Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gene Ther ; 30(1-2): 115-121, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35606494

RESUMO

Intrinsic activity of aldehyde dehydrogenase (ALDH)2, a cardiac mitochondrial enzyme, is vital in detoxifying 4-hydroxy-2-nonenal (4HNE) like cellular reactive carbonyl species (RCS) and thereby conferring cardiac protection against pathological stress. It was also known that a single point mutation (E487K) in ALDH2 (prevalent in East Asians) known as ALDH2*2 reduces its activity intrinsically and was associated with increased cardiovascular diseases. We and others have shown that ALDH2 activity is reduced in several pathologies in WT animals as well. Thus, exogenous augmentation of ALDH2 activity is a good strategy to protect the myocardium from pathologies. In this study, we will test the efficacy of intracardiac injections of the ALDH2 gene in mice. We injected both wild type (WT) and ALDH2*2 knock-in mutant mice with ALDH2 constructs, AAv9-cTNT-hALDH2-HA tag-P2A-eGFP or their control constructs, AAv9-cTNT-eGFP. We found that intracardiac ALDH2 gene transfer increased myocardial levels of ALDH2 compared to GFP alone after 1 and 3 weeks. When we subjected the hearts of these mice to 30 min global ischemia and 90 min reperfusion (I-R) using the Langendorff perfusion system, we found reduced infarct size in the hearts of mice with ALDH2 gene vs GFP alone. A single time injection has shown increased myocardial ALDH2 activity for at least 3 weeks and reduced myocardial 4HNE adducts and infarct size along with increased contractile function of the hearts while subjected to I-R. Thus, ALDH2 overexpression protected the myocardium from I-R injury by reducing 4HNE protein adducts implicating increased 4HNE detoxification by ALDH2. In conclusion, intracardiac ALDH2 gene transfer is an effective strategy to protect the myocardium from pathological insults.


Assuntos
Miocárdio , Mutação Puntual , Camundongos , Animais , Miocárdio/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Infarto/metabolismo
2.
FASEB J ; 36(8): e22440, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35815932

RESUMO

4-hydroxy-2-nonenal (4HNE), an oxidative stress byproduct, is elevated in diabetes which decreases coronary angiogenesis, and this was rescued by the 4HNE detoxifying enzyme, aldehyde dehydrogenase 2 (ALDH2). Adiponectin (APN), an adipocytokine, has pro-angiogenic properties and its loss of function is critical in diabetes and its complications. Coronary endothelial cell (CEC) damage is the initiating step of diabetes-mediated heart failure with preserved ejection fraction (HFpEF) pathogenesis. Thus, we hypothesize that ALDH2 restores 4HNE-induced downregulation of APN signaling in CECs and subsequent coronary angiogenesis in diabetic HFpEF. Treatment with disulfiram, an ALDH2 inhibitor, exacerbated 4HNE-mediated decreases in APN-induced increased coronary angiogenesis and APN-signaling cascades, whereas pretreatment with alda1, an ALDH2 activator, rescued the effect of 4HNE. We employed control mice (db/m), spontaneous type-2 diabetic mice (db/db), ALDH2*2 knock-in mutant mice with intrinsic low ALDH2 activity (AL), and diabetic mice with intrinsic low ALDH2 activity (AF) mice that were created by crossing db/db and AL mice to test our hypothesis in vivo. AF mice exhibited heart failure with preserved ejection fraction (HFpEF)/severe diastolic dysfunction at 6 months with a preserved systolic function compared with db/db mice as well as 3 months of their age. Decreased APN-mediated coronary angiogenesis, along with increased circulatory APN levels and decreased cardiac APN signaling (index of APN resistance) were higher in AF mice relative to db/db mice. Alda1 treatment improved APN-mediated angiogenesis in AF and db/db mice. In summary, 4HNE-induces APN resistance and a subsequent decrease in coronary angiogenesis in diabetic mouse heart which was rescued by ALDH2.


Assuntos
Diabetes Mellitus Experimental , Insuficiência Cardíaca , Adiponectina , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Diabetes Mellitus Experimental/patologia , Camundongos , Volume Sistólico
3.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142350

RESUMO

To ameliorate diabetes mellitus-associated heart failure with preserved ejection fraction (HFpEF), we plan to lower diabetes-mediated oxidative stress-induced 4-hydroxy-2-nonenal (4HNE) accumulation by pharmacological agents that either decrease 4HNE generation or increase its detoxification.A cellular reactive carbonyl species (RCS), 4HNE, was significantly increased in diabetic hearts due to a diabetes-induced decrease in 4HNE detoxification by aldehyde dehydrogenase (ALDH) 2, a cardiac mitochondrial enzyme that metabolizes 4HNE. Therefore, hyperglycemia-induced 4HNE is critical for diabetes-mediated cardiotoxicity and we hypothesize that lowering 4HNE ameliorates diabetes-associated HFpEF. We fed a high-fat diet to ALDH2*2 mice, which have intrinsically low ALDH2 activity, to induce type-2 diabetes. After 4 months of diabetes, the mice exhibited features of HFpEF along with increased 4HNE adducts, and we treated them with vehicle, empagliflozin (EMP) (3 mg/kg/d) to reduce 4HNE and Alda-1 (10 mg/kg/d), and ALDH2 activator to enhance ALDH2 activity as well as a combination of EMP + Alda-1 (E + A), via subcutaneous osmotic pumps. After 2 months of treatments, cardiac function was assessed by conscious echocardiography before and after exercise stress. EMP + Alda-1 improved exercise tolerance, diastolic and systolic function, 4HNE detoxification and cardiac liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathways in ALDH2*2 mice with diabetes-associated HFpEF. This combination was even more effective than EMP alone. Our data indicate that ALDH2 activation along with the treatment of hypoglycemic agents may be a salient strategy to alleviate diabetes-associated HFpEF.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Proteínas Quinases Ativadas por AMP/metabolismo , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Compostos Benzidrílicos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Camundongos , Volume Sistólico
4.
Microvasc Res ; 135: 104133, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33428883

RESUMO

Diabetes-induced coronary endothelial cell (CEC) dysfunction contributes to diabetic heart diseases. Angiotensin II (Ang II), a vasoactive hormone, is upregulated in diabetes, and is reported to increase oxidative stress in CECs. 4-hydroxy-2-nonenal (4HNE), a key lipid peroxidation product, causes cellular dysfunction by forming adducts with proteins. By detoxifying 4HNE, aldehyde dehydrogenase (ALDH) 2 reduces 4HNE mediated proteotoxicity and confers cytoprotection. Thus, we hypothesize that ALDH2 improves Ang II-mediated defective CEC angiogenesis by decreasing 4HNE-mediated cytotoxicity. To test our hypothesis, we treated the cultured mouse CECs (MCECs) with Ang II (0.1, 1 and 10 µM) for 2, 4 and 6 h. Next, we treated MCECs with Alda-1 (10 µM), an ALDH2 activator or disulfiram (2.5 µM)/ALDH2 siRNA (1.25 nM), the ALDH2 inhibitors, or blockers of angiotensin II type-1 and 2 receptors i.e. Losartan and PD0123319 respectively before challenging MCECs with 10 µM Ang II. We found that 10 µM Ang II decreased tube formation in MCECs with in vitro angiogenesis assay (P < .0005 vs control). 10 µM Ang II downregulated the levels of vascular endothelial growth factor receptor 1 (VEGFR1) (p < .005 for mRNA and P < .05 for protein) and VEGFR2 (p < .05 for mRNA and P < .005 for protein) as well as upregulated the levels of angiotensin II type-2 receptor (AT2R) (p < .05 for mRNA and P < .005 for protein) and 4HNE-adducts (P < .05 for protein) in cultured MCECs, compared to controls. ALDH2 inhibition with disulfiram/ALDH2 siRNA exacerbated 10 µM Ang II-induced decrease in coronary angiogenesis (P < .005) by decreasing the levels of VEGFR1 (P < .005 for mRNA and P < .05 for protein) and VEGFR2 (P < .05 for both mRNA and protein) and increasing the levels of AT2R (P < .05 for both mRNA and protein) and 4HNE-adducts (P < .05 for protein) relative to Ang II alone. AT2R inhibition per se improved angiogenesis in MCECs. Additionally, enhancing ALDH2 activity with Alda 1 rescued Ang II-induced decrease in angiogenesis by increasing the levels of VEGFR1, VEGFR2 and decreasing the levels of AT2R. In summary, ALDH2 can be an important target in reducing 4HNE-induced proteotoxicity and improving angiogenesis in MCECs. Finally, we conclude ALDH2 activation can be a therapeutic strategy to improve coronary angiogenesis to ameliorate cardiometabolic diseases.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Inibidores da Angiogênese/farmacologia , Angiotensina II/farmacologia , Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Aldeídos/metabolismo , Linhagem Celular , Vasos Coronários/enzimologia , Células Endoteliais/enzimologia , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Cell Biochem Funct ; 38(3): 290-299, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943249

RESUMO

Coronary endothelial cell (EC) dysfunction including defective angiogenesis is reported in cardiac diseases. 4-Hydroxynonenal (4HNE) is a lipid peroxidation product, which is increased in cardiac diseases and implicated in cellular toxicity. Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial enzyme that metabolizes 4HNE and reduces 4HNE-mediated cytotoxicity. Thus, we hypothesize that ALDH2 inhibition potentiates 4HNE-mediated decrease in coronary EC angiogenesis in vitro. To test our hypothesis, first, we treated the cultured mouse coronary EC (MCEC) lines with 4HNE (25, 50, and 75 µM) for 2 and 4 hours. Next, we pharmacologically inhibited ALDH2 by disulfiram (DSF) (2.5 µM) before challenging the cells with 4HNE. In this study, we found that 4HNE attenuated tube formation which indicates decreased angiogenesis. Next, we found that 4HNE has significantly downregulated the expressions of vascular endothelial growth factor receptor (VEGFR) 2 (P < .05 for mRNA and P = .005 for protein), Sirtuin 1 (SIRT 1) (P < 0.0005 for mRNA), and Ets-related gene (ERG) (P < 0.0001 for mRNA and P < 0.005 for protein) in MCECs compared with control. ALDH 2 inhibition by DSF potentiated 4HNE-induced decrease in angiogenesis (P < 0.05 vs 4HNE at 2 h and P < 0.0005 vs 4HNE at 4 h) by decreasing the expressions of VEGFR2 (P < 0.005 for both mRNA and protein), SIRT 1 (P < 0.05), and ERG (P < 0.005) relative to 4HNE alone. Thus, we conclude that ALDH2 acts as a proangiogenic signaling molecule by alleviating the antiangiogenic effects of 4HNE in MCECs.


Assuntos
Aldeído-Desidrogenase Mitocondrial/antagonistas & inibidores , Aldeídos/química , Células Endoteliais/enzimologia , Coração/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Animais , Linhagem Celular , Células Cultivadas , Cardiomiopatias Diabéticas/tratamento farmacológico , Dissulfiram/farmacologia , Regulação para Baixo , Células Endoteliais/patologia , Cardiopatias/metabolismo , Peroxidação de Lipídeos , Camundongos , Miocárdio/enzimologia , Miocárdio/patologia , Proteínas Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , Sirtuína 1/metabolismo , Regulador Transcricional ERG/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Biomedicines ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672182

RESUMO

Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.

7.
World J Virol ; 11(5): 252-274, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36188734

RESUMO

Since the discovery of the coronavirus disease 2019 outbreak, a vast majority of studies have been carried out that confirmed the worst outcome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in people with preexisting health conditions, including diabetes, obesity, hypertension, cancer, and cardiovascular diseases. Likewise, diabetes itself is one of the leading causes of global public health concerns that impose a heavy global burden on public health as well as socio-economic development. Both diabetes and SARS-CoV-2 infection have their independent ability to induce the pathogenesis and severity of multi-system organ failure, while the co-existence of these two culprits can accelerate the rate of disease progression and magnify the severity of the disease. However, the exact pathophysiology of multi-system organ failure in diabetic patients after SARS-CoV-2 infection is still obscure. This review summarized the organ-specific possible molecular mechanisms of SARS-CoV-2 and diabetes-induced pathophysiology of several diseases of multiple organs, including the lungs, heart, kidneys, brain, eyes, gastrointestinal system, and bones, and sub-sequent manifestation of multi-system organ failure.

8.
Toxics ; 10(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35736936

RESUMO

Exposure to environmental pollutants, including dioxin-like polychlorinated biphenyls (PCBs), play an important role in vascular inflammation and cardiometabolic diseases (CMDs) by inducing oxidative stress. Earlier, we demonstrated that oxidative stress-mediated lipid peroxidation derived 4-hydroxy-2-nonenal (4HNE) contributes to CMDs by decreasing the angiogenesis of coronary endothelial cells (CECs). By detoxifying 4HNE, aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme, enhances CEC angiogenesis. Therefore, we hypothesize that ALDH2 activation attenuates a PCB 126-mediated 4HNE-induced decrease in CEC angiogenesis. To test our hypothesis, we treated cultured mouse CECs with 4.4 µM PCB 126 and performed spheroid and aortic ring sprouting assays, the ALDH2 activity assay, and Western blotting for the 4HNE adduct levels and real-time qPCR to determine the expression levels of Cyp1b1 and oxidative stress-related genes. PCB 126 increased the gene expression and 4HNE adduct levels, whereas it decreased the ALDH2 activity and angiogenesis significantly in MCECs. However, pretreatment with 2.5 µM disulfiram (DSF), an ALDH2 inhibitor, or 10 µM Alda 1, an ALDH2 activator, before the PCB 126 challenge exacerbated and rescued the PCB 126-mediated decrease in coronary angiogenesis by modulating the 4HNE adduct levels respectively. Finally, we conclude that ALDH2 can be a therapeutic target to alleviate environmental pollutant-induced CMDs.

9.
Cell Biosci ; 11(1): 77, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902691

RESUMO

According to the World Health Organization, metabolic syndrome (MetS) can be defined as a pathological condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. The incidence of MetS keeps rising, as at least 35% of the USA population suffers from MetS. One of the worst comorbidities of metabolic syndrome are cardiovascular diseases that significantly amplifies the mortality associated with this syndrome. There is an urgent need to understand the pathophysiology of MetS to find novel diagnosis, treatment and management to mitigate the MetS and associated complications. Altered circulatory adiponectin levels have been implicated in MetS. Adiponectin has numerous biologic functions including antioxidative, anti-nitrative, anti-inflammatory, and cardioprotective effects. Being a pleiotropic hormone of multiple tissues, tissue-specific key signaling pathways of adiponectin will help finding specific target/s to blunt the pathophysiology of metabolic syndrome and associated disorders. The purpose of this review is to elucidate tissue-specific signaling pathways of adiponectin and possibly identify potential therapeutic targets for MetS as well as to evaluate the potential of adiponectin as a biomarker/therapeutic option in MetS.

10.
J Am Heart Assoc ; 10(18): e021140, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34482710

RESUMO

Background Aldehyde dehydrogenase-2 (ALDH2), a mitochondrial enzyme, detoxifies reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE). A highly prevalent E487K mutation in ALDH2 (ALDH2*2) in East Asian people with intrinsic low ALDH2 activity is implicated in diabetic complications. 4HNE-induced cardiomyocyte dysfunction was studied in diabetic cardiac damage; however, coronary endothelial cell (CEC) injury in myocardial ischemia-reperfusion injury (IRI) in diabetic mice has not been studied. Therefore, we hypothesize that the lack of ALDH2 activity exacerbates 4HNE-induced CEC dysfunction which leads to cardiac damage in ALDH2*2 mutant diabetic mice subjected to myocardial IRI. Methods and Results Three weeks after diabetes mellitus (DM) induction, hearts were subjected to IRI either in vivo via left anterior descending artery occlusion and release or ex vivo IRI by using the Langendorff system. The cardiac performance was assessed by conscious echocardiography in mice or by inserting a balloon catheter in the left ventricle in the ex vivo model. Just 3 weeks of DM led to an increase in cardiac 4HNE protein adducts and, cardiac dysfunction, and a decrease in the number of CECs along with reduced myocardial ALDH2 activity in ALDH2*2 mutant diabetic mice compared with their wild-type counterparts. Systemic pretreatment with Alda-1 (10 mg/kg per day), an activator of both ALDH2 and ALDH2*2, led to a reduction in myocardial infarct size and dysfunction, and coronary perfusion pressure upon cardiac IRI by increasing CEC population and coronary arteriole opening. Conclusions Low ALDH2 activity exacerbates 4HNE-mediated CEC injury and thereby cardiac dysfunction in diabetic mouse hearts subjected to IRI, which can be reversed by ALDH2 activation.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Diabetes Mellitus Experimental , Traumatismo por Reperfusão Miocárdica , Aldeído-Desidrogenase Mitocondrial/genética , Aldeídos/toxicidade , Animais , Células Endoteliais/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos
11.
Free Radic Res ; 55(5): 547-561, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33336611

RESUMO

Over 30 million Americans are diagnosed with diabetes and this number is only expected to increase. There are various causes that induce complications with diabetes, including oxidative stress. In oxidative stress, lipid peroxidation-derived reactive carbonyl species such as 4-hydroxy-2-nonenal (4-HNE) is shown to cause damage in organs that leads to diabetic complications. We provided evidence to show that 4-HNE or/and 4-HNE-protein adducts are elevated in various organ systems of diabetic patients and animal models. We then discussed the advantages and disadvantages of different methodologies used for the detection of 4-HNE in diabetic tissues. We also discussed how novel approaches such as electrochemistry and nanotechnology can be used for monitoring 4-HNE levels in biological systems in real-time. Thus, this review enlightens the involvement of 4-HNE in the pathogenesis of diabetes and its complications and efficient methods to identify it. Furthermore, the article presents that 4-HNE can be developed as a biomarker for end-organ damage in diabetes such as diabetic cardiac complications.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus/sangue , Peroxidação de Lipídeos/imunologia , Animais , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio
12.
Ecancermedicalscience ; 15: 1291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34824614

RESUMO

BACKGROUND: The Chemoradiotherapy for Oesophageal Cancer Followed by Surgery Study (CROSS) trial established a new benchmark in the management of oesophageal cancer with neoadjuvant chemoradiation followed by surgery with a marked benefit for squamous cell carcinomas (SCCs). We evaluate if the CROSS protocol can be safely implemented with a broader eligibility criteria in a real-world setting. METHODS: A retrospective analysis of 80 patients of SCC oesophagus was performed, who were treated with neoadjuvant chemoradiation with radiation therapy (RT) to 41.4 Gy/23 Fr/4.5 weeks and weekly paclitaxel and carboplatin, followed by surgery at our institute between 2012 and 2019. Eligibility for the use of this regimen was expanded beyond the limits of size and stage allowed in the CROSS trial. RESULTS: The median age of this cohort was 57 years (range: 39-78 years). Most of the patients (77/80; 96.3%) had T3 disease and 25% patients (20/80) had N2/N3 disease. Thirty-three patients (41.3%) had the disease beyond CROSS eligibility criteria. All patients completed planned course of RT and five cycles of weekly chemotherapy were received by 61 patients (76.2%). Overall pathological complete response (pCR) could be achieved in 33 patients (41.3%). Among 33 CROSS ineligible patients, 14 (42.4%) had pCR. Acute grade 3 dysphagia and grade ≥ 3 neutropenia were seen in seven cases (8.3%) and nine cases (10.7%), respectively. At a median follow-up of 16 months, 1-year and 2-year overall survival (OS) were 84.4% (95% confidence interval (CI): 73.5%-91.1%) and 76.3% (95% CI: 63.2%-85.2%), respectively, for the entire cohort. For CROSS ineligible patients, 1-year and 2-year OS were 82% (95% CI: 61.8%-92.2%) and 72.7% (95% CI: 50.4%-86.2%), respectively. On univariate analysis, patients who had pathologically N0 disease had significantly better 2-year OS (85.7% versus 48.4%; p = 0.03) as compared to pathologically N+ patients. On univariate and multivariate analysis, there was no significant difference in OS and progression free survival between CROSS eligible and CROSS ineligible patients. CONCLUSION: CROSS protocol can be safely implemented for carefully selected patients of SCC oesophagus outside clinical trial settings with expanded eligibility criteria.

13.
Vascul Pharmacol ; 131: 106762, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32585188

RESUMO

4-hydroxynonenal (4HNE) is a reactive aldehyde, which is involved in oxidative stress associated pathogenesis. The cellular toxicity of 4HNE is mitigated by aldehyde dehydrogenase (ALDH) 2. Thus, we hypothesize that ALDH2 inhibition exacerbates 4HNE-induced decrease in coronary endothelial cell (EC) migration in vitro. To test our hypothesis, we pharmacologically inhibited ALDH2 in cultured mouse coronary ECs (MCECs) by disulfiram (DSF) (2.5 µM) before challenging the cells with different doses of 4HNE (25, 50 and 75 µM) for 4, 12, 16 and 24 h. We evaluated MCEC migration by scratch wound migration assay. 4HNE attenuated MCEC migration significantly relative to control (P < .05), which was exacerbated with DSF pretreatment (P < .05). DSF pretreatment exacerbated 4HNE-induced decrease in ALDH2 activity in MCECs. Next, we showed that 75 µM 4HNE significantly decreased the intracellular mRNA levels of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), focal adhesion kinase (FAK) and other promigratory genes compared to control, which were further decreased by DSF pretreatment. 75 µM 4HNE also decreased the protein levels of VEGFR2, FAK, phospho-FAK, Src and paxillin in MCECs. Thus, we conclude that ALDH2 inhibition potentiates 4HNE-induced decrease in MCECs migration in vitro.


Assuntos
Aldeído-Desidrogenase Mitocondrial/antagonistas & inibidores , Aldeídos/farmacologia , Movimento Celular/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Linhagem Celular , Vasos Coronários/enzimologia , Células Endoteliais/enzimologia , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Camundongos , Paxilina/metabolismo , Fosforilação , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
15.
PLoS One ; 12(6): e0180097, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28658303

RESUMO

Chronic inflammation is a well-known precursor for cancer development and proliferation. We have recently demonstrated that high salt (NaCl) synergizes with sub-effective interleukin (IL)-17 to induce breast cancer cell proliferation. However, the exact molecular mechanisms mediating this effect are unclear. In our current study, we adopted a phosphoproteomic-based approach to identify salt modulated kinase-proteome specific molecular targets. The phosphoprotemics based binary comparison between heavy labelled MCF-7 cells treated with high salt (Δ0.05 M NaCl) and light labelled MCF-7 cells cultured under basal conditions demonstrated an enhanced phosphorylation of Serine-493 of SIK3 protein. The mRNA transcript and protein expression analysis of SIK3 in MCF-7 cells demonstrated a synergistic enhancement following co-treatment with high salt and sub-effective IL-17 (0.1 ng/mL), as compared to either treatments alone. A similar increase in SIK3 expression was observed in other breast cancer cell lines, MDA-MB-231, BT20, and AU565, while non-malignant breast epithelial cell line, MCF10A, did not induce SIK3 expression under similar conditions. Biochemical studies revealed mTORC2 acted as upstream mediator of SIK3 phosphorylation. Importantly, cell cycle analysis by flow cytometry demonstrated SIK3 induced G0/G1-phase release mediated cell proliferation, while SIK3 silencing abolished this effect. Also, SIK3 induced pro-inflammatory arginine metabolism, as evidenced by upregulation of the enzymes iNOS and ASS-1, along with downregulation of anti-inflammatory enzymes, arginase-1 and ornithine decarboxylase. Furthermore, gelatin zymography analysis has demonstrated that SIK3 induced expression of tumor metastatic CXCR4 through MMP-9 activation. Taken together, our data suggests a critical role of SIK3 in mediating three important hallmarks of cancer namely, cell proliferation, inflammation and metastasis. These studies provide a mechanistic basis for the future utilization of SIK3 as a key drug discovery target to improve breast cancer therapy.


Assuntos
Neoplasias da Mama/fisiopatologia , Proliferação de Células/fisiologia , Interleucina-17/fisiologia , Proteínas Quinases/fisiologia , Sódio na Dieta/efeitos adversos , Linhagem Celular Tumoral , Ciclinas/fisiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Óxido Nítrico/metabolismo , Receptores CXCR4/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ureia/metabolismo
16.
Front Physiol ; 7: 439, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746742

RESUMO

Obesity and osteoporosis are two alarming health disorders prominent among middle and old age populations, and the numbers of those affected by these two disorders are increasing. It is estimated that more than 600 million adults are obese and over 200 million people have osteoporosis worldwide. Interestingly, both of these abnormalities share some common features including a genetic predisposition, and a common origin: bone marrow mesenchymal stromal cells. Obesity is characterized by the expression of leptin, adiponectin, interleukin 6 (IL-6), interleukin 10 (IL-10), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), macrophage colony stimulating factor (M-CSF), growth hormone (GH), parathyroid hormone (PTH), angiotensin II (Ang II), 5-hydroxy-tryptamine (5-HT), Advance glycation end products (AGE), and myostatin, which exert their effects by modulating the signaling pathways within bone and muscle. Chemical messengers (e.g., TNF-α, IL-6, AGE, leptins) that are upregulated or downregulated as a result of obesity have been shown to act as negative regulators of osteoblasts, osteocytes and muscles, as well as positive regulators of osteoclasts. These additive effects of obesity ultimately increase the risk for osteoporosis and muscle atrophy. The aim of this review is to identify the potential cellular mechanisms through which obesity may facilitate osteoporosis, muscle atrophy and bone fractures.

17.
World J Diabetes ; 4(4): 101-13, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23961320

RESUMO

Osteoporosis has become a serious health problem throughout the world which is associated with an increased risk of bone fractures and mortality among the people of middle to old ages. Diabetes is also a major health problem among the people of all age ranges and the sufferers due to this abnormality increasing day by day. The aim of this review is to summarize the possible mechanisms through which diabetes may induce osteoporosis. Diabetes mellitus generally exerts its effect on different parts of the body including bone cells specially the osteoblast and osteoclast, muscles, retina of the eyes, adipose tissue, endocrine system specially parathyroid hormone (PTH) and estrogen, cytokines, nervous system and digestive system. Diabetes negatively regulates osteoblast differentiation and function while positively regulates osteoclast differentiation and function through the regulation of different intermediate factors and thereby decreases bone formation while increases bone resorption. Some factors such as diabetic neuropathy, reactive oxygen species, Vitamin D, PTH have their effects on muscle cells. Diabetes decreases the muscle strength through regulating these factors in various ways and ultimately increases the risk of fall that may cause bone fractures.

18.
J Indian Med Assoc ; 110(12): 901-3, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23936955

RESUMO

Although colorectal cancer is a major cause of concern in the western population, recent studies are showing the incidence and mortality of colorectal cancer to be rapidly rising in Asia. The present study is an insight into the epidemiological profile of colorectal cancer of a representative Eastern Indian population. Over a period of three years, all histologically proved patients with colorectal cancer were assessed for age, sex, body mass index, dietary habits, socioeconomic status and stage of disease. Of a total of 168 patients male to female ratio was 1.7:1.The mean age of presentation was 47.01 years. Although colorectal cancer has been known as a disease of sedentary obese men, 41.66% of the patients were from a low socioeconomic rural set-up and 40.47% were involved in heavy physical labour with only 15% of being obese; 62% patients were harbouring a locally advanced disease at the time of presentation. The epidemiological pattern of colorectal cancer in India is different from that of the west as regards to earlier age of presentation, prevalence in low socio economic class with low fat diet and scanty meat intake.


Assuntos
Carcinoma/epidemiologia , Neoplasias Colorretais/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Dieta , Feminino , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Atividade Motora , Obesidade/epidemiologia , Prevalência , Fatores de Risco , População Rural/estatística & dados numéricos , Classe Social , População Urbana/estatística & dados numéricos , Adulto Jovem
19.
J Indian Med Assoc ; 110(9): 655-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23741843

RESUMO

Internal herniations constitute one of the relatively uncommon surgical emergencies. Among them double omental hernia with bowel strangulation is very rare and is a major diagnostic challenge. A case of a strangulated double omental hernia in a 42-year-old female patient is reported. The patient presented with a painful tender epigastric lump.There was a diagnostic dilemma. CT scan was followed by laparotomy which revealed a strangulated double omental hernia.


Assuntos
Hérnia/diagnóstico , Íleo/cirurgia , Omento/cirurgia , Adulto , Feminino , Hérnia/diagnóstico por imagem , Herniorrafia , Humanos , Laparotomia , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA