RESUMO
Lung-resident memory B cells (MBCs) provide localized protection against reinfection in respiratory airways. Currently, the biology of these cells remains largely unexplored. Here, we combined influenza and SARS-CoV-2 infection with fluorescent-reporter mice to identify MBCs regardless of antigen specificity. We found that two main transcriptionally distinct subsets of MBCs colonized the lung peribronchial niche after infection. These subsets arose from different progenitors and were both class switched, somatically mutated, and intrinsically biased in their differentiation fate toward plasma cells. Combined analysis of antigen specificity and B cell receptor repertoire segregated these subsets into "bona fide" virus-specific MBCs and "bystander" MBCs with no apparent specificity for eliciting viruses generated through an alternative permissive process. Thus, diverse transcriptional programs in MBCs are not linked to specific effector fates but rather to divergent strategies of the immune system to simultaneously provide rapid protection from reinfection while diversifying the initial B cell repertoire.
Assuntos
COVID-19 , Memória Imunológica , Animais , Linfócitos B , Pulmão , Células B de Memória , Camundongos , Reinfecção , SARS-CoV-2RESUMO
MYC is a potent oncogene involved in â¼70% of human cancers, inducing tumorigenesis with high penetrance and short latency in experimental transgenic models. Accordingly, MYC is recognized as a major driver of T-cell acute lymphoblastic leukemia (T-ALL) in human and zebrafish/mouse models, and uncovering the context by which MYC-mediated malignant transformation initiates and develops remains a considerable challenge. Because MYC is a very complex oncogene, highly dependent on the microenvironment and cell-intrinsic context, we generated transgenic mice (tgMyc(spo)) in which ectopic Myc activation occurs sporadically (<10(-6) thymocytes) within otherwise normal thymic environment, thereby mimicking the unicellular context in which oncogenic alterations initiate human tumors. We show that while Myc(+) clones in tgMyc(spo) mice develop and initially proliferate in thymus and the periphery, no tumor or clonal expansion progress in aging mice (n = 130), suggesting an unexpectedly low ability of Myc to initiate efficient tumorigenesis. Furthermore, to determine the relevance of this observation in human pathogenesis we analyzed a human T-ALL case at diagnosis and relapse using the molecular stigmata of V(D)J recombination as markers of malignant progression; we similarly demonstrate that despite the occurrence of TAL1 and MYC translocations in early thymocyte ontogeny, subsequent oncogenic alterations were required to drive oncogenesis. Altogether, our data suggest that although central to T-ALL, MYC overexpression per se is inefficient in triggering the cascade of events leading to malignant transformation.
Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Genes myc/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Animais , Crise Blástica/genética , Crise Blástica/patologia , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Recidiva , Translocação Genética , Recombinação V(D)JRESUMO
Cumulative evidence indicates that MYC, one of the major downstream effectors of NOTCH1, is a critical component of T-cell acute lymphoblastic leukemia (T-ALL) oncogenesis and a potential candidate for targeted therapy. However, MYC is a complex oncogene, involving both fine protein dosage and cell-context dependency, and detailed understanding of MYC-mediated oncogenesis in T-ALL is still lacking. To better understand how MYC is interspersed in the complex T-ALL oncogenic networks, we performed a thorough molecular and biochemical analysis of MYC activation in a comprehensive collection of primary adult and pediatric patient samples. We find that MYC expression is highly variable, and that high MYC expression levels can be generated in a large number of cases in absence of NOTCH1/FBXW7 mutations, suggesting the occurrence of multiple activation pathways in addition to NOTCH1. Furthermore, we show that posttranscriptional deregulation of MYC constitutes a major alternative pathway of MYC activation in T-ALL, operating partly via the PI3K/AKT axis through down-regulation of PTEN, and that NOTCH1(m) might play a dual transcriptional and posttranscriptional role in this process. Altogether, our data lend further support to the significance of therapeutic targeting of MYC and/or the PTEN/AKT pathways, both in GSI-resistant and identified NOTCH1-independent/MYC-mediated T-ALL patients.
Assuntos
Genes myc , PTEN Fosfo-Hidrolase/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adulto , Células Cultivadas , Criança , Regulação Leucêmica da Expressão Gênica , Humanos , Células Jurkat , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Transdução de Sinais/genética , Ativação Transcricional/genética , TransfecçãoRESUMO
Follicular lymphoma is one of the most common adult lymphoma, and remains virtually incurable despite its relatively indolent nature. t(14;18)(q32;q21) translocation, the genetic hallmark and early initiating event of follicular lymphoma (FL) pathogenesis, is also present at low frequency in the peripheral blood of healthy individuals. It has long been assumed that in healthy individuals t(14;18) is carried by circulating quiescent naive B cells, where its oncogenic potential would be restrained. Here, we question this current view and demonstrate that in healthy individuals, t(14;18) is actually carried by an expanding population of atypical B cells issued from germinal centers, displaying genotypic and phenotypic features of FL, and prone to constitute potent premalignant FL niches. These findings strongly impact both on the current understanding of disease progression and on the proper handling of t(14;18) frequency in blood as a potential early biomarker for lymphoma.
Assuntos
Subpopulações de Linfócitos B/patologia , Transformação Celular Neoplásica/patologia , Linfoma Folicular/imunologia , Linfoma Folicular/patologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 18 , Células Clonais , Humanos , Memória Imunológica , Linfoma Folicular/genética , Fase de Repouso do Ciclo Celular/imunologia , Translocação GenéticaRESUMO
It has long been thought that signal joints, the byproducts of V(D)J recombination, are not involved in the dynamics of the rearrangement process. Evidence has now started to accumulate that this is not the case, and that signal joints play unsuspected roles in events that might compromise genomic integrity. Here we show both ex vivo and in vivo that the episomal circles excised during the normal process of receptor gene rearrangement may be reintegrated into the genome through trans-V(D)J recombination occurring between the episomal signal joint and an immunoglobulin/T-cell receptor target. We further demonstrate that cryptic recombination sites involved in T-cell acute lymphoblastic leukemia-associated chromosomal translocations constitute hotspots of insertion. Eventually, the identification of two in vivo cases associating episomal reintegration and chromosomal translocation suggests that reintegration events are linked to genomic instability. Altogether, our data suggest that V(D)J-mediated reintegration of episomal circles, an event likely eluding classical cytogenetic screenings, might represent an additional potent source of genomic instability and lymphoid cancer.
Assuntos
Instabilidade Genômica , VDJ Recombinases/metabolismo , Animais , Células Cultivadas , Leucemia-Linfoma de Células T do Adulto/genética , Camundongos , Reação em Cadeia da Polimerase , Recombinação Genética , Translocação GenéticaRESUMO
A large number of lymphoid malignancies is characterized by specific chromosomal translocations, which are closely linked to the initial steps of pathogenesis. The hallmark of these translocations is the ectopic activation of a silent proto-oncogene through its relocation at the vicinity of an active regulatory element. Due to the unique feature of lymphoid cells to somatically rearrange and mutate receptor genes, and to the corresponding strong activity of the immune enhancers/promoters at that stage of cell development, B- and T-cell differentiation pathways represent propitious targets for chromosomal translocations and oncogene activation. Recent progress in the understanding of the V(D)J recombination process has allowed a more accurate definition of the translocation mechanisms involved, and has revealed that V(D)J-mediated translocations result both from targeting mistakes of the recombinase, and from illegitimate repair of the V(D)J recombination intermediates. Surprisingly, V(D)J-mediated translocations turn out to be restricted to two specific sub-types of lymphoid malignancies, T-cell acute lymphoblastic leukemias, and a restricted set of mature B-cell Non-Hodgkin's lymphomas.
Assuntos
Reparo do DNA , Leucemia-Linfoma de Células T do Adulto/genética , Linfoma de Células B/genética , Recombinases/genética , Recombinação Genética , Translocação Genética , Linfócitos B/química , Humanos , Modelos Genéticos , Proto-Oncogene Mas , Linfócitos T/químicaRESUMO
T-cell acute lymphoblastic leukaemias (T-ALL) are aggressive malignant proliferations characterized by high relapse rates and great genetic heterogeneity. TAL1 is amongst the most frequently deregulated oncogenes. Yet, over half of the TAL1(+) cases lack TAL1 lesions, suggesting unrecognized (epi)genetic deregulation mechanisms. Here we show that TAL1 is normally silenced in the T-cell lineage, and that the polycomb H3K27me3-repressive mark is focally diminished in TAL1(+) T-ALLs. Sequencing reveals that >20% of monoallelic TAL1(+) patients without previously known alterations display microinsertions or RAG1/2-mediated episomal reintegration in a single site 5' to TAL1. Using 'allelic-ChIP' and CrispR assays, we demonstrate that such insertions induce a selective switch from H3K27me3 to H3K27ac at the inserted but not the germline allele. We also show that, despite a considerable mechanistic diversity, the mode of oncogenic TAL1 activation, rather than expression levels, impact on clinical outcome. Altogether, these studies establish site-specific epigenetic desilencing as a mechanism of oncogenic activation.
Assuntos
Alelos , Regulação Leucêmica da Expressão Gênica , Proteínas do Grupo Polycomb/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Acetilação , Adulto , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Loci Gênicos , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Células Jurkat , Metilação , Dados de Sequência Molecular , Mutagênese Insercional , Proteínas Nucleares/metabolismo , Plasmídeos/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sobrevida , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Resultado do TratamentoRESUMO
It has recently been demonstrated that memory B cells can reenter and reengage germinal center (GC) reactions, opening the possibility that multi-hit lymphomagenesis gradually occurs throughout life during successive immunological challenges. Here, we investigated this scenario in follicular lymphoma (FL), an indolent GC-derived malignancy. We developed a mouse model that recapitulates the FL hallmark t(14;18) translocation, which results in constitutive activation of antiapoptotic protein B cell lymphoma 2 (BCL2) in a subset of B cells, and applied a combination of molecular and immunofluorescence approaches to track normal and t(14;18)(+) memory B cells in human and BCL2-overexpressing B cells in murine lymphoid tissues. BCL2-overexpressing B cells required multiple GC transits before acquiring FL-associated developmental arrest and presenting as GC B cells with constitutive activation-induced cytidine deaminase (AID) mutator activity. Moreover, multiple reentries into the GC were necessary for the progression to advanced precursor stages of FL. Together, our results demonstrate that protracted subversion of immune dynamics contributes to early dissemination and progression of t(14;18)(+) precursors and shapes the systemic presentation of FL patients.
Assuntos
Subpopulações de Linfócitos B/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Linfoma Folicular/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Animais , Subpopulações de Linfócitos B/patologia , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Feminino , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genéticaRESUMO
The t(14;18) translocation constitutes the initiating event of a causative cascade leading to follicular lymphoma (FL). t(14;18) translocations are present in blood from healthy individuals, but there is a trend of increased prevalence in farmers exposed to pesticides, a group recently associated with higher risk of t(14;18)(+) non-Hodgkin's lymphoma development. A direct connection between agricultural pesticide use, t(14;18) in blood, and malignant progression, however, has not yet been demonstrated. We followed t(14;18) clonal evolution over 9 yr in a cohort of farmers exposed to pesticides. We show that exposed individuals bear particularly high t(14;18) frequencies in blood because of a dramatic clonal expansion of activated t(14;18)(+) B cells. We further demonstrate that such t(14;18)(+) clones recapitulate the hallmark features of developmentally blocked FL cells, with some displaying aberrant activation-induced cytidine deaminase activity linked to malignant progression. Collectively, our data establish that expanded t(14;18)(+) clones constitute bona fide precursors at various stages of FL development, and provide a molecular connection between agricultural pesticide exposure, t(14;18) frequency in blood, and clonal progression.
Assuntos
Doenças dos Trabalhadores Agrícolas , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 18/genética , Linfoma Folicular , Exposição Ocupacional , Praguicidas/efeitos adversos , Translocação Genética , Adulto , Doenças dos Trabalhadores Agrícolas/induzido quimicamente , Doenças dos Trabalhadores Agrícolas/genética , Subpopulações de Linfócitos B/fisiologia , Sequência de Bases , Predisposição Genética para Doença , Genótipo , Humanos , Linfoma Folicular/induzido quimicamente , Linfoma Folicular/genética , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
The t(11;14)(p13;q11) is presumed to arise from an erroneous T-cell receptor delta TCRD V(D)J recombination and to result in LMO2 activation. However, the mechanisms underlying this translocation and the resulting LMO2 activation are poorly defined. We performed combined in vivo, ex vivo, and in silico analyses on 9 new t(11;14)(p13;q11)-positive T-cell acute lymphoblastic leukemia (T-ALL) as well as normal thymocytes. Our data support the involvement of 2 distinct t(11;14)(p13;q11) V(D)J-related translocation mechanisms. We provide compelling evidence that removal of a negative regulatory element from the LMO2 locus, rather than juxtaposition to the TCRD enhancer, is the main determinant for LMO2 activation in the majority of t(11;14)(p13;q11) translocations. Furthermore, the position of the LMO2 breakpoints in T-ALL in the light of the occurrence of TCRD-LMO2 translocations in normal thymocytes points to a critical role for the exact breakpoint location in determining LMO2 activation levels and the consequent pressure for T-ALL development.
Assuntos
Quebra Cromossômica , Proteínas de Ligação a DNA/genética , Leucemia-Linfoma de Células T do Adulto/genética , Metaloproteínas/genética , Proteínas Adaptadoras de Transdução de Sinal , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 14 , Proteínas de Ligação a DNA/análise , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T , Humanos , Proteínas com Domínio LIM , Leucemia-Linfoma de Células T do Adulto/etiologia , Metaloproteínas/análise , Proteínas Proto-Oncogênicas/genética , Translocação GenéticaRESUMO
Uracilation of DNA represents a constant threat to the survival of many organisms including viruses. Uracil may appear in DNA either by cytosine deamination or by misincorporation of dUTP. The HIV-1-encoded Vif protein controls cytosine deamination by preventing the incorporation of host-derived APOBEC3G cytidine deaminase into viral particles. Here, we show that the host-derived uracil DNA glycosylase UNG2 enzyme, which is recruited into viral particles by the HIV-1-encoded integrase domain, is essential to the viral life cycle. We demonstrate that virion-associated UNG2 catalytic activity can be replaced by the packaging of heterologous dUTPase into virion, indicating that UNG2 acts to counteract dUTP misincorporation in the viral genome. Therefore, HIV-1 prevents incorporation of dUTP in viral cDNA by UNG2-mediated uracil excision followed by a dNTP-dependent, reverse transcriptase-mediated endonucleolytic cleavage and finally by strand-displacement polymerization. Our findings indicate that pharmacologic strategies aimed toward blocking UNG2 packaging should be explored as potential HIV/AIDS therapeutics.
Assuntos
DNA Glicosilases/metabolismo , Nucleotídeos de Desoxiuracil/genética , Infecções por HIV/enzimologia , HIV-1/enzimologia , Vírion/enzimologia , Replicação Viral , Sequência de Bases , Citosina/metabolismo , DNA Glicosilases/genética , DNA Viral , Desaminação , Produtos do Gene vif/metabolismo , Genoma Viral , Infecções por HIV/virologia , Transcriptase Reversa do HIV/metabolismo , HIV-1/crescimento & desenvolvimento , Humanos , Dados de Sequência Molecular , Pirofosfatases/metabolismo , Homologia de Sequência do Ácido Nucleico , Uracila-DNA Glicosidase , Produtos do Gene vif do Vírus da Imunodeficiência HumanaRESUMO
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is essential for integration of viral DNA into host cell chromatin. We have reported previously (Priet, S., Navarro, J. M., Gros, N., Querat, G., and Sire, J. (2003) J. Biol. Chem. 278, 4566-4571) that IN also plays a role in the packaging of the host uracil DNA glycosylase UNG2 into viral particles and that the region of IN encompassing residues 170-180 was responsible for the interaction with UNG2 and for its packaging into virions. In this work, we aimed to investigate the replication of HIV-1 viruses rendered deficient in virion-associated UNG2 by single or double point mutations in the region 170-180 of IN. We show that the L172A/K173A IN mutant virus was deficient for UNG2 packaging and was defective for replication because of a blockage at the stage of proviral DNA integration in host cell DNA. In vitro assays using long term repeat mimics, however, demonstrate that the L172A/K173A IN mutant was catalytically active. Moreover, trans-complementation experiments show that the viral propagation of L172A/K173A viruses could be rescued by the overexpression of Vpr.L172A/K173A IN fusion protein in a dose-dependent manner and that this rescue is independent of UNG2 packaging. Altogether, our data indicate that L172A/K173A mutations of IN induce a subtle defect in the function of IN, which nevertheless dramatically impairs viral replication. Unexpectedly, this blockage of replication could be overcome by forcing the packaging of higher amounts of this same mutated integrase. This is the first study reporting that blockage of the integration process of HIV-1 provirus carrying a mutation of IN could be alleviated by increasing amounts of IN even carrying the same mutations.
Assuntos
Infecções por HIV/virologia , Integrase de HIV/genética , HIV-1/genética , Catálise , Linhagem Celular , Regulação Viral da Expressão Gênica , Integrase de HIV/metabolismo , HIV-1/enzimologia , HIV-1/crescimento & desenvolvimento , Humanos , Leucina/genética , Mutagênese , Fenótipo , Integração Viral , Replicação ViralRESUMO
We have previously reported that the host uracil DNA glycosylase UNG2 enzyme is incorporated into HIV-1 virions via a specific association with the viral integrase (IN) domain of Gag-Pol precursor. In this study, we investigated whether UNG2 was packaged into two phylogenetically closely related primate lentiviruses, HIV-2(ROD) and SIV(MAC239). We demonstrated by GST-pull-down and coprecipitation assays that INs from HIV-1, HIV-2(ROD), and SIV(MAC239) associated with UNG2, although the interaction of UNG2 with HIV-2(ROD) IN and SIV(MAC239) IN was less strong than with HIV-1 IN. We then showed by Western blotting that highly purified HIV-2 and SIV(MAC) viral particles did not incorporate host UNG2, contrasting with the presence of UNG2 in HIV-1 viral particles. Finally, we showed that HIV-1/SIV chimeric viruses in which residues 6 to 202 of HIV-1 IN were replaced by the SIV counterpart were impaired for packaging of UNG2, indicating that the incorporation of host UNG2 into viral particles is the hallmark of the HIV-1 strain. Moreover, we found that HIV-1/SIV IN chimeric viruses were deficient for viral propagation.
Assuntos
DNA Glicosilases , HIV-1/metabolismo , HIV-2/metabolismo , N-Glicosil Hidrolases/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Vírion/metabolismo , Células Cultivadas , Humanos , Uracila-DNA GlicosidaseRESUMO
Human monocytes/macrophages are target cells for HIV-1 infection. As other non-dividing cells, they are characterized by low and imbalanced intracellular dNTP pool levels and an excess of dUTP. The replication of HIV-1 in this cellular context favors misincorporation of uracil residues into viral DNA because of the use of dUTP in place of dCTP. We have previously reported that the host uracil DNA glycosylase enzyme UNG2 is packaged into HIV-1 viral particles via a specific association with the integrase domain of the Gag-Pol precursor. In this study, we investigated whether virion-associated UNG2 plays a role similar to that of its cellular counterpart. We show that the L172A mutation of integrase impaired the packaging of UNG2 into viral particles. Using a primer-template DNA substrate containing G:U mispairs, we demonstrate that wild-type viral lysate has the ability to repair G:U mismatched pairs to G:C matched pairs, in contrast to UNG2-deficient viral lysate. Moreover, no correction of G:T mispairs by wild-type HIV-1 viral lysate was observed, which argues for the specificity of the repair process. We also show that UNG2 physically associates with the viral reverse transcriptase enzyme. Altogether our data indicate for the first time that a uracil repair pathway is specifically associated with HIV-1 viral particles. However, the molecular mechanism of this process remains to be characterized further.
Assuntos
DNA Glicosilases , Infecções por HIV/enzimologia , HIV-1/enzimologia , N-Glicosil Hidrolases/metabolismo , Pareamento Incorreto de Bases , Reparo do DNA , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Macrófagos/enzimologia , Macrófagos/virologia , N-Glicosil Hidrolases/genética , Uracila-DNA Glicosidase , Vírion/enzimologia , Vírion/fisiologia , Replicação ViralRESUMO
A functional homologue (ung1) of the human uracil-DNA-glycosylase (UNG) gene was characterized from fission yeast (Schizosaccharomyces pombe). The ung1 gene is highly conserved and encodes a protein with uracil-DNA-glycosylase activity similar to human UNG. The Ung1 protein localizes predominantly to the nucleus, suggesting that it is more similar to the nuclear form (UNG2) than the mitochondrial form (UNG1) of human UNG. Even though deletion of ung1 does not cause any obvious defects, overexpression of ung1 increases the mutation frequency. Overexpression of ung1 or human UNG2 induces a DNA checkpoint-dependent cell cycle delay and causes cell death which is enhanced when the checkpoints are inactive. In addition, the steady-state level of AP (apurinic/apyrimidinic) sites increases after ung1 overexpression, indicating that AP sites are likely to be the DNA damage caused by overexpression. Analysis of mutant ung indicates that catalytic activity is not required for the effects of overexpression, but that binding of Ung1 or UNG2 to AP sites may be important.
Assuntos
Dano ao DNA , DNA Glicosilases , N-Glicosil Hidrolases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Ciclo Celular/fisiologia , Clonagem Molecular , Reparo do DNA , Regulação Fúngica da Expressão Gênica , Humanos , Dados de Sequência Molecular , N-Glicosil Hidrolases/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Uracila-DNA GlicosidaseRESUMO
Mechanisms governing viral replicative capacity are poorly understood at the biochemical level. Human immunodeficiency virus, type 1 reverse transcriptase (HIV-1 RT) K65R or L74V substitutions confer viral resistance to 2',3'-dideoxyinosine (ddI) in vivo. The two substitutions never occur together, and L74V is frequently found in patients receiving ddI, while K65R is not. Here we show that recombinant viruses carrying K65R and K65R/L74V display the same resistance level to ddI (about 9.5-fold) relative to wild type. Consistent with this result, purified HIV-1 RT carrying K65R RT or K65R/L74V substitutions exhibits an 8-fold resistance to ddATP as judged by pre-steady state kinetics of incorporation of a single nucleotide into DNA. Resistance is due to a selective decrease of the catalytic rate constant k(pol): 22-fold (from 7.2 to 0.33 s(-1)) for K65R RT and 84-fold (from 7.2 to 0.086 s(-1)) for K65R/L74V RT. However, the K65R/L74V virus replication capacity is severely impaired relative to that of wild-type virus. This loss of viral fitness is correlated to a poor ability of K65R/L74V RT to use natural nucleotides relative to wild-type RT: 15% that of wild-type RT for dATP, 36% for dGTP, 50% for dTTP, and 25% for dCTP. The order of incorporation efficiency is wild-type RT > L74V RT > K65R RT > K65R/L74V RT. Processivity of DNA synthesis remains unaffected. These results explain why the two mutations do not combine in the clinic and might give a mechanism for a decreased viral fitness at the molecular level.