Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 149(4): 832-46, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22579286

RESUMO

Localized protein synthesis requires assembly and transport of translationally silenced ribonucleoprotein particles (RNPs), some of which are exceptionally large. Where in the cell such large RNP granules first assemble was heretofore unknown. We previously reported that during synapse development, a fragment of the Wnt-1 receptor, DFrizzled2, enters postsynaptic nuclei where it forms prominent foci. Here we show that these foci constitute large RNP granules harboring synaptic protein transcripts. These granules exit the nucleus by budding through the inner and the outer nuclear membranes in a nuclear egress mechanism akin to that of herpes viruses. This budding involves phosphorylation of A-type lamin, a protein linked to muscular dystrophies. Thus nuclear envelope budding is an endogenous nuclear export pathway for large RNP granules.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Frizzled/metabolismo , Lamina Tipo A/metabolismo , Junção Neuromuscular/metabolismo , Membrana Nuclear/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Drosophila melanogaster/ultraestrutura , Humanos , Larva/metabolismo , Larva/ultraestrutura , Fibras Musculares Esqueléticas/ultraestrutura , Membrana Nuclear/ultraestrutura , Transdução de Sinais
2.
J Neurosci ; 37(49): 11881-11893, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109235

RESUMO

Pathological hallmarks of Alzheimer's disease (AD) include amyloid-ß (Aß) plaques, neurofibrillary tangles, and reactive gliosis. Glial cells offer protection against AD by engulfing extracellular Aß peptides, but the repertoire of molecules required for glial recognition and destruction of Aß are still unclear. Here, we show that the highly conserved glial engulfment receptor Draper/MEGF10 provides neuroprotection in an AD model of Drosophila (both sexes). Neuronal expression of human Aß42arc in adult flies results in robust Aß accumulation, neurodegeneration, locomotor dysfunction, and reduced lifespan. Notably, all of these phenotypes are more severe in draper mutant animals, whereas enhanced expression of glial Draper reverses Aß accumulation, as well as behavioral phenotypes. We also show that the signal transducer and activator of transcription (Stat92E), c-Jun N-terminal kinase (JNK)/AP-1 signaling, and expression of matrix metalloproteinase-1 (Mmp1) are activated downstream of Draper in glia in response to Aß42arc exposure. Furthermore, Aß42-induced upregulation of the phagolysosomal markers Atg8 and p62 was notably reduced in draper mutant flies. Based on our findings, we propose that glia clear neurotoxic Aß peptides in the AD model Drosophila brain through a Draper/STAT92E/JNK cascade that may be coupled to protein degradation pathways such as autophagy or more traditional phagolysosomal destruction methods.SIGNIFICANCE STATEMENT Alzheimer's disease (AD) and similar dementias are common incurable neurodegenerative disorders in the aging population. As the primary immune responders in the brain, glial cells are implicated as key players in the onset and progression of AD and related disorders. Here we show that the glial engulfment receptor Draper is protective in a Drosophila model of AD, reducing levels of amyloid ß (Aß) peptides, reversing locomotor defects, and extending lifespan. We further show that protein degradation pathways are induced downstream of Draper in AD model flies, supporting a model in which glia engulf and destroy Aß peptides to reduce amyloid-associated toxicity.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Drosophila , Feminino , Masculino , Camundongos , Neuroglia/efeitos dos fármacos , Neuroglia/patologia
3.
Development ; 137(18): 3067-77, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20702563

RESUMO

The inner side of the nuclear envelope (NE) is lined with lamins, a meshwork of intermediate filaments that provides structural support for the nucleus and plays roles in many nuclear processes. Lamins, classified as A- or B-types on the basis of biochemical properties, have a conserved globular head, central rod and C-terminal domain that includes an Ig-fold structural motif. In humans, mutations in A-type lamins give rise to diseases that exhibit tissue-specific defects, such as Emery-Dreifuss muscular dystrophy. Drosophila is being used as a model to determine tissue-specific functions of A-type lamins in development, with implications for understanding human disease mechanisms. The GAL4-UAS system was used to express wild-type and mutant forms of Lamin C (the presumed Drosophila A-type lamin), in an otherwise wild-type background. Larval muscle-specific expression of wild type Drosophila Lamin C caused no overt phenotype. By contrast, larval muscle-specific expression of a truncated form of Lamin C lacking the N-terminal head (Lamin C DeltaN) caused muscle defects and semi-lethality, with adult 'escapers' possessing malformed legs. The leg defects were due to a lack of larval muscle function and alterations in hormone-regulated gene expression. The consequences of Lamin C association at a gene were tested directly by targeting a Lamin C DNA-binding domain fusion protein upstream of a reporter gene. Association of Lamin C correlated with localization of the reporter gene at the nuclear periphery and gene repression. These data demonstrate connections among the Drosophila A-type lamin, hormone-induced gene expression and muscle function.


Assuntos
Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Lamina Tipo A/metabolismo , Músculos/fisiopatologia , Animais , Núcleo Celular/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Ecdisona/metabolismo , Lamina Tipo A/genética , Transdução de Sinais
4.
Nucleus ; 14(1): 2178184, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36814098

RESUMO

The nuclear pore complex (NPC) has long been assumed to be the sole route across the nuclear envelope, and under normal homeostatic conditions it is indeed the main mechanism of nucleo-cytoplasmic transport. However, it has also been known that e.g. herpesviruses cross the nuclear envelope utilizing a pathway entitled nuclear egress or envelopment/de-envelopment. Despite this, a thread of observations suggests that mechanisms similar to viral egress may be transiently used also in healthy cells. It has since been proposed that mechanisms like nuclear envelope budding (NEB) can facilitate the transport of RNA granules, aggregated proteins, inner nuclear membrane proteins, and mis-assembled NPCs. Herein, we will summarize the known roles of NEB as a physiological and intrinsic cellular feature and highlight the many unanswered questions surrounding these intriguing nuclear events.


Assuntos
Herpesviridae , Membrana Nuclear , Transporte Ativo do Núcleo Celular/fisiologia , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Herpesviridae/metabolismo , Poro Nuclear/metabolismo
5.
Methods Mol Biol ; 2143: 321-338, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524491

RESUMO

Axon degeneration elicits a range of immune responses from local glial cells, including striking changes in glial gene expression, morphology, and phagocytic activity. Here, we describe a detailed set of protocols to assess discrete components of the glial reaction to axotomy in the adult nervous system of Drosophila melanogaster. These methods allow one to visualize and quantify transcriptional, morphological, and functional responses of glia to degenerating axons in a model system that is highly amenable to genetic manipulation.


Assuntos
Axônios/fisiologia , Drosophila melanogaster/imunologia , Microscopia Intravital , Microscopia Confocal/métodos , Neuroglia/imunologia , Degeneração Walleriana/imunologia , Animais , Axotomia , Sistema Nervoso Central/patologia , DNA Complementar/genética , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica , Genes Reporter , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica/instrumentação , Imuno-Histoquímica/métodos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Fagocitose , Reação em Cadeia da Polimerase/métodos , Degeneração Walleriana/fisiopatologia
6.
Trends Neurosci ; 30(6): 268-75, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17467065

RESUMO

Synaptic development, function and plasticity are highly regulated processes requiring a precise coordination of pre- and postsynaptic events. Recent studies have begun to highlight Wingless-Int (Wnt) signaling as a key player in synapse differentiation and function. Emerging roles of Wnts include the differentiation of synaptic specializations, microtubule dynamics, architecture of synaptic protein organization, modulation of synaptic efficacy and regulation of gene expression. These processes are driven by a variety of Wnt transduction pathways. Combined with a myriad of Wnts and Frizzled receptor family members, these pathways highlight the versatility of Wnt signaling and the potential for combinatorial use of these pathways in different aspects of synapse development and function. The identification of neurons secreting Wnt and those containing molecular components downstream of Frizzled receptors indicates that Wnts can function both as anterograde and retrograde signals. These studies open new avenues for understanding how embryonic morphogens are utilized during the development and function of synaptic networks.


Assuntos
Regulação da Expressão Gênica/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Proteínas Wnt/fisiologia , Animais , Sequência de Bases , Receptores Frizzled/fisiologia , Humanos , Dados de Sequência Molecular , Sistema Nervoso/crescimento & desenvolvimento , Homologia de Sequência do Ácido Nucleico
7.
J Neurosci ; 27(5): 1033-44, 2007 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-17267557

RESUMO

Targeted membrane addition is a hallmark of many cellular functions. In the nervous system, modification of synaptic membrane size has a major impact on synaptic function. However, because of the complex shape of neurons and the need to target membrane addition to very small and polarized synaptic compartments, this process is poorly understood. Here, we show that Gtaxin (GTX), a Drosophila t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor), is required for expansion of postsynaptic membranes during new synapse formation. Mutations in gtx lead to drastic reductions in postsynaptic membrane surface, whereas gtx upregulation results in the formation of complex membrane structures at ectopic sites. Postsynaptic GTX activity depends on its direct interaction with Discs-Large (DLG), a multidomain scaffolding protein of the PSD-95 (postsynaptic density protein-95) family with key roles in cell polarity and formation of cellular junctions as well as synaptic protein anchoring and trafficking. We show that DLG selectively determines the postsynaptic distribution of GTX to type I, but not to type II or type III boutons on the same cell, thereby defining sites of membrane addition to this unique set of glutamatergic synapses. We provide a mechanistic explanation for selective targeted membrane expansion at specific synaptic junctions.


Assuntos
Proteínas de Drosophila/fisiologia , Terminações Pré-Sinápticas/metabolismo , Proteínas SNARE/metabolismo , Membranas Sinápticas/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Resistência a Medicamentos , Dados de Sequência Molecular , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Proteínas SNARE/genética , Proteínas SNARE/fisiologia , Membranas Sinápticas/ultraestrutura , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
8.
J Neurosci ; 27(23): 6150-62, 2007 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-17553987

RESUMO

Previous studies indicated that CAPS (calcium-dependent activator protein for secretion) functions as an essential component for the Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells. However, recent mouse knock-out studies suggested an alternative role in the vesicular uptake or storage of catecholamines. To genetically assess the functional role of CAPS, we characterized the sole Caenorhabditis elegans CAPS ortholog UNC-31 (uncoordinated family member) and determined its role in dense-core vesicle-mediated peptide secretion and in synaptic vesicle recycling. Novel assays for dense-core vesicle exocytosis were developed by expressing a prepro-atrial natriuretic factor-green fluorescent protein fusion protein in C. elegans. unc-31 mutants exhibited reduced peptide release in vivo and lacked evoked peptide release in cultured neurons. In contrast, cultured neurons from unc-31 mutants exhibited normal stimulated synaptic vesicle recycling measured by FM4-64 [N-(3-triethylammoniumpropyl)-4-(6-(4-diethylamino)phenyl)hexatrienyl)pyridinium dibromide] dye uptake. Conversely, UNC-13, which exhibits sequence homology to CAPS/UNC-31, was found to be essential for synaptic vesicle but not dense-core vesicle exocytosis. These findings indicate that CAPS/UNC-31 function is not restricted to catecholaminergic vesicles but is generally required for and specific to dense-core vesicle exocytosis. Our results suggest that CAPS/UNC-31 and UNC-13 serve parallel and dedicated roles in dense-core vesicle and synaptic vesicle exocytosis, respectively, in the C. elegans nervous system.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Exocitose/fisiologia , Vesículas Secretórias/metabolismo , Vesículas Sinápticas/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte , Dados de Sequência Molecular , Vesículas Secretórias/genética , Vesículas Sinápticas/genética
9.
Nat Neurosci ; 7(10): 1070-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15361878

RESUMO

The rolling blackout (rbo) gene encodes an integral plasma membrane lipase required for Drosophila phototransduction. Photoreceptors are enriched for the RBO protein, and temperature-sensitive rbo mutants show reversible elimination of phototransduction within minutes, demonstrating an acute requirement for the protein. The block is activity dependent, indicating that the action of RBO is use dependent. Conditional rbo mutants show activity-dependent depletion of diacylglycerol and concomitant accumulation of phosphatidylinositol phosphate and phosphatidylinositol 4,5-bisphosphate within minutes of induction, suggesting rapid downregulation of phospholipase C (PLC) activity. The RBO requirement identifies an essential regulatory step in G-protein-coupled, PLC-dependent inositol lipid signaling mediating activation of TRP and TRPL channels during phototransduction.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Diglicerídeos/metabolismo , Proteínas de Drosophila/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipases/metabolismo , Visão Ocular/genética , Sequência de Aminoácidos/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases/genética , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/isolamento & purificação , Membrana Celular/enzimologia , Mapeamento Cromossômico , DNA Complementar/análise , DNA Complementar/genética , Regulação para Baixo/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Drosophila melanogaster , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/genética , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fosfolipases/genética , Fosfolipases/isolamento & purificação , Células Fotorreceptoras de Invertebrados/enzimologia , Temperatura , Fosfolipases Tipo C/metabolismo
10.
Curr Biol ; 13(11): 899-910, 2003 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-12781128

RESUMO

BACKGROUND: The ubiquitin proteasome system (UPS) mediates regulated protein degradation and provides a mechanism for closely controlling protein abundance in spatially restricted domains within cells. We hypothesized that the UPS may acutely determine the local concentration of key regulatory proteins at neuronal synapses as a means for locally modulating synaptic efficacy and the strength of neurotransmission communication. RESULTS: We investigated this hypothesis at the Drosophila neuromuscular synapse by using an array of genetic and pharmacological tools. This study demonstrates that UPS components are present in presynaptic boutons and that the UPS functions locally in the presynaptic compartment to rapidly eliminate a conditional transgenic reporter of proteasome activity. We assayed a panel of synaptic proteins to determine whether the UPS acutely regulates the local abundance of native synaptic targets. Both acute pharmacological inhibition of the proteasome (<1 hr) and targeted genetic perturbation of proteasome function in the presynaptic neuron cause the specific accumulation of the essential synaptic vesicle-priming protein DUNC-13. Most importantly, acute pharmacological inhibition of the proteasome (<1 hr) causes a rapid strengthening of neurotransmission (an approximately 50% increase in evoked amplitude) because of increased presynaptic efficacy. The proteasome-dependent regulation of presynaptic protein abundance, both of the exogenous reporter and native DUNC-13, and the modulation of presynaptic neurotransmitter release occur on an intermediate, rapid (tens of minutes) timescale. CONCLUSIONS: Taken together, these studies demonstrate that the UPS functions locally within synaptic boutons to acutely control levels of presynaptic protein and that the rate of UPS-dependent protein degradation is a primary determinant of neurotransmission strength.


Assuntos
Cisteína Endopeptidases/metabolismo , Drosophila/metabolismo , Complexos Multienzimáticos/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Ubiquitina/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Primers do DNA , Eletrofisiologia , Imuno-Histoquímica , Larva/metabolismo , Microscopia Confocal , Complexos Multienzimáticos/antagonistas & inibidores , Terminações Pré-Sinápticas/química , Complexo de Endopeptidases do Proteassoma
11.
Cell Death Dis ; 8(2): e2623, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230857

RESUMO

Neuronal damage induced by injury, stroke, or neurodegenerative disease elicits swift immune responses from glial cells, including altered gene expression, directed migration to injury sites, and glial clearance of damaged neurons through phagocytic engulfment. Collectively, these responses hinder further cellular damage, but the mechanisms that underlie these important protective glial reactions are still unclear. Here, we show that the evolutionarily conserved trimeric protein phosphatase 4 (PP4) serine/threonine phosphatase complex is a novel set of factors required for proper glial responses to nerve injury in the adult Drosophila brain. Glial-specific knockdown of PP4 results in reduced recruitment of glia to severed axons and delayed glial clearance of degenerating axonal debris. We show that PP4 functions downstream of the the glial engulfment receptor Draper to drive glial morphogenesis through the guanine nucleotide exchange factor SOS and the Rho GTPase Rac1, revealing that PP4 molecularly couples Draper to Rac1-mediated cytoskeletal remodeling to ensure glial infiltration of injury sites and timely removal of damaged neurons from the CNS.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Neuroglia/metabolismo , Fagócitos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Fagocitose/fisiologia , Transdução de Sinais/fisiologia
12.
Elife ; 62017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28825401

RESUMO

Neural injury triggers swift responses from glia, including glial migration and phagocytic clearance of damaged neurons. The transcriptional programs governing these complex innate glial immune responses are still unclear. Here, we describe a novel injury assay in adult Drosophila that elicits widespread glial responses in the ventral nerve cord (VNC). We profiled injury-induced changes in VNC gene expression by RNA sequencing (RNA-seq) and found that responsive genes fall into diverse signaling classes. One factor, matrix metalloproteinase-1 (MMP-1), is induced in Drosophila ensheathing glia responding to severed axons. Interestingly, glial induction of MMP-1 requires the highly conserved engulfment receptor Draper, as well as AP-1 and STAT92E. In MMP-1 depleted flies, glia do not properly infiltrate neuropil regions after axotomy and, as a consequence, fail to clear degenerating axonal debris. This work identifies Draper-dependent activation of MMP-1 as a novel cascade required for proper glial clearance of severed axons.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Metaloproteinase 1 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Transdução de Sinais , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Fatores de Transcrição STAT/metabolismo , Análise de Sequência de RNA , Fator de Transcrição AP-1/metabolismo
13.
Nat Commun ; 7: 12871, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27647497

RESUMO

Advanced age is the greatest risk factor for neurodegenerative disorders, but the mechanisms that render the senescent brain vulnerable to disease are unclear. Glial immune responses provide neuroprotection in a variety of contexts. Thus, we explored how glial responses to neurodegeneration are altered with age. Here we show that glia-axon phagocytic interactions change dramatically in the aged Drosophila brain. Aged glia clear degenerating axons slowly due to low phosphoinositide-3-kinase (PI3K) signalling and, subsequently, reduced expression of the conserved phagocytic receptor Draper/MEGF10. Importantly, boosting PI3K/Draper activity in aged glia significantly reverses slow phagocytic responses. Moreover, several hours post axotomy, early hallmarks of Wallerian degeneration (WD) are delayed in aged flies. We propose that slow clearance of degenerating axons is mechanistically twofold, resulting from deferred initiation of axonal WD and reduced PI3K/Draper-dependent glial phagocytic function. Interventions that boost glial engulfment activity, however, can substantially reverse delayed clearance of damaged neuronal debris.


Assuntos
Envelhecimento/fisiologia , Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Proteínas de Membrana/metabolismo , Neuroglia/fisiologia , Animais , Axotomia , Proteínas de Drosophila/genética , Proteínas de Membrana/genética , Fagocitose , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
Cell Rep ; 16(7): 1838-50, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498858

RESUMO

Neuronal injury triggers robust responses from glial cells, including altered gene expression and enhanced phagocytic activity to ensure prompt removal of damaged neurons. The molecular underpinnings of glial responses to trauma remain unclear. Here, we find that the evolutionarily conserved insulin-like signaling (ILS) pathway promotes glial phagocytic clearance of degenerating axons in adult Drosophila. We find that the insulin-like receptor (InR) and downstream effector Akt1 are acutely activated in local ensheathing glia after axotomy and are required for proper clearance of axonal debris. InR/Akt1 activity, it is also essential for injury-induced activation of STAT92E and its transcriptional target draper, which encodes a conserved receptor essential for glial engulfment of degenerating axons. Increasing Draper levels in adult glia partially rescues delayed clearance of severed axons in glial InR-inhibited flies. We propose that ILS functions as a key post-injury communication relay to activate glial responses, including phagocytic activity.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Insulina/metabolismo , Proteínas de Membrana/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores Proteína Tirosina Quinases/genética , Animais , Axotomia , Comunicação Celular , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Neuroglia/citologia , Neurônios/patologia , Nervo Olfatório/cirurgia , Fagocitose , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/deficiência , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
15.
Nat Neurosci ; 15(5): 722-30, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426252

RESUMO

Neuronal injury elicits potent cellular responses from glia, but molecular pathways modulating glial activation, phagocytic function and termination of reactive responses remain poorly defined. Here we show that positive or negative regulation of glial responses to axon injury is molecularly encoded by unique isoforms of the Drosophila melanogaster engulfment receptor Draper. Draper-I promotes engulfment of axonal debris through an immunoreceptor tyrosine-based activation motif (ITAM). In contrast, Draper-II, an alternative splice variant, potently inhibits glial engulfment function. Draper-II suppresses Draper-I signaling through a previously undescribed immunoreceptor tyrosine-based inhibitory motif (ITIM)-like domain and the tyrosine phosphatase Corkscrew (Csw). Intriguingly, loss of Draper-II-Csw signaling prolongs expression of glial engulfment genes after axotomy and reduces the ability of glia to respond to secondary axotomy. Our work highlights a novel role for Draper-II in inhibiting glial responses to neurodegeneration, and indicates that a balance of opposing Draper-I and Draper-II signaling events is essential to maintain glial sensitivity to brain injury.


Assuntos
Axônios/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Degeneração Neural/metabolismo , Neuroglia/fisiologia , Neurônios/citologia , Animais , Animais Geneticamente Modificados , Apoptose/genética , Apoptose/fisiologia , Axotomia , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Proteínas de Membrana/genética , Neuroglia/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/lesões , Fagocitose/genética , Fagocitose/fisiologia , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Interferência de RNA/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
16.
PLoS One ; 4(10): e7564, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19855837

RESUMO

Nuclear intermediate filament proteins, called lamins, form a meshwork that lines the inner surface of the nuclear envelope. Lamins contain three domains: an N-terminal head, a central rod and a C-terminal tail domain possessing an Ig-fold structural motif. Lamins are classified as either A- or B-type based on structure and expression pattern. The Drosophila genome possesses two genes encoding lamins, Lamin C and lamin Dm(0), which have been designated A- and B-type, respectively, based on their expression profile and structural features. In humans, mutations in the gene encoding A-type lamins are associated with a spectrum of predominantly tissue-specific diseases known as laminopathies. Linking the disease phenotypes to cellular functions of lamins has been a major challenge. Drosophila is being used as a model system to identify the roles of lamins in development. Towards this end, we performed a comparative study of Drosophila and human A-type lamins. Analysis of transgenic flies showed that human lamins localize predictably within the Drosophila nucleus. Consistent with this finding, yeast two-hybrid data demonstrated conservation of partner-protein interactions. Drosophila lacking A-type lamin show nuclear envelope defects similar to those observed with human laminopathies. Expression of mutant forms of the A-type Drosophila lamin modeled after human disease-causing amino acid substitutions revealed an essential role for the N-terminal head and the Ig-fold in larval muscle tissue. This tissue-restricted sensitivity suggests a conserved role for lamins in muscle biology. In conclusion, we show that (1) localization of A-type lamins and protein-partner interactions are conserved between Drosophila and humans, (2) loss of the Drosophila A-type lamin causes nuclear defects and (3) muscle tissue is sensitive to the expression of mutant forms of A-type lamin modeled after those causing disease in humans. These studies provide new insights on the role of lamins in nuclear biology and support Drosophila as a model for studies of human laminopathies involving muscle dysfunction.


Assuntos
Lamina Tipo A/química , Lamina Tipo A/genética , Animais , Animais Geneticamente Modificados , Núcleo Celular/metabolismo , Drosophila melanogaster , Regulação da Expressão Gênica , Humanos , Lamina Tipo A/biossíntese , Lamina Tipo A/metabolismo , Músculos/patologia , Mutação , Membrana Nuclear/metabolismo , Distribuição Tecidual , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA