Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Res ; 208: 112639, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34995545

RESUMO

Boron (B) industry and consuming produce large amounts of B-containing wastewater. Low tolerance of microorganisms and plants resulted in the biological removal of B was limited. Microalgae show high adaptability in adverse environments. Whether microalgae able to be utilized in B removal meanwhile produce bioresources, and the B tolerant mechanisms and regulation pathway of microalgae are unclear. In this study, the cell growth, B removal, and lipid/starch production of Chlorella regularis under different levels of B stress (0.5, 10, 25, and 50 mg/L) were examined. The mechanisms of signal perception and response were explored by transcriptome and network analysis. Microalgae tolerated 25 mg/L high B stress, cell growth showed no decline and biomass reach up to 4.5 g/L. Microalgae took in B with 3.35 mg/g and bonded them to protein and carbon components in cells, the B removal capability was higher than some special adsorbents. Microalgae produced 188.65 mg/(L∙d) lipids and 305.35 mg/(L∙d) starch. The mitogen-activated protein-kinase signaling pathway was involved in the B tolerance of microalgae and regulated B efflux, glycolysis, and lipid/starch accumulation to relieve B stress. This study provides potential biological technique for B removal in wastewater and promotes new insight into signal role in toxic pollutants biological treatment.


Assuntos
Chlorella , Microalgas , Biomassa , Boro/metabolismo , Boro/toxicidade , Chlorella/metabolismo , Lipídeos , Microalgas/metabolismo , Águas Residuárias
2.
Biotechnol Lett ; 43(9): 1831-1844, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34176028

RESUMO

OBJECTIVES: Heparosan is used as the starting polysaccharide sulfated using sulfotransferase to generate fully elaborate heparin, a widely used clinical drug. However, the preparation of heparosan and enzymes was considered tedious since such material must be prepared in separate fermentation batches. In this study, a commonly admitted probiotic, Escherichia coli strain Nissle 1917 (EcN), was engineered to intracellularly express sulfotransferases and, simultaneously, secreting heparosan into the culture medium. RESULTS: The engineered strain EcN::T7M, carrying the λDE3 region of BL21(DE3) encoding T7 RNA polymerase, expressed the sulfotransferase domain (NST) of human N-deacetylase/N-sulfotransferase-1 (NDST-1) and the catalytic domain of mouse 3-O-sulfotransferase-1 (3-OST-1) in a flask. The fed-batch fermentation of EcN::T7M carrying the plasmid expressing NST was carried out, which brought the yield of NST to 0.21 g/L and the yield of heparosan to 0.85 g/L, respectively. Furthermore, the heparosan was purified, characterized by 1H nuclear magnetic resonance (NMR), and sulfated by NST using 3'-phosphoadenosine-5'-phosphosulfate (PAPS) as the sulfo donor. The analysis of element composition showed that over 80% of disaccharide repeats of heparosan were N-sulfated. CONCLUSIONS: These results indicate that EcN::T7M is capable of preparing sulfotransferase and heparosan at the same time. The EcN::T7M strain is also a suitable host for expressing exogenous proteins driven by tac promoter and T7 promoter.


Assuntos
Dissacarídeos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Heparina/metabolismo , Sulfotransferases/genética , Animais , Técnicas de Cultura Celular por Lotes , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Engenharia Genética , Humanos , Camundongos , Domínios Proteicos , Sulfotransferases/química , Sulfotransferases/metabolismo
3.
Environ Sci Pollut Res Int ; 30(23): 64221-64232, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37061638

RESUMO

Hydrothermal carbonization process via converting invasive plants into functional materials may provide a novel strategy to comprehensively control and utilized the exotic invasive plants. In this study, Eupatorium adenophorum was utilized to fabricate the hydrochar via hydrothermal carbonization process, which was further applied to remove Cd(II). The results showed that the hydrochar was a mesoporous material with abundant O-containing functional groups (OFPs) on the surface. The adsorption isotherms were fitted by both the Langmuir and Freundlich models, and the maximum adsorption amount achieved 24.53 mg/g. The adsorption dynamics were governed by surface adsorption and film diffusion. pH and ionic strength can exert a strong influence on the adsorption efficiency. The mechanisms on the adsorption of Cd(II) on the hydrochar concluded the pore-filling effects, electrostatic interactions, ion exchange, precipitation, coordination with π electrons, and surface complexation with the OFPs, such as hydroxyl, carboxylic, phenol, acetyl, and ester groups. Thus, hydrothermal carbonization process may provide a promising technique to fabricate the hydrocar for the treatment of Cd(II), which may facilitate comprehensive control of invasive plants and boost to the carbon neutrality.


Assuntos
Cádmio , Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Cádmio/química , Carbono , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/análise , Espécies Introduzidas
4.
Adv Mater ; : e2300413, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36905683

RESUMO

Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.

5.
Adv Healthc Mater ; 11(8): e2200027, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35037731

RESUMO

Micropores are essential for tissue engineering to ensure adequate mass transportation for embedded cells. Despite the considerable progress made by advanced 3D bioprinting technologies, it remains challenging to engineer micropores of 100 µm or smaller in cell-laden constructs. Here, a microgel-templated porogel (MTP) bioink platform is reported to introduce controlled microporosity in 3D bioprinted hydrogels in the presence of living cells. Templated gelatin microgels are fabricated with varied sizes (≈10, ≈45, and ≈100 µm) and mixed with photo-crosslinkable formulations to make composite MTP bioinks. The addition of microgels significantly enhances the shear-thinning and self-healing viscoelastic properties and thus the printability of bioinks with cell densities up to 1 × 108 mL-1 in matrix. Consistent printability is achieved for a series of MTP bioinks based on different component ratios and matrix materials. After photo-crosslinking the matrix phase, the templated microgels dissociated and diffused under physiological conditions, resulting in corresponding micropores in situ. When embedding osteoblast-like cells in the matrix phase, the MTP bioinks support higher metabolic activity and more uniform mineral formation than bulk gel controls. The approach provides a facile strategy to engineer precise micropores in 3D printed structures to compensate for the limited resolution of current bioprinting approaches.


Assuntos
Bioimpressão , Microgéis , Bioimpressão/métodos , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
6.
Huan Jing Ke Xue ; 42(3): 1185-1190, 2021 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-33742915

RESUMO

An incubation experiment was conducted to explore the influence of 30% water holding capacity (WHC), flooding, and alternate dry-wet conditions on changes in heavy metal fractions with 1% rice straw biochar in Pb and Cd co-contaminated paddy soils, to provide a scientific basis for a water regime of biochar remediation on heavy metal contaminated paddy soil. Results showed that flooding and alternating wet-dry conditions could significantly increase soil pH, the contents of dissolved organic carbon (DOC), and amorphous iron oxide (Feo) after adding biochar. Compared with a 30% WHC treatment, when the soil is flooded and alternating wet-dry conditions, the content of the TCLP extractable Pb decreased by 31.87% and 20.33%, respectively, and the content of the TCLP extraction Cd decreased by 25.29% and 16.07%, respectively. Under flooding, the acid soluble Pb and Cd content decreased by 24.78% and 20.14%, respectively, and the acid soluble Cd content decreased over time. The decreasing order of available Pb and Cd content was flooding > alternating dry-wet > 30% WHC. Correlation analysis results showed that soil pH and Feo have significant negative correlation with available heavy metals, which means flooding with biochar could effectively immobilize Pb and Cd by increasing soil pH and Feo content. Flooding and biochar have a synergistic interaction on promoting the transformation of Pb and Cd to more stable fractions in acidic co-contaminated heavy metal polluted paddy soil.

7.
Adv Mater ; 32(48): e2003598, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33103807

RESUMO

Uncontrolled inflammation is a major pathological factor underlying a range of diseases including autoimmune conditions, cardiovascular disease, and cancer. Improving localized delivery of immunosuppressive drugs to inflamed tissue in a non-invasive manner offers significant promise to reduce severe side effects caused by systemic administration. Here, a neutrophil-mediated delivery system able to transport drug-loaded nanocarriers to inflamed tissue by exploiting the inherent ability of neutrophils to migrate to inflammatory tissue is reported. This hybrid system (neutrophils loaded with liposomes ex vivo) efficiently migrates in vitro following an inflammatory chemokine gradient. Furthermore, the triggered release of loaded liposomes and reuptake by target macrophages is studied. The migratory behavior of liposome-loaded neutrophils is confirmed in vivo by demonstrating the delivery of drug-loaded liposomes to an inflamed skeletal muscle in mice. A single low-dose injection of the hybrid system locally reduces inflammatory cytokine levels. Biodistribution of liposome-loaded neutrophils in a human-disease-relevant myocardial ischemia reperfusion injury mouse model after i.v. injection confirms the ability of injected neutrophils to carry loaded liposomes to inflammation sites. This strategy shows the potential of nanocarrier-loaded neutrophils as a universal platform to deliver anti-inflammatory drugs to promote tissue regeneration in inflammatory diseases.


Assuntos
Músculo Esquelético/metabolismo , Isquemia Miocárdica/metabolismo , Neutrófilos/metabolismo , Animais , Humanos , Inflamação/metabolismo , Lipossomos , Camundongos
8.
ACS Nano ; 14(5): 5711-5727, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32267667

RESUMO

Self-amplifying RNA (saRNA) vaccines are highly advantageous, as they result in enhanced protein expression compared to mRNA (mRNA), thus minimizing the required dose. However, previous delivery strategies were optimized for siRNA or mRNA and do not necessarily deliver saRNA efficiently due to structural differences of these RNAs, thus motivating the development of saRNA delivery platforms. Here, we engineer a bioreducible, linear, cationic polymer called "pABOL" for saRNA delivery and show that increasing its molecular weight enhances delivery both in vitro and in vivo. We demonstrate that pABOL enhances protein expression and cellular uptake via both intramuscular and intradermal injection compared to commercially available polymers in vivo and that intramuscular injection confers complete protection against influenza challenge. Due to the scalability of polymer synthesis and ease of formulation preparation, we anticipate that this polymer is highly clinically translatable as a delivery vehicle for saRNA for both vaccines and therapeutics.


Assuntos
Polímeros , Cátions , Peso Molecular , RNA Mensageiro , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA