Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(12): e1007441, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30557332

RESUMO

KSHV is endemic in Uganda and the HIV epidemic has dramatically increased the incidence of Kaposi sarcoma (KS). To investigate the role of KSHV in the development of KS, we obtained KS biopsies from ART-naïve, HIV-positive individuals in Uganda and analyzed the tumors using RNAseq to globally characterize the KSHV transcriptome. Phylogenetic analysis of ORF75 sequences from 23 tumors revealed 6 distinct genetic clusters with KSHV strains exhibiting M, N or P alleles. RNA reads mapping to specific unique coding sequence (UCDS) features were quantitated using a gene feature file previously developed to globally analyze and quantitate KSHV transcription in infected endothelial cells. A pattern of high level expression was detected in the KSHV latency region that was common to all KS tumors. The clear majority of transcription was derived from the downstream latency transcript promoter P3(LTd) flanking ORF72, with little evidence of transcription from the P1(LTc) latency promoter, which is constitutive in KSHV-infected lymphomas and tissue-culture cells. RNAseq data provided evidence of alternate P3(LTd) transcript editing, splicing and termination resulting in multiple gene products, with 90% of the P3(LTd) transcripts spliced to release the intronic source of the microRNAs K1-9 and 11. The spliced transcripts encode a regulatory uORF upstream of Kaposin A with alterations in intervening repeat sequences yielding novel or deleted Kaposin B/C-like sequences. Hierarchical clustering and PCA analysis of KSHV transcripts revealed three clusters of tumors with different latent and lytic gene expression profiles. Paradoxically, tumors with a latent phenotype had high levels of total KSHV transcription, while tumors with a lytic phenotype had low levels of total KSHV transcription. Morphologically distinct KS tumors from the same individual showed similar KSHV gene expression profiles suggesting that the tumor microenvironment and host response play important roles in the activation level of KSHV within the infected tumor cells.


Assuntos
Herpesvirus Humano 8/genética , Sarcoma de Kaposi/genética , Transcriptoma/genética , Latência Viral/genética , Perfilação da Expressão Gênica/métodos , Genes Virais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Regiões Promotoras Genéticas/genética , Sarcoma de Kaposi/virologia , Análise de Sequência de RNA , Uganda
2.
J Gen Virol ; 99(1): 109-118, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29244018

RESUMO

A modified pan-PV consensus-degenerate hybrid oligonucleotide primer (CODEHOP) PCR was developed for generic and sensitive detection of a broad-spectrum of human papillomaviruses (HPVs) infecting the cutaneous epithelium. To test the analytical sensitivity of the assay we examined 149 eyebrow hair follicle specimens from immunocompetent male patients. HPV DNA was detected in 60 % (89/149) of analysed eyebrow samples with a total of 48 different HPV sequences, representing 21 previously described HPVs and 27 putative novel HPV types. Evidence for ten novel HPV subtypes and seven viral variants, clustering to three out of five genera containing cutaneous HPVs, was also obtained. Thus, we have shown that the modified pan-PV CODEHOP PCR assay is able to identify multiple HPV types, even from different genera, in the same clinical sample. Overall, these results demonstrate that the pan-PV CODEHOP PCR is an excellent tool for screening and identification of novel cutaneous HPVs, even in samples with low viral loads.


Assuntos
Betapapillomavirus/isolamento & purificação , Primers do DNA/química , DNA Viral/genética , Gammapapillomavirus/isolamento & purificação , Genótipo , Infecções por Papillomavirus/diagnóstico , Reação em Cadeia da Polimerase/métodos , Adulto , Sequência de Bases , Betapapillomavirus/classificação , Betapapillomavirus/genética , Primers do DNA/metabolismo , Sobrancelhas/virologia , Gammapapillomavirus/classificação , Gammapapillomavirus/genética , Folículo Piloso/virologia , Humanos , Masculino , Tipagem Molecular/métodos , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , Filogenia , Prevalência , Sensibilidade e Especificidade , Eslovênia/epidemiologia
3.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978712

RESUMO

The latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) performs a variety of functions to establish and maintain KSHV latency. During latency, LANA localizes to discrete punctate spots in the nucleus, where it tethers viral episomes to cellular chromatin and interacts with nuclear components to regulate cellular and viral gene expression. Using highly sensitive tyramide signal amplification, we determined that LANA localizes to the cytoplasm in different cell types undergoing the lytic cycle of replication after de novo primary infection and after spontaneous, tetradecanoyl phorbol acetate-, or open reading frame 50 (ORF50)/replication transactivator (RTA)-induced activation. We confirmed the presence of cytoplasmic LANA in a subset of cells in lytically active multicentric Castleman disease lesions. The induction of cellular migration by scratch-wounding confluent cell cultures, culturing under subconfluent conditions, or induction of cell differentiation in primary cultures upregulated the number of cells permissive for primary lytic KSHV infection. The induction of lytic replication was characterized by high-level expression of cytoplasmic LANA and nuclear ORF59, a marker of lytic replication. Subcellular fractionation studies revealed the presence of multiple isoforms of LANA in the cytoplasm of ORF50/RTA-activated Vero cells undergoing primary infection. Mass spectrometry analysis demonstrated that cytoplasmic LANA isoforms were full length, containing the N-terminal nuclear localization signal. These results suggest that trafficking of LANA to different subcellular locations is a regulated phenomenon, which allows LANA to interact with cellular components in different compartments during both the latent and the replicative stages of the KSHV life cycle.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) causes AIDS-related malignancies, including lymphomas and Kaposi's sarcoma. KSHV establishes lifelong infections using its latency-associated nuclear antigen (LANA). During latency, LANA localizes to the nucleus, where it connects viral and cellular DNA complexes and regulates gene expression, allowing the virus to maintain long-term infections. Our research shows that intact LANA traffics to the cytoplasm of cells undergoing permissive lytic infections and latently infected cells in which the virus is induced to replicate. This suggests that LANA plays important roles in the cytoplasm and nuclear compartments of the cell during different stages of the KSHV life cycle. Determining cytoplasmic function and mechanism for regulation of the nuclear localization of LANA will enhance our understanding of the biology of this virus, leading to therapeutic approaches to eliminate infection and block its pathological effects.


Assuntos
Antígenos Virais/metabolismo , Citoplasma/virologia , Herpesvirus Humano 8/fisiologia , Proteínas Nucleares/metabolismo , Sarcoma de Kaposi/virologia , Replicação Viral , Animais , Antígenos Virais/genética , Linhagem Celular , Chlorocebus aethiops , Herpesvirus Humano 8/genética , Humanos , Proteínas Imediatamente Precoces/metabolismo , Espectrometria de Massas , Proteínas Nucleares/genética , Isoformas de Proteínas , Células Vero , Latência Viral
4.
J Virol ; 89(7): 3888-909, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609822

RESUMO

UNLABELLED: Two rhadinovirus lineages have been identified in Old World primates. The rhadinovirus 1 (RV1) lineage consists of human herpesvirus 8, Kaposi's sarcoma-associated herpesvirus (KSHV), and closely related rhadinoviruses of chimpanzees, gorillas, macaques and other Old World primates. The RV2 rhadinovirus lineage is distinct and consists of closely related viruses from the same Old World primate species. Rhesus macaque rhadinovirus (RRV) is the RV2 prototype, and two RRV isolates, 26-95 and 17577, were sequenced. We determined that the pig-tailed macaque RV2 rhadinovirus, MneRV2, is highly associated with lymphomas in macaques with simian AIDS. To further study the role of rhadinoviruses in the development of lymphoma, we sequenced the complete genome of MneRV2 and identified 87 protein coding genes and 17 candidate microRNAs (miRNAs). A strong genome colinearity and sequence homology were observed between MneRV2 and RRV26-95, although the open reading frame (ORF) encoding the KSHV ORFK15 homolog was disrupted in RRV26-95. Comparison with MneRV2 revealed several genomic anomalies in RRV17577 that were not present in other rhadinovirus genomes, including an N-terminal duplication in ORF4 and a recombinative exchange of more distantly related homologs of the ORF22/ORF47 interacting glycoprotein genes. The comparison with MneRV2 has revealed novel genes and important conservation of protein coding domains and transcription initiation, termination, and splicing signals, which have added to our knowledge of RV2 rhadinovirus genetics. Further comparisons with KSHV and other RV1 rhadinoviruses will provide important avenues for dissecting the biology, evolution, and pathology of these closely related tumor-inducing viruses in humans and other Old World primates. IMPORTANCE: This work provides the sequence characterization of MneRV2, the pig-tailed macaque homolog of rhesus rhadinovirus (RRV). MneRV2 and RRV belong to the rhadinovirus 2 (RV2) rhadinovirus lineage of Old World primates and are distinct but related to Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma. Pig-tailed macaques provide important models of human disease, and our previous studies have indicated that MneRV2 plays a causal role in AIDS-related lymphomas in macaques. Delineation of the MneRV2 sequence has allowed a detailed characterization of the genome structure, and evolutionary comparisons with RRV and KSHV have identified conserved promoters, splice junctions, and novel genes. This comparison provides insight into RV2 rhadinovirus biology and sets the groundwork for more intensive next-generation (Next-Gen) transcript and genetic analysis of this class of tumor-inducing herpesvirus. This study supports the use of MneRV2 in pig-tailed macaques as an important model for studying rhadinovirus biology, transmission and pathology.


Assuntos
DNA Viral/química , DNA Viral/genética , Genoma Viral , Herpesvirus Humano 8/genética , Filogenia , Rhadinovirus/genética , Animais , Macaca nemestrina/virologia , MicroRNAs/genética , Dados de Sequência Molecular , Rhadinovirus/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência , Sintenia , Proteínas Virais/genética
5.
PLoS Genet ; 9(10): e1003890, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204304

RESUMO

Fragile X syndrome is caused by loss of function of a single gene encoding the Fragile X Mental Retardation Protein (FMRP). This RNA-binding protein, widely expressed in mammalian tissues, is particularly abundant in neurons and is a component of messenger ribonucleoprotein (mRNP) complexes present within the translational apparatus. The absence of FMRP in neurons is believed to cause translation dysregulation and defects in mRNA transport essential for local protein synthesis and for synaptic development and maturation. A prevalent model posits that FMRP is a nucleocytoplasmic shuttling protein that transports its mRNA targets from the nucleus to the translation machinery. However, it is not known which of the multiple FMRP isoforms, resulting from the numerous alternatively spliced FMR1 transcripts variants, would be involved in such a process. Using a new generation of anti-FMRP antibodies and recombinant expression, we show here that the most commonly expressed human FMRP isoforms (ISO1 and 7) do not localize to the nucleus. Instead, specific FMRP isoforms 6 and 12 (ISO6 and 12), containing a novel C-terminal domain, were the only isoforms that localized to the nuclei in cultured human cells. These isoforms localized to specific p80-coilin and SMN positive structures that were identified as Cajal bodies. The Cajal body localization signal was confined to a 17 amino acid stretch in the C-terminus of human ISO6 and is lacking in a mouse Iso6 variant. As FMRP is an RNA-binding protein, its presence in Cajal bodies suggests additional functions in nuclear post-transcriptional RNA metabolism. Supporting this hypothesis, a missense mutation (I304N), known to alter the KH2-mediated RNA binding properties of FMRP, abolishes the localization of human FMRP ISO6 to Cajal bodies. These findings open unexplored avenues in search for new insights into the pathophysiology of Fragile X Syndrome.


Assuntos
Corpos Enovelados/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Isoformas de Proteínas/biossíntese , Animais , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Corpos Enovelados/ultraestrutura , Proteína do X Frágil da Deficiência Intelectual/biossíntese , Síndrome do Cromossomo X Frágil/patologia , Regulação da Expressão Gênica , Humanos , Camundongos , Neurônios/metabolismo , Isoformas de Proteínas/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética
6.
J Virol ; 87(24): 13676-93, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24109218

RESUMO

The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans.


Assuntos
Genoma Viral , Herpesvirus Humano 8/genética , Macaca nemestrina/virologia , Doenças dos Primatas/virologia , Sarcoma de Kaposi/veterinária , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Herpesvirus Humano 8/química , Herpesvirus Humano 8/classificação , Herpesvirus Humano 8/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Rhadinovirus/química , Rhadinovirus/classificação , Rhadinovirus/genética , Sarcoma de Kaposi/virologia , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
7.
PLoS Pathog ; 8(10): e1002962, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055934

RESUMO

Two gammaherpesviruses, Epstein-Barr virus (EBV) (Lymphocryptovirus genus) and Kaposi's sarcoma-associated herpesvirus (KSHV) (Rhadinovirus genus) have been implicated in the etiology of AIDS-associated lymphomas. Homologs of these viruses have been identified in macaques and other non-human primates. In order to assess the association of these viruses with non-human primate disease, archived lymphoma samples were screened for the presence of macaque lymphocryptovirus (LCV) homologs of EBV, and macaque rhadinoviruses belonging to the RV1 lineage of KSHV homologs or the more distant RV2 lineage of Old World primate rhadinoviruses. Viral loads were determined by QPCR and infected cells were identified by immunolabeling for different viral proteins. The lymphomas segregated into three groups. The first group (n = 6) was associated with SIV/SHIV infections, contained high levels of LCV (1-25 genomes/cell) and expressed the B-cell antigens CD20 or BLA.36. A strong EBNA-2 signal was detected in the nuclei of the neoplastic cells in one of the LCV-high lymphomas, indicative of a type III latency stage. None of the lymphomas in this group stained for the LCV viral capsid antigen (VCA) lytic marker. The second group (n = 5) was associated with D-type simian retrovirus-2 (SRV-2) infections, contained high levels of RV2 rhadinovirus (9-790 genomes/cell) and expressed the CD3 T-cell marker. The third group (n = 3) was associated with SIV/SHIV infections, contained high levels of RV2 rhadinovirus (2-260 genomes/cell) and was negative for both CD20 and CD3. In both the CD3-positive and CD3/CD20-negative lymphomas, the neoplastic cells stained strongly for markers of RV2 lytic replication. None of the lymphomas had detectable levels of retroperitoneal fibromatosis herpesvirus (RFHV), the macaque RV1 homolog of KSHV. Our data suggest etiological roles for both lymphocryptoviruses and RV2 rhadinoviruses in the development of simian AIDS-associated lymphomas and indicate that the virus-infected neoplastic lymphoid cells are derived from different lymphocyte lineages and differentiation stages.


Assuntos
Herpesvirus Humano 4 , Herpesvirus Humano 8 , Lymphocryptovirus/isolamento & purificação , Linfoma Relacionado a AIDS/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Animais , Antígenos CD20/biossíntese , Antígenos de Neoplasias/biossíntese , Complexo CD3/biossíntese , Antígenos Nucleares do Vírus Epstein-Barr/biossíntese , Herpesvirus Humano 4/classificação , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/classificação , Herpesvirus Humano 8/genética , Lymphocryptovirus/genética , Macaca , Vírus dos Macacos de Mason-Pfizer/genética , Vírus dos Macacos de Mason-Pfizer/isolamento & purificação , Rhadinovirus/isolamento & purificação , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/isolamento & purificação , Células Tumorais Cultivadas , Carga Viral , Proteínas Virais/biossíntese , Proteínas Virais/genética
8.
Nucleic Acids Res ; 37(Web Server issue): W222-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19443442

RESUMO

PCR amplification using COnsensus DEgenerate Hybrid Oligonucleotide Primers (CODEHOPs) has proven to be highly effective for identifying unknown pathogens and characterizing novel genes. We describe iCODEHOP; a new interactive web application that simplifies the process of designing and selecting CODEHOPs from multiply-aligned protein sequences. iCODEHOP intelligently guides the user through the degenerate primer design process including uploading sequences, creating a multiple alignment, deriving CODEHOPs and calculating their annealing temperatures. The user can quickly scan over an entire set of degenerate primers designed by the program to assess their relative quality and select individual primers for further analysis. The program displays phylogenetic information for input sequences and allows the user to easily design new primers from selected sequence sub-clades. It also allows the user to bias primer design to favor specific clades or sequences using sequence weights. iCODEHOP is freely available to all interested researchers at https://icodehop.cphi.washington.edu/i-codehop-context/Welcome.


Assuntos
Primers do DNA/química , Alinhamento de Sequência , Análise de Sequência de Proteína , Software , Sequência de Aminoácidos , Sequência Consenso , Internet , Reação em Cadeia da Polimerase , Interface Usuário-Computador
9.
Methods ; 49(1): 32-41, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19477279

RESUMO

Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) have proven to be a powerful tool for the identification of novel genes. CODEHOPs are designed from highly-conserved regions of multiply-aligned protein sequences from members of a gene family and are used in PCR amplification to identify distantly-related genes. The CODEHOP approach has been used to identify novel pathogens by targeting amino acid motifs conserved in specific pathogen families. We initiated a program utilizing the CODEHOP approach to develop PCR-based assays targeting a variety of viral families that are pathogens in non-human primates. We have also developed and further improved a computer program and website to facilitate the design of CODEHOP PCR primers. Here, we detail the method for the development of pathogen-specific CODEHOP PCR assays using the papillomavirus family as a target. Papillomaviruses constitute a diverse virus family infecting a wide variety of mammalian species, including humans and non-human primates. We demonstrate that our pan-papillomavirus CODEHOP assay is broadly reactive with all major branches of the virus family and show its utility in identifying a novel non-human primate papillomavirus in cynomolgus macaques.


Assuntos
Sequência Conservada , Primers do DNA , Doenças dos Primatas/virologia , Primatas/genética , Primatas/virologia , Viroses/virologia , Vírus/genética , Animais , Primers do DNA/genética , DNA Viral/genética , Humanos , Filogenia , Reação em Cadeia da Polimerase
10.
J Virol ; 82(3): 1570-80, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18045938

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) envelope-associated glycoprotein B (gB) is involved in the initial steps of binding to host cells during KSHV infection. gB contains an RGD motif reported to bind the integrin alpha(3)beta(1) during virus entry. Although the ligand specificity of alpha(3)beta(1) has been controversial, current literature indicates that alpha(3)beta(1) ligand recognition is independent of RGD. We compared alpha(3)beta(1) to the RGD-binding integrin, alpha(V)beta(3), for binding to envelope-associated gB and a gB(RGD) peptide. Adhesion assays demonstrated that beta(3)-CHO cells overexpressing alpha(V)beta(3) specifically bound gB(RGD), whereas alpha(3)-CHO cells overexpressing alpha(3)beta(1) did not. Function-blocking antibodies to alpha(V)beta(3) inhibited the adhesion of HT1080 fibrosarcoma cells to gB(RGD), while antibodies to alpha(3)beta(1) did not. Using affinity-purified integrins and confocal microscopy, alpha(V)beta(3) bound to gB(RGD) and KSHV virions, demonstrating direct receptor-ligand interactions. Specific alpha(V)beta(3) antagonists, including cyclic and dicyclic RGD peptides and alpha(V)beta(3) function-blocking antibodies, inhibited KSHV infection by 70 to 80%. Keratinocytes from alpha(3)-null mice lacking alpha(3)beta(1) were fully competent for infection by KSHV, and reconstitution of alpha(3)beta(1) function by transfection with alpha(3) cDNA reduced KSHV infectivity from 74% to 55%. Additional inhibitory effects of alpha(3)beta(1) on the cell surface expression of alpha(V)beta(3) and on alpha(V)beta(3)-mediated adhesion of alpha(3)-CHO cells overexpressing alpha(3)beta(1) were detected, consistent with previous reports of transdominant inhibition of alpha(V)beta(3) function by alpha(3)beta(1). These observations may explain previous reports of an inhibition of KSHV infection by soluble alpha(3)beta(1). Our studies demonstrate that alpha(V)beta(3) is a cellular receptor mediating both the cell adhesion and entry of KSHV into target cells through binding the virion-associated gB(RGD).


Assuntos
Herpesvirus Humano 8/fisiologia , Integrina alfaVbeta3/metabolismo , Receptores Virais/fisiologia , Proteínas do Envelope Viral/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , Humanos , Camundongos , Ligação Viral
11.
Cell Microbiol ; 10(4): 863-75, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18005240

RESUMO

The purinergic receptor P2X(7) is involved in cell death, inhibition of intracellular infection and secretion of inflammatory cytokines. The role of the P2X(7) receptor in bacterial infection has been primarily established in macrophages. Here we show that primary gingival epithelial cells, an important component of the oral innate immune response, also express functional P2X(7) and are sensitive to ATP-induced apoptosis. Porphyromonas gingivalis, an intracellular bacterium and successful colonizer of oral tissues, can inhibit gingival epithelial cell apoptosis induced by ATP ligation of P2X(7) receptors. A P. gingivalis homologue of nucleoside diphosphate kinase (NDK), an ATP-consuming enzyme, is secreted extracellularly and is required for maximal suppression of apoptosis. An ndk-deficient mutant was unable to prevent ATP-induced host-cell death nor plasma membrane permeabilization in the epithelial cells. Treatment with purified recombinant NDK inhibited ATP-mediated host-cell plasma membrane permeabilization in a dose-dependent manner. Therefore, NDK promotes survival of host cells by hydrolysing extracellular ATP and preventing apoptosis-mediated through P2X(7).


Assuntos
Trifosfato de Adenosina/farmacologia , Apoptose/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Células Cultivadas , Citometria de Fluxo , Gengiva/citologia , Gengiva/efeitos dos fármacos , Gengiva/microbiologia , Humanos , Marcação In Situ das Extremidades Cortadas , Microscopia de Fluorescência , Núcleosídeo-Difosfato Quinase/metabolismo , Porphyromonas gingivalis/metabolismo , Receptores Purinérgicos P2X7
12.
Virol J ; 6: 205, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19922662

RESUMO

BACKGROUND: ORF59 DNA polymerase processivity factor of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is required for efficient copying of the genome during virus replication. KSHV ORF59 is antigenic in the infected host and is used as a marker for virus activation and replication. RESULTS: We cloned, sequenced and expressed the genes encoding related ORF59 proteins from the RV1 rhadinovirus homologs of KSHV from chimpanzee (PtrRV1) and three species of macaques (RFHVMm, RFHVMn and RFHVMf), and have compared them with ORF59 proteins obtained from members of the more distantly-related RV2 rhadinovirus lineage infecting the same non-human primate species (PtrRV2, RRV, MneRV2, and MfaRV2, respectively). We found that ORF59 homologs of the RV1 and RV2 Old World primate rhadinoviruses are highly conserved with distinct phylogenetic clustering of the two rhadinovirus lineages. RV1 and RV2 ORF59 C-terminal domains exhibit a strong lineage-specific conservation. Rabbit antiserum was developed against a C-terminal polypeptide that is highly conserved between the macaque RV2 ORF59 sequences. This anti-serum showed strong reactivity towards ORF59 encoded by the macaque RV2 rhadinoviruses, RRV (rhesus) and MneRV2 (pig-tail), with no cross reaction to human or macaque RV1 ORF59 proteins. Using this antiserum and RT-qPCR, we determined that RRV ORF59 is expressed early after permissive infection of both rhesus primary fetal fibroblasts and African green monkey kidney epithelial cells (Vero) in vitro. RRV- and MneRV2-infected foci showed strong nuclear expression of ORF59 that correlated with production of infectious progeny virus. Immunohistochemical studies of an MneRV2-infected macaque revealed strong nuclear expression of ORF59 in infected cells within the differentiating layer of epidermis corroborating previous observations that differentiated epithelial cells are permissive for replication of KSHV-like rhadinoviruses. CONCLUSION: The ORF59 DNA polymerase processivity factor homologs of the Old World primate RV1 and RV2 rhadinovirus lineages are phylogenetically distinct yet demonstrate similar expression and localization characteristics that correlate with their use as lineage-specific markers for permissive infection and virus replication. These studies will aid in the characterization of virus activation from latency to the replicative state, an important step for understanding the biology and transmission of rhadinoviruses, such as KSHV.


Assuntos
Sequência Conservada , DNA Polimerase Dirigida por DNA/genética , Epitélio/virologia , Infecções por Herpesviridae/virologia , Macaca/virologia , Rhadinovirus/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Antígenos Nucleares/genética , Antígenos Nucleares/imunologia , Linhagem Celular , Chlorocebus aethiops , Análise por Conglomerados , Reações Cruzadas , DNA Viral/química , DNA Viral/genética , DNA Polimerase Dirigida por DNA/imunologia , Humanos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Pele/patologia , Pele/virologia , Infecções Tumorais por Vírus/virologia , Proteínas Virais/imunologia
13.
PLoS One ; 13(11): e0205632, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30444879

RESUMO

Macaque RFHV and LCV are close homologs of human KSHV and EBV, respectively. No experimental model of RFHV has been developed due to the lack of a source of culturable infectious virus. Screening of macaques at the Washington National Primate Research Center detected RFHV in saliva of SIV-infected macaques from previous vaccine studies. A pilot experimental infection of two naïve juvenile pig-tailed macaques was initiated by inoculation of saliva from SIV-infected pig-tailed and cynomolgus macaque donors, which contained high levels of DNA (> 10(6) genomes/ml) of the respective species-specific RFHV strain. Both juvenile recipients developed SIV and RFHV infections with RFHV DNA detected transiently in saliva and/or PBMC around week 16 post-infection. One juvenile macaque was infected with the homologous RFHVMn from whole saliva of a pig-tailed donor, which had been inoculated into the cheek pouch. This animal became immunosuppressed, developing simian AIDS and was euthanized 23 weeks after inoculation. The levels of RFHV DNA in saliva and PBMC remained below the level of detection after week 17, showing no reactivation of the RFHVMn infection during the rapid development of AIDS. The other juvenile macaque was infected with the heterologous RFHVMf from i.v. inoculation of purified virions from saliva of a cynomolgus donor. The juvenile recipient remained immunocompetent, developing high levels of persistent anti-RFHV and -SIV antibodies. After the initial presence of RFHVMf DNA in saliva and PBMC decreased to undetectable levels by week 19, all attempts to reactivate the infection through additional inoculations, experimental infection with purified SRV-2 or SIV, or immunosuppressive treatments with cyclosporine or dexamethasone were unsuccessful. An heterologous LCV transmission was also detected in this recipient, characterized by continual high levels of LCVMf DNA from the cynomolgus donor in both saliva (> 10(6) genomes/ml) and PBMC (> 10(4) genomes/million cells), coupled with high levels of anti-LCV antibodies. The macaque was sacrificed 209 weeks after the initial inoculation. Low levels of LCVMf DNA were detected in salivary glands, tonsils and other lymphoid organs, while RFHVMf DNA was below the level of detection. These results show successful co-transmission of RFHV and LCV from saliva and demonstrate differential lytic activation of the different gammaherpesvirus lineages due to presumed differences in biology and tropism and control by the host immune system. Although this initial pilot transmission study utilized only two macaques, it provides the first evidence for experimental transmission of the macaque homolog of KSHV, setting the stage for larger transmission studies to examine the differential activation of rhadinovirus and lymphocryptovirus infections and the pathological effects of immunosuppression.


Assuntos
Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Vírus da Imunodeficiência Símia/genética , Proteínas Virais/genética , Animais , Infecções por Vírus Epstein-Barr/transmissão , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 8/patogenicidade , Humanos , Leucócitos Mononucleares/virologia , Macaca mulatta/virologia , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia/patogenicidade , Washington
14.
Virology ; 519: 106-120, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29689462

RESUMO

We developed a set of rabbit antisera to characterize infections by the macaque RV2 rhadinovirus homologs of KSHV. We analyzed tissues from rhesus and pig-tailed macaques naturally infected with rhesus rhadinovirus (RRV) or Macaca nemestrina rhadinovirus 2 (MneRV2). Our study demonstrates that RV2 rhadinoviruses have a tropism for epithelial cells, lymphocytes and gonadal germ cells in vivo. We observed latent infections in both undifferentiated and differentiated epithelial cells with expression of the latency marker, LANA. Expression of the early (ORF59) and late (glycoprotein B) lytic markers were detected in highly differentiated cells in epithelial ducts in oral, renal, dermal and gastric mucosal tissue as well as differentiated germ cells in male and female gonads. Our data provides evidence that epithelial and germ cell differentiation in vivo induces rhadinovirus reactivation and suggests that infected epithelial and germ cells play a role in transmission and dissemination of RV2 rhadinovirus infections in vivo.


Assuntos
Células Epiteliais/virologia , Células Germinativas/virologia , Centro Germinativo/citologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Linfócitos/virologia , Rhadinovirus/fisiologia , Animais , Antígenos Virais/genética , Trato Gastrointestinal/virologia , Centro Germinativo/imunologia , Centro Germinativo/virologia , Gônadas/virologia , Herpesvirus Humano 8/genética , Imunidade Inata , Macaca mulatta , Macaca nemestrina , Proteínas Nucleares/genética , Coelhos , Rhadinovirus/genética , Homologia de Sequência , Pele/citologia , Pele/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Tropismo Viral , Latência Viral
15.
Viruses ; 10(11)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445717

RESUMO

Base-By-Base is a comprehensive tool for the creation and editing of multiple sequence alignments that is coded in Java and runs on multiple platforms. It can be used with gene and protein sequences as well as with large viral genomes, which themselves can contain gene annotations. This report describes new features added to Base-By-Base over the last 7 years. The two most significant additions are: (1) The recoding and inclusion of "consensus-degenerate hybrid oligonucleotide primers" (CODEHOP), a popular tool for the design of degenerate primers from a multiple sequence alignment of proteins; and (2) the ability to perform fuzzy searches within the columns of sequence data in multiple sequence alignments to determine the distribution of sequence variants among the sequences. The intuitive interface focuses on the presentation of results in easily understood visualizations and providing the ability to annotate the sequences in a multiple alignment with analytic and user data.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Vírus/genética , Software
16.
PLoS One ; 13(2): e0192659, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29425228

RESUMO

Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). Both KSHV and HIV infections are endemic in Uganda, where KS is among the most common cancers in HIV-infected individuals. Recent studies examined the use of small RNAs as biomarkers of disease, including microRNAs (miRNAs), with viral and tumor-derived miRNAs being detected in exosomes from individuals with KSHV-associated malignancies. In the current study, the host and viral extracellular mature miRNA expression profiles were analyzed in blood of KS-negative individuals in Uganda, comparing those with or without KSHV detectable from the oropharynx. We observed increased levels of cellular oncogenic miRNAs and decreased levels of tumor-suppressor miRNAs in plasma of infected individuals exhibiting oral KSHV shedding. These changes in host oncomiRs were exacerbated in people co-infected with HIV, and partially reversed after 2 years of anti-retroviral therapy. We also detected KSHV miRNAs in plasma of KSHV infected individuals and determined that their expression levels correlated with KSHV plasma viremia. Deep sequencing revealed an expected profile of small cellular RNAs in plasma, with miRNAs constituting the major RNA biotype. In contrast, the composition of small RNAs in exosomes was highly atypical with high levels of YRNA and low levels of miRNAs. Mass spectrometry analysis of the exosomes revealed eleven different peptides derived from the malaria parasite, Plasmodium falciparum, and small RNA sequencing confirmed widespread plasmodium co-infections in the Ugandan cohorts. Proteome analysis indicated an exosomal protein profile consistent with erythrocyte and keratinocyte origins for the plasma exosomes. A strong correlation was observed between the abundance of Plasmodium proteins and cellular markers of malaria. As Plasmodium falciparum is an endemic pathogen in Uganda, our study shows that co-infection with other pathogens, such as KSHV, can severely impact the small RNA repertoire, complicating the use of exosome miRNAs as biomarkers of disease.


Assuntos
Perfilação da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Malária Falciparum/virologia , MicroRNAs/genética , Plasmodium falciparum/isolamento & purificação , Viremia , Eliminação de Partículas Virais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
17.
Virology ; 511: 152-164, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28850829

RESUMO

The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif. The RG-NLS interacts uniquely with importin ß1, which mediates nuclear import and accumulation of RV2 LANA in the nucleolus. The alternative nuclear import and localization of RV2 LANA homologs may contribute to the dominant RV2 lytic replication phenotype.


Assuntos
Transporte Ativo do Núcleo Celular , Antígenos Nucleares/metabolismo , Interações Hospedeiro-Patógeno , Mapeamento de Interação de Proteínas , Rhadinovirus/fisiologia , Proteínas Virais/metabolismo , beta Carioferinas/metabolismo , Animais , Antígenos Nucleares/genética , Macaca mulatta , Macaca nemestrina , Ligação Proteica , Sinais Direcionadores de Proteínas , Proteínas Virais/genética
18.
Pathogens ; 6(1)2017 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-28335496

RESUMO

The transcriptome of the Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters. Similar patterns of KSHV expression were detected in BCBL-1 cells undergoing long-term latent infections and in primary latent infections of both BEC and LEC cultures. High expression levels of poly-adenylated nuclear (PAN) RNA and spliced and unspliced transcripts encoding the K12 Kaposin B/C complex and associated microRNA region were detected, with an elevated expression of a large set of lytic genes in all latently infected cultures. Quantitation of non-overlapping regions of transcripts across the complete KSHV genome enabled for the first time accurate evaluation of the KSHV transcriptome associated with viral latency in different cell types. Hierarchical clustering applied to a gene correlation matrix identified modules of co-regulated genes with similar correlation profiles, which corresponded with biological and functional similarities of the encoded gene products. Gene modules were differentially upregulated during latency in specific cell types indicating a role for cellular factors associated with differentiated and/or proliferative states of the host cell to influence viral gene expression.

19.
Virol J ; 3: 11, 2006 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-16515713

RESUMO

BACKGROUND: D-type simian retrovirus-2 (SRV-2) causes an AIDS-like immune deficiency syndrome (SAIDS) in various macaque species. SAIDS is often accompanied by retroperitoneal fibromatosis (RF), an aggressive fibroproliferative disorder reminiscent of Kaposi's sarcoma in patients with HIV-induced AIDS. In order to determine the association of SRV-2 subtypes with SAIDS-RF, and study the evolution and transmission of SRV-2 in captive macaque populations, we have molecularly characterized the env gene of a number of SRV-2 isolates from different macaque species with and without RF. RESULTS: We sequenced the env gene from eighteen SRV-2 isolates and performed sequence comparisons and phylogenetic analyses. Our studies revealed the presence of six distinct subtypes of SRV-2, three of which were associated with SAIDS-RF cases. We found no association between SRV-2 subtypes and a particular macaque species. Little sequence variation was detected in SRV-2 isolates from the same individual, even after many years of infection, or from macaques housed together or related by descent from a common infected parent. Seventy-two amino acid changes were identified, most occurring in the larger gp70 surface protein subunit. In contrast to the lentiviruses, none of the amino acid variations involved potential N-linked glycosylation sites. Structural analysis of a domain within the gp22/gp20 transmembrane subunit that was 100% conserved between SRV-2 subtypes, revealed strong similarities to a disulfide-bonded loop that is crucial for virus-cell fusion and is found in retroviruses and filoviruses. CONCLUSION: Our study suggests that separate introductions of at least six parental SRV-2 subtypes into the captive macaque populations in the U.S. have occurred with subsequent horizontal transfer between macaque species and primate centers. No specific association of a single SRV-2 subtype with SAIDS-RF was seen. The minimal genetic variability of the env gene within a subtype over time suggests that a strong degree of adaptation to its primate host has occurred during evolution of the virus.


Assuntos
Variação Genética , Macaca/virologia , Vírus dos Macacos de Mason-Pfizer/genética , Fibrose Retroperitoneal/complicações , Fibrose Retroperitoneal/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Regulação Viral da Expressão Gênica , Vírus dos Macacos de Mason-Pfizer/fisiologia , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie , Proteínas do Envelope Viral/química
20.
Biochem J ; 392(Pt 2): 299-307, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16018771

RESUMO

Acyl-CoA-binding protein (ACBP) is a 10 kDa protein that binds C12-C22 acyl-CoA esters with high affinity. In vitro and in vivo experiments suggest that it is involved in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, regulation of the intracellular acyl-CoA pool size, donation of acyl-CoA esters for beta-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified in all four eukaryotic kingdoms, Animalia, Plantae, Fungi and Protista, and eleven eubacterial species. ACBP homologues were not detected in any other known bacterial species, or in archaea. Nearly all of the ACBP-containing bacteria are pathogenic to plants or animals, suggesting that an ACBP gene could have been acquired from a eukaryotic host by horizontal gene transfer. Many bacterial, fungal and higher eukaryotic species only harbour a single ACBP homologue. However, a number of species, ranging from protozoa to vertebrates, have evolved two to six lineage-specific paralogues through gene duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage-specific paralogues have evolved altered functions. The appearance of ACBP very early on in evolution points towards a fundamental role of ACBP in acyl-CoA metabolism, including ceramide synthesis and in signalling.


Assuntos
Acil Coenzima A/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Evolução Molecular , Sequência de Aminoácidos , Animais , Bactérias/química , Bactérias/genética , Proteínas de Transporte/metabolismo , Sequência Conservada , Fungos/química , Fungos/genética , Humanos , Invertebrados/química , Invertebrados/genética , Dados de Sequência Molecular , Família Multigênica , Filogenia , Plantas/química , Plantas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA