1401, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31481461

RESUMO

Low copy repeats (LCRs) are recognized as a significant source of genomic instability, driving genome variability and evolution. The Chromosome 22 LCRs (LCR22s) mediate nonallelic homologous recombination (NAHR) leading to the 22q11 deletion syndrome (22q11DS). However, LCR22s are among the most complex regions in the genome, and their structure remains unresolved. The difficulty in generating accurate maps of LCR22s has also hindered localization of the deletion end points in 22q11DS patients. Using fiber FISH and Bionano optical mapping, we assembled LCR22 alleles in 187 cell lines. Our analysis uncovered an unprecedented level of variation in LCR22s, including LCR22A alleles ranging in size from 250 to 2000 kb. Further, the incidence of various LCR22 alleles varied within different populations. Additionally, the analysis of LCR22s in 22q11DS patients and their parents enabled further refinement of the rearrangement site within LCR22A and -D, which flank the 22q11 deletion. The NAHR site was localized to a 160-kb paralog shared between the LCR22A and -D in seven 22q11DS patients. Thus, we present the most comprehensive map of LCR22 variation to date. This will greatly facilitate the investigation of the role of LCR variation as a driver of 22q11 rearrangements and the phenotypic variability among 22q11DS patients.


Assuntos
Síndrome da Deleção 22q11/genética , Mapeamento Cromossômico/métodos , Cromossomos Humanos Par 22/genética , Sequências Repetitivas de Ácido Nucleico , Animais , Linhagem Celular , Instabilidade Cromossômica , Evolução Molecular , Humanos , Hibridização in Situ Fluorescente , Primatas/genética
7.
Mol Psychiatry ; 26(8): 4496-4510, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32015465

RESUMO

Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Esquizofrenia , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genética
8.
PLoS Genet ; 15(8): e1008301, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31412026

RESUMO

We investigated whether Tbx1, the gene for 22q11.2 deletion syndrome (22q11.2DS) and Foxi3, both required for segmentation of the pharyngeal apparatus (PA) to individual arches, genetically interact. We found that all Tbx1+/-;Foxi3+/- double heterozygous mouse embryos had thymus and parathyroid gland defects, similar to those in 22q11.2DS patients. We then examined Tbx1 and Foxi3 heterozygous, null as well as conditional Tbx1Cre and Sox172A-iCre/+ null mutant embryos. While Tbx1Cre/+;Foxi3f/f embryos had absent thymus and parathyroid glands, Foxi3-/- and Sox172A-iCre/+;Foxi3f/f endoderm conditional mutant embryos had in addition, interrupted aortic arch type B and retroesophageal origin of the right subclavian artery, which are all features of 22q11.2DS. Tbx1Cre/+;Foxi3f/f embryos had failed invagination of the third pharyngeal pouch with greatly reduced Gcm2 and Foxn1 expression, thereby explaining the absence of thymus and parathyroid glands. Immunofluorescence on tissue sections with E-cadherin and ZO-1 antibodies in wildtype mouse embryos at E8.5-E10.5, revealed that multilayers of epithelial cells form where cells are invaginating as a normal process. We noted that excessive multilayers formed in Foxi3-/-, Sox172A-iCre/+;Foxi3f/f as well as Tbx1 null mutant embryos where invagination should have occurred. Several genes expressed in the PA epithelia were downregulated in both Tbx1 and Foxi3 null mutant embryos including Notch pathway genes Jag1, Hes1, and Hey1, suggesting that they may, along with other genes, act downstream to explain the observed genetic interaction. We found Alcam and Fibronectin extracellular matrix proteins were reduced in expression in Foxi3 null but not Tbx1 null embryos, suggesting that some, but not all of the downstream mechanisms are shared.


Assuntos
Síndrome de DiGeorge/patologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Domínio T/metabolismo , Animais , Região Branquial/embriologia , Síndrome de DiGeorge/genética , Modelos Animais de Doenças , Embrião de Mamíferos , Endoderma/embriologia , Feminino , Fatores de Transcrição Forkhead/genética , Coração/embriologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Miocárdio/patologia , Proteínas com Domínio T/genética
9.
Hum Mol Genet ; 28(22): 3724-3733, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884517

RESUMO

The majority (99%) of individuals with 22q11.2 deletion syndrome (22q11.2DS) have a deletion that is caused by non-allelic homologous recombination between two of four low copy repeat clusters on chromosome 22q11.2 (LCR22s). However, in a small subset of patients, atypical deletions are observed with at least one deletion breakpoint within unique sequence between the LCR22s. The position of the chromosome breakpoints and the mechanisms driving those atypical deletions remain poorly studied. Our large-scale, whole genome sequencing study of >1500 subjects with 22q11.2DS identified six unrelated individuals with atypical deletions of different types. Using a combination of whole genome sequencing data and fiber-fluorescence in situ hybridization, we mapped the rearranged alleles in these subjects. In four of them, the distal breakpoints mapped within one of the LCR22s and we found that the deletions likely occurred by replication-based mechanisms. Interestingly, in two of them, an inversion probably preceded inter-chromosomal 'allelic' homologous recombination between differently oriented LCR22-D alleles. Inversion associated allelic homologous recombination (AHR) may well be a common mechanism driving (atypical) deletions on 22q11.2.


Assuntos
Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Recombinação Homóloga/genética , Adulto , Alelos , Pontos de Quebra do Cromossomo , Deleção Cromossômica , Inversão Cromossômica/genética , Mapeamento Cromossômico/métodos , Cromossomos/genética , Cromossomos Humanos Par 22/genética , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Masculino , Duplicações Segmentares Genômicas/genética , Sequenciamento Completo do Genoma/métodos
10.
Hum Mol Genet ; 27(11): 1847-1857, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509905

RESUMO

Non-allelic homologous recombination events on chromosome 22q11.2 during meiosis can result in either the deletion (22q11.2DS) or duplication (22q11.2DupS) syndrome. Although the spectrum and frequency of congenital heart disease (CHD) are known for 22q11.2DS, there is less known for 22q11.2DupS. We now evaluated cardiac phenotypes in 235 subjects with 22q11.2DupS including 102 subjects we collected and 133 subjects that were previously reported as a confirmation and found 25% have CHD, mostly affecting the cardiac outflow tract (OFT). Previous studies have shown that global loss or gain of function (LOF; GOF) of mouse Tbx1, encoding a T-box transcription factor mapping to the region of synteny to 22q11.2, results in similar OFT defects. To further evaluate Tbx1 function in the progenitor cells forming the cardiac OFT, termed the anterior heart field, Tbx1 was overexpressed using the Mef2c-AHF-Cre driver (Tbx1 GOF). Here we found that all resulting conditional GOF embryos had a persistent truncus arteriosus (PTA), similar to what was previously reported for conditional Tbx1 LOF mutant embryos. To understand the basis for the PTA in the conditional GOF embryos, we found that proliferation in the Mef2c-AHF-Cre lineage cells before migrating to the heart, was reduced and critical genes were oppositely changed in this tissue in Tbx1 GOF embryos versus conditional LOF embryos. These results suggest that a major function of TBX1 in the AHF is to maintain the normal balance of expression of key cardiac developmental genes required to form the aorta and pulmonary trunk, which is disrupted in 22q11.2DS and 22q11.2DupS.


Assuntos
Desenvolvimento Embrionário/genética , Cardiopatias Congênitas/genética , Coração/crescimento & desenvolvimento , Proteínas com Domínio T/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Animais , Aorta/fisiopatologia , Duplicação Cromossômica/genética , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Coração/fisiopatologia , Cardiopatias Congênitas/patologia , Recombinação Homóloga/genética , Humanos , Meiose/genética , Camundongos , Mutação , Persistência do Tronco Arterial/genética , Persistência do Tronco Arterial/fisiopatologia
11.
Hum Mol Genet ; 27(7): 1150-1163, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361080

RESUMO

Recurrent, de novo, meiotic non-allelic homologous recombination events between low copy repeats, termed LCR22s, leads to the 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome/DiGeorge syndrome). Although most 22q11.2DS patients have a similar sized 3 million base pair (Mb), LCR22A-D deletion, some have nested LCR22A-B or LCR22A-C deletions. Our goal is to identify additional recurrent 22q11.2 deletions associated with 22q11.2DS, serving as recombination hotspots for meiotic chromosomal rearrangements. Here, using data from Affymetrix 6.0 microarrays on 1680 22q11.2DS subjects, we identified what appeared to be a nested proximal 22q11.2 deletion in 38 (2.3%) of them. Using molecular and haplotype analyses from 14 subjects and their parent(s) with available DNA, we found essentially three types of scenarios to explain this observation. In eight subjects, the proximal breakpoints occurred in a small sized 12 kb LCR distal to LCR22A, referred to LCR22A+, resulting in LCR22A+-B or LCR22A+-D deletions. Six of these eight subjects had a nested 22q11.2 deletion that occurred during meiosis in a parent carrying a benign 0.2 Mb duplication of the LCR22A-LCR22A+ region with a breakpoint in LCR22A+. Another six had a typical de novo LCR22A-D deletion on one allele and inherited the LCR22A-A+ duplication from the other parent thus appearing on microarrays to have a nested deletion. LCR22A+ maps to an evolutionary breakpoint between mice and humans and appears to serve as a local hotspot for chromosome rearrangements on 22q11.2.


Assuntos
Alelos , Mapeamento Cromossômico , Síndrome de DiGeorge/genética , Meiose , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Feminino , Humanos , Masculino
12.
Am J Hum Genet ; 101(4): 616-622, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28965848

RESUMO

Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A-D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A-B 22q11.2 deletion carry inversions of LCR22B-D or LCR22C-D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders.


Assuntos
Inversão Cromossômica , Síndrome de DiGeorge/genética , Predisposição Genética para Doença , Meiose , Polimorfismo de Nucleotídeo Único , Deleção Cromossômica , Variações do Número de Cópias de DNA , Síndrome de DiGeorge/patologia , Recombinação Homóloga , Humanos , Hibridização in Situ Fluorescente/métodos
13.
PLoS Genet ; 13(12): e1007142, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281626

RESUMO

Rare variants of major effect play an important role in human complex diseases and can be discovered by sequencing-based genome-wide association studies. Here, we introduce an integrated approach that combines the rare variant association test with gene network and phenotype information to identify risk genes implicated by rare variants for human complex diseases. Our data integration method follows a 'discovery-driven' strategy without relying on prior knowledge about the disease and thus maintains the unbiased character of genome-wide association studies. Simulations reveal that our method can outperform a widely-used rare variant association test method by 2 to 3 times. In a case study of a small disease cohort, we uncovered putative risk genes and the corresponding rare variants that may act as genetic modifiers of congenital heart disease in 22q11.2 deletion syndrome patients. These variants were missed by a conventional approach that relied on the rare variant association test alone.


Assuntos
Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Análise de Sequência de DNA/métodos , Estudos de Casos e Controles , Simulação por Computador , Interpretação Estatística de Dados , Síndrome de DiGeorge/genética , Humanos , Fenótipo , Fatores de Risco , Análise de Sequência de DNA/estatística & dados numéricos
14.
PLoS Genet ; 13(3): e1006687, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28346476

RESUMO

The 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome; DiGeorge syndrome) is a congenital anomaly disorder in which haploinsufficiency of TBX1, encoding a T-box transcription factor, is the major candidate for cardiac outflow tract (OFT) malformations. Inactivation of Tbx1 in the anterior heart field (AHF) mesoderm in the mouse results in premature expression of pro-differentiation genes and a persistent truncus arteriosus (PTA) in which septation does not form between the aorta and pulmonary trunk. Canonical Wnt/ß-catenin has major roles in cardiac OFT development that may act upstream of Tbx1. Consistent with an antagonistic relationship, we found the opposite gene expression changes occurred in the AHF in ß-catenin loss of function embryos compared to Tbx1 loss of function embryos, providing an opportunity to test for genetic rescue. When both alleles of Tbx1 and one allele of ß-catenin were inactivated in the Mef2c-AHF-Cre domain, 61% of them (n = 34) showed partial or complete rescue of the PTA defect. Upregulated genes that were oppositely changed in expression in individual mutant embryos were normalized in significantly rescued embryos. Further, ß-catenin was increased in expression when Tbx1 was inactivated, suggesting that there may be a negative feedback loop between canonical Wnt and Tbx1 in the AHF to allow the formation of the OFT. We suggest that alteration of this balance may contribute to variable expressivity in 22q11.2DS.


Assuntos
Anormalidades Cardiovasculares/genética , Síndrome de DiGeorge/genética , Modelos Animais de Doenças , Proteínas com Domínio T/genética , beta Catenina/genética , Animais , Apoptose/genética , Anormalidades Cardiovasculares/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/genética , Síndrome de DiGeorge/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas com Domínio T/metabolismo , Tronco Arterial/citologia , Tronco Arterial/embriologia , Tronco Arterial/metabolismo , beta Catenina/metabolismo
15.
J Mol Cell Cardiol ; 125: 98-105, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30347193

RESUMO

NOTCH and WNT signaling pathways play critical roles in cardiac chamber formation. Here we explored the potential interactions between the two pathways in this developmental process by using genetically modified mouse models and whole embryo culture systems. By deletion of Notch1 to inactivate NOTCH1 signaling in the endocardium in vivo and ex vivo rescue experiments, we showed that myocardial WNT5A mediated endocardial NOTCH1 signaling to maintain the gene regulatory network essential for cardiac chamber formation. Furthermore, genetic deletion of ß-catenin in the myocardium and inhibition of the WNT/Ca2+ signaling by FK506 resulted in a similar disruption of the gene regulatory network as inactivation of endocardial NOTCH1 signaling. Together, these findings identify WNT5A as a key myocardial factor that mediates the endocardial NOTCH signaling to maintain the gene regulatory network essential for cardiac chamber formation through WNT/ß-catenin and WNT/Ca2+ signaling pathways.


Assuntos
Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Proteína Wnt-5a/metabolismo , beta Catenina/metabolismo , Animais , Endocárdio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Masculino , Camundongos , Miocárdio/metabolismo , Receptor Notch1/genética , Receptores Notch/genética , Proteína Wnt-5a/genética , beta Catenina/genética
16.
Hum Mol Genet ; 25(17): 3754-3767, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27436579

RESUMO

Velo-cardio-facial syndrome/DiGeorge syndrome/22q11.2 deletion syndrome (22q11.2DS) is caused by meiotic non-allelic homologous recombination events between flanking low copy repeats termed LCR22A and LCR22D, resulting in a 3 million base pair (Mb) deletion. Due to their complex structure, large size and high sequence identity, genetic variation within LCR22s among different individuals has not been well characterized. In this study, we sequenced 13 BAC clones derived from LCR22A/D and aligned them with 15 previously available BAC sequences to create a new genetic variation map. The thousands of variants identified by this analysis were not uniformly distributed in the two LCR22s. Moreover, shared single nucleotide variants between LCR22A and LCR22D were enriched in the Breakpoint Cluster Region pseudogene (BCRP) block, suggesting the existence of a possible recombination hotspot there. Interestingly, breakpoints for atypical 22q11.2 rearrangements have previously been located to BCRPs To further explore this finding, we carried out in-depth analyses of whole genome sequence (WGS) data from two unrelated probands harbouring a de novo 3Mb 22q11.2 deletion and their normal parents. By focusing primarily on WGS reads uniquely mapped to LCR22A, using the variation map from our BAC analysis to help resolve allele ambiguity, and by performing PCR analysis, we infer that the deletion breakpoints were most likely located near or within the BCRP module. In summary, we found a high degree of sequence variation in LCR22A and LCR22D and a potential recombination breakpoint near or within the BCRP block, providing a starting point for future breakpoint mapping using additional trios.


Assuntos
Pontos de Quebra do Cromossomo , Síndrome de DiGeorge/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Cromossomos Artificiais Bacterianos/genética , Cromossomos Humanos Par 22/genética , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
17.
Am J Hum Genet ; 97(6): 869-77, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26608785

RESUMO

We performed whole exome sequence (WES) to identify genetic modifiers on 184 individuals with 22q11.2 deletion syndrome (22q11DS), of whom 89 case subjects had severe congenital heart disease (CHD) and 95 control subjects had normal hearts. Three genes including JMJD1C (jumonji domain containing 1C), RREB1 (Ras responsive element binding protein 1), and SEC24C (SEC24 family member C) had rare (MAF < 0.001) predicted deleterious single-nucleotide variations (rdSNVs) in seven case subjects and no control subjects (p = 0.005; Fisher exact and permutation tests). Because JMJD1C and RREB1 are involved in chromatin modification, we investigated other histone modification genes. Eighteen case subjects (20%) had rdSNVs in four genes (JMJD1C, RREB1, MINA, KDM7A) all involved in demethylation of histones (H3K9, H3K27). Overall, rdSNVs were enriched in histone modifier genes that activate transcription (Fisher exact p = 0.0004, permutations, p = 0.0003, OR = 5.16); however, rdSNVs in control subjects were not enriched. This implicates histone modification genes as influencing risk for CHD in presence of the deletion.


Assuntos
Proteínas de Ligação a DNA/genética , Síndrome de DiGeorge/genética , Cardiopatias Congênitas/genética , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas Nucleares/genética , Oxirredutases N-Desmetilantes/genética , Fatores de Transcrição/genética , Estudos de Casos e Controles , Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/patologia , Dioxigenases , Exoma , Regulação da Expressão Gênica , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Histona Desmetilases , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único , Risco , Transcrição Gênica , Proteínas de Transporte Vesicular/genética
18.
Am J Hum Genet ; 96(2): 235-44, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25658046

RESUMO

The human chromosome 22q11.2 region is susceptible to rearrangements during meiosis leading to velo-cardio-facial/DiGeorge/22q11.2 deletion syndrome (22q11DS) characterized by conotruncal heart defects (CTDs) and other congenital anomalies. The majority of individuals have a 3 Mb deletion whose proximal region contains the presumed disease-associated gene TBX1 (T-box 1). Although a small subset have proximal nested deletions including TBX1, individuals with distal deletions that exclude TBX1 have also been identified. The deletions are flanked by low-copy repeats (LCR22A, B, C, D). We describe cardiac phenotypes in 25 individuals with atypical distal nested deletions within the 3 Mb region that do not include TBX1 including 20 with LCR22B to LCR22D deletions and 5 with nested LCR22C to LCR22D deletions. Together with previous reports, 12 of 37 (32%) with LCR22B-D deletions and 5 of 34 (15%) individuals with LCR22C-D deletions had CTDs including tetralogy of Fallot. In the absence of TBX1, we hypothesized that CRKL (Crk-like), mapping to the LCR22C-D region, might contribute to the cardiac phenotype in these individuals. We created an allelic series in mice of Crkl, including a hypomorphic allele, to test for gene expression effects on phenotype. We found that the spectrum of heart defects depends on Crkl expression, occurring with analogous malformations to that in human individuals, suggesting that haploinsufficiency of CRKL could be responsible for the etiology of CTDs in individuals with nested distal deletions and might act as a genetic modifier of individuals with the typical 3 Mb deletion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromossomos Humanos Par 22/genética , Cardiopatias Congênitas/genética , Proteínas Nucleares/genética , Fenótipo , Duplicações Segmentares Genômicas/genética , Deleção de Sequência/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ecocardiografia , Cardiopatias Congênitas/patologia , Humanos , Hibridização in Situ Fluorescente , Camundongos , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
19.
Am J Hum Genet ; 96(5): 753-64, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25892112

RESUMO

The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS.


Assuntos
Variações do Número de Cópias de DNA/genética , Síndrome de DiGeorge/genética , Transportador de Glucose Tipo 3/genética , Cardiopatias Congênitas/genética , Adulto , Aorta Torácica/fisiopatologia , Síndrome de DiGeorge/fisiopatologia , Feminino , Genótipo , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
20.
Am J Med Genet A ; 176(10): 2070-2081, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30380194

RESUMO

The 22q11.2 deletion syndrome (22q11.2DS) is a congenital malformation and neuropsychiatric disorder caused by meiotic chromosome rearrangements. One of the goals of this review is to summarize the current state of basic research studies of 22q11.2DS. It highlights efforts to understand the mechanisms responsible for the 22q11.2 deletion that occurs in meiosis. This mechanism involves the four sets of low copy repeats (LCR22) that are dispersed in the 22q11.2 region and the deletion is mediated by nonallelic homologous recombination events. This review also highlights selected genes mapping to the 22q11.2 region that may contribute to the typical clinical findings associated with the disorder and explain that mutations in genes on the remaining allele can uncover rare recessive conditions. Another important aspect of 22q11.2DS is the existence of phenotypic heterogeneity. While some patients are mildly affected, others have severe medical, cognitive, and/or psychiatric challenges. Variability may be due in part to the presence of genetic modifiers. This review discusses current genome-wide efforts to identify such modifiers that could shed light on molecular pathways required for normal human development, cognition or behavior.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 22 , Síndrome de DiGeorge/genética , Mutação , Deleção Cromossômica , Síndrome de DiGeorge/etiologia , Genes Recessivos , Testes Genéticos , Humanos , Meiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA