Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 513
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(4): 1081-1097.e19, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606978

RESUMO

Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.


Assuntos
Dano ao DNA , Edição de Genes , Testes Genéticos , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Camptotecina/farmacologia , Linhagem Celular , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Humanos , Mutação/genética , Fenótipo , Ligação Proteica , Domínios Proteicos , RNA Guia de Cinetoplastídeos/genética , Inibidores da Topoisomerase/farmacologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
J Biol Chem ; 299(8): 104988, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392847

RESUMO

Topoisomerases are enzymes that relax DNA supercoiling during replication and transcription. Camptothecin, a topoisomerase 1 (TOP1) inhibitor, and its analogs trap TOP1 at the 3'-end of DNA as a DNA-bound intermediate, resulting in DNA damage that can kill cells. Drugs with this mechanism of action are widely used to treat cancers. It has previously been shown that tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs TOP1-induced DNA damage generated by camptothecin. In addition, tyrosyl-DNA phosphodiesterase 2 (TDP2) plays critical roles in repairing topoisomerase 2 (TOP2)-induced DNA damage at the 5'-end of DNA and in promoting the repair of TOP1-induced DNA damage in the absence of TDP1. However, the catalytic mechanism by which TDP2 processes TOP1-induced DNA damage has not been elucidated. In this study, we found that a similar catalytic mechanism underlies the repair of TOP1- and TOP2-induced DNA damage by TDP2, with Mg2+-TDP2 binding playing a role in both repair mechanisms. We show chain-terminating nucleoside analogs are incorporated into DNA at the 3'-end and abort DNA replication to kill cells. Furthermore, we found that Mg2+-TDP2 binding also contributes to the repair of incorporated chain-terminating nucleoside analogs. Overall, these findings reveal the role played by Mg2+-TDP2 binding in the repair of both 3'- and 5'-blocking DNA damage.


Assuntos
Proteínas de Ligação a DNA , Magnésio , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Magnésio/metabolismo , Nucleosídeos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Dano ao DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase , Camptotecina/farmacologia , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA , Reparo do DNA
3.
Mol Carcinog ; 63(4): 742-756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270247

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) significantly contributes to drug resistance of cancer cells, and Nrf2 inhibitors have been vigorously pursued. Repurposing of existing drugs, especially anticancer drugs, is a straightforward and promising strategy to find clinically available Nrf2 inhibitors and effective drug combinations. Topoisomerase inhibitors SN-38 (an active metabolite of irinotecan), topotecan, mitoxantrone, and epirubicin were found to significantly suppress Nrf2 transcriptional activity in cancer cells. SN-38, the most potent one among them, significantly inhibited the transcription of Nrf2, as indicated by decreased mRNA level and binding of RNA polymerase II to NFE2L2 gene, while no impact on Nrf2 protein or mRNA degradation was observed. SN-38 synergized with Nrf2-sensitive anticancer drugs such as mitomycin C in killing colorectal cancer cells, and irinotecan and mitomycin C synergistically inhibited the growth of SW480 xenografts in nude mice. Our study identified SN-38 and three other topoisomerase inhibitors as Nrf2 inhibitors, revealed the Nrf2-inhibitory mechanism of SN-38, and indicate that clinically feasible drug combinations could be designed based on their interactions with Nrf2 signaling.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Camundongos , Humanos , Irinotecano/farmacologia , Camptotecina/farmacologia , Mitomicina/farmacologia , Camundongos Nus , Fator 2 Relacionado a NF-E2/genética , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Inibidores da Topoisomerase/farmacologia , Combinação de Medicamentos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
4.
Bioorg Med Chem Lett ; 111: 129911, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067715

RESUMO

Bacterial DNA gyrase and topoisomerase IV inhibition has emerged as a promising strategy for the cure of infections caused by antibiotic-resistant bacteria. The Novel Bacterial Topoisomerase Inhibitors (NBTIs) bind to a different site from that of the quinolones with novel mechanism of action. This evades the existing target-mediated bacterial resistance associated with quinolones. This article presents our efforts to identify in vitro potent and broad-spectrum antibacterial agent 4l.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Piperidinas , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Piperidinas/química , Piperidinas/farmacologia , Piperidinas/síntese química , Relação Estrutura-Atividade , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/síntese química , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Humanos
5.
J Nat Prod ; 87(2): 238-251, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38354306

RESUMO

Xanthone-chromanone homo- or heterodimers are regarded as a novel class of topoisomerase (Topo) inhibitors; however, limited information about these compounds is currently available. Here, 14 new (1-14) and 6 known tetrahydroxanthone chromanone homo- and heterodimers (15-20) are reported as isolated from Penicillium chrysogenum C-7-2-1. Their structures and absolute configurations were unambiguously demonstrated by a combination of spectroscopic data, single-crystal X-ray diffraction, modified Mosher's method, and electronic circular dichroism analyses. Plausible biosynthetic pathways are proposed. For the first time, it was discovered that tetrahydroxanthones can convert to chromanones in water, whereas chromone dimerization does not show this property. Among them, compounds 5, 7, 8, and 16 exhibited significant cytotoxicity against H23 cell line with IC50 values of 6.9, 6.4, 3.9, and 2.6 µM, respectively.


Assuntos
Antineoplásicos , Cromonas , Penicillium chrysogenum , Penicillium , Xantonas , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores da Topoisomerase , Xantonas/farmacologia , Xantonas/química , Penicillium/química
6.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930955

RESUMO

The CRISPR-Cas9 system has emerged as the most prevalent gene editing technology due to its simplicity, high efficiency, and low cost. However, the homology-directed repair (HDR)-mediated gene knock-in in this system suffers from low efficiency, which limits its application in animal model preparation, gene therapy, and agricultural genetic improvement. Here, we report the design and optimization of a simple and efficient reporter-based assay to visualize and quantify HDR efficiency. Through random screening of a small molecule compound library, two groups of compounds, including the topoisomerase inhibitors and PIM1 kinase inhibitors, have been identified to promote HDR. Two representative compounds, etoposide and quercetagetin, also significantly enhance the efficiency of CRISPR-Cas9 and HDR-mediated gene knock-in in mouse embryos. Our study not only provides an assay to screen compounds that may facilitate HDR but also identifies useful tool compounds to facilitate the construction of genetically modified animal models with the CRISPR-Cas9 system.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Edição de Genes/métodos , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores da Topoisomerase/farmacologia , Humanos , Reparo de DNA por Recombinação/efeitos dos fármacos , Técnicas de Introdução de Genes
7.
Antimicrob Agents Chemother ; 67(10): e0048223, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37724886

RESUMO

Antimicrobial resistance has made a sizeable impact on public health and continues to threaten the effectiveness of antibacterial therapies. Novel bacterial topoisomerase inhibitors (NBTIs) are a promising class of antibacterial agents with a unique binding mode and distinct pharmacology that enables them to evade existing resistance mechanisms. The clinical development of NBTIs has been plagued by several issues, including cardiovascular safety. Herein, we report a sub-series of tricyclic NBTIs bearing an amide linkage that displays promising antibacterial activity, potent dual-target inhibition of DNA gyrase and topoisomerase IV (TopoIV), as well as improved cardiovascular safety and metabolic profiles. These amide NBTIs induced both single- and double-strand breaks in pBR322 DNA mediated by Staphylococcus aureus DNA gyrase, in contrast to prototypical NBTIs that cause only single-strand breaks. Unexpectedly, amides 1a and 1b targeted human topoisomerase IIα (TOP2α) causing both single- and double-strand breaks in pBR322 DNA, and induced DNA strand breaks in intact human leukemia K562 cells. In addition, anticancer drug-resistant K/VP.5 cells containing decreased levels of TOP2α were cross-resistant to amides 1a and 1b. Together, these results demonstrate broad spectrum antibacterial properties of selected tricyclic NBTIs, desirable safety profiles, an unusual ability to induce DNA double-stranded breaks, and activity against human TOP2α. Future work will be directed toward optimization and development of tricyclic NBTIs with potent and selective activity against bacteria. Finally, the current results may provide an additional avenue for development of selective anticancer agents.


Assuntos
DNA Girase , Inibidores da Topoisomerase , Humanos , Inibidores da Topoisomerase/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/metabolismo , DNA , Amidas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Testes de Sensibilidade Microbiana
8.
Antimicrob Agents Chemother ; 67(4): e0163922, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36951560

RESUMO

Antibiotic tolerant bacteria and persistent cells that remain alive after a course of antibiotic treatment can foster the chronicity of infections and the development of antibiotic resistance. Elucidating how bacteria overcome antibiotic action and devising strategies to bolster a new drug's activity can allow us to preserve our antibiotic arsenal. Here, we investigate strategies to potentiate the activities of topoisomerase inhibitors against nongrowing Escherichia coli that are often recalcitrant to existing antibiotics. We focus on sensitizing bacteria to the fluoroquinolone (FQ) levofloxacin (Levo) and to the spiropyrimidinetrione zoliflodacin (Zoli)-the first antibiotic in its class of compounds in clinical development. We found that metabolic stimulation either alone or in combination with inhibiting the AcrAB-TolC efflux pump sensitized stationary-phase E. coli to Levo and Zoli. We demonstrate that the added metabolites increased proton motive force generation and ATP production in stationary-phase cultures without restarting growth. Instead, the stimulated bacteria increased transcription and translation, which rendered the populations more susceptible to topoisomerase inhibitors. Our findings illuminate potential vulnerabilities of antibiotic-tolerant bacteria that can be leveraged to sensitize them to new and existing classes of topoisomerase inhibitors. These approaches enable us to stay one step ahead of adaptive bacteria and safeguard the efficacy of our existing antibiotics.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Fluoroquinolonas/farmacologia , Fluoroquinolonas/metabolismo , Inibidores da Topoisomerase/farmacologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bactérias
9.
Nat Rev Mol Cell Biol ; 12(12): 827-41, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22108601

RESUMO

Topoisomerases are complex molecular machines that modulate DNA topology to maintain chromosome superstructure and integrity. Although capable of stand-alone activity in vitro, topoisomerases are frequently linked to larger pathways and systems that resolve specific DNA superstructures and intermediates arising from cellular processes such as DNA repair, transcription, replication and chromosome compaction. Topoisomerase activity is indispensible to cells, but requires the transient breakage of DNA strands. This property has been exploited, often for significant clinical benefit, by various exogenous agents that interfere with cell proliferation. Despite decades of study, surprising findings involving topoisomerases continue to emerge with respect to their cellular function, regulation and utility as therapeutic targets.


Assuntos
DNA Topoisomerases/metabolismo , Animais , Segregação de Cromossomos , DNA/química , DNA/metabolismo , Replicação do DNA , DNA Topoisomerases/química , Regulação da Expressão Gênica , Humanos , Inibidores da Topoisomerase/uso terapêutico
10.
Cell Mol Biol (Noisy-le-grand) ; 69(15): 217-222, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38279438

RESUMO

IgG4-related sialadenitis is a systemic autoimmune disease that can lead to fibro-inflammatory conditions. This study aims to investigate the immune microenvironment and potential signaling pathways associated with IgG4-related sialadenitis. Datasets related to IgG4-related sialadenitis were retrieved from the GEO database. Immune cell infiltration analysis was conducted using the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) method. Differentially immune-related expressed genes (DIEG) and immune-related functional enrichment were identified. Moreover, potential treatment targets for IgG4-related sialadenitis were predicted using The Connectivity Map. Only two datasets from GEO were included for further analysis. The CIBERSORT results indicated dominant immune cell populations in IgG4-related sialadenitis, including CD8+ T cells, resting NK cells, monocytes, and naïve B cells in peripheral blood mononuclear cells. Additionally, high abundance of plasma cells was observed in labial salivary gland tissues. Furthermore, a total of 42 DIEGs were identified, with tumor necrosis factor (TNF) signaling via the NF-Kappa B signaling pathway and the p53 signaling pathway being highly enriched. Autophagy inhibitors and DNA topoisomerase inhibitors were strongly associated with potential targets for the treatment of IgG4-related sialadenitis (P<0.05). This study reveals altered immune microenvironment in peripheral blood mononuclear cells and labial salivary gland tissues in IgG4-related sialadenitis. Autophagy inhibitors and DNA topoisomerase inhibitors show promise as potential targets for treating IgG4-related sialadenitis, providing a novel therapeutic strategy for this disease.


Assuntos
Imunoglobulina G , Sialadenite , Humanos , Leucócitos Mononucleares/patologia , Sialadenite/tratamento farmacológico , Sialadenite/patologia , Plasmócitos , Inibidores da Topoisomerase/uso terapêutico
11.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834037

RESUMO

Topoisomerases are interesting targets in cancer chemotherapy. Here, we describe the design and synthesis of a novel copper(II) indenoisoquinoline complex, WN198. The new organometallic compound exhibits a cytotoxic effect on five adenocarcinoma cell lines (MCF-7, MDA-MB-231, HeLa, HT-29, and DU-145) with the lowest IC50 (0.37 ± 0.04 µM) for the triple-negative MDA-MB-231 breast cancer cell line. Below 5 µM, WN198 was ineffective on non-tumorigenic epithelial breast MCF-10A cells and Xenopus oocyte G2/M transition or embryonic development. Moreover, cancer cell lines showed autophagy markers including Beclin-1 accumulation and LC3-II formation. The DNA interaction of this new compound was evaluated and the dose-dependent topoisomerase I activity starting at 1 µM was confirmed using in vitro tests and has intercalation properties into DNA shown by melting curves and fluorescence measurements. Molecular modeling showed that the main interaction occurs with the aromatic ring but copper stabilizes the molecule before binding and so can putatively increase the potency as well. In this way, copper-derived indenoisoquinoline topoisomerase I inhibitor WN198 is a promising antitumorigenic agent for the development of future DNA-damaging treatments.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase I , Humanos , Inibidores da Topoisomerase I/farmacologia , Cobre/farmacologia , Proliferação de Células , Inibidores da Topoisomerase/farmacologia , Antineoplásicos/química , DNA/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Apoptose
12.
Antimicrob Agents Chemother ; 66(1): e0126321, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633853

RESUMO

Gepotidacin is a novel, first-in-class triazaacenaphthylene antibiotic that may provide a new treatment option for antibiotic-resistant pathogens. Two pharmacokinetic evaluations of oral gepotidacin are presented: a relative bioavailability study that guided formulation development, followed by an adult and adolescent study of the final formulation. In the relative bioavailability study, after gepotidacin administration to 26 healthy adults as free-base roller-compacted (RC) tablets, free-base high-shear wet granulation (HSWG) tablets, and mesylate salt reference capsules, the RC tablet exposure ratios and 90% confidence intervals (CIs) were within the 0.80-to-1.25 confidence bounds; however, the HSWG tablet maximum observed concentration (Cmax) was higher than the reference (ratio, 1.15; 90% CI, 1.0113, 1.3047). In the healthy adult (n = 16) and adolescent (n = 17) study, a gepotidacin mesylate salt tablet was evaluated as a 1,500-mg single dose or 2 doses administered 6 or 12 h apart (6,000 mg total), or placebo was administered. The single-dose mean Cmax was ∼27% higher in adolescents than in adults, and area under the concentration-time curve (AUC) values were comparable in both populations. After 2 doses were administered, the mean Cmax values were similar for both age groups, and the mean AUC was ∼35% higher in adolescents than in adults. Concentrations increased proportionally with dose. Safety-risk profiles were similar for both age groups. Across studies, the most common adverse events were gastrointestinal. Overall, the pharmacokinetics of the final gepotidacin mesylate salt tablet have been well characterized, enrollment of adolescents into the pivotal trials is supported, and dosing intervals were determined that should provide adequate exposures for microbiological efficacy. (This study has been registered at ClinicalTrials.gov under identifiers NCT02853435 and NCT04079790.).


Assuntos
Acenaftenos , Inibidores da Topoisomerase , Acenaftenos/farmacocinética , Administração Oral , Adolescente , Adulto , Área Sob a Curva , Disponibilidade Biológica , Estudos Cross-Over , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Humanos , Comprimidos
13.
Bioorg Med Chem Lett ; 65: 128648, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231579

RESUMO

There is an increasingly urgent and unmet medical need for novel antibiotic drugs that tackle infections caused by multidrug-resistant (MDR) pathogens. Novel bacterial type II topoisomerase inhibitors (NBTIs) are of high interest due to limited cross-resistance with fluoroquinolones, however analogues with Gram-negative activity often suffer from hERG channel inhibition. A novel series of bicyclic-oxazolidinone inhibitors of bacterial type II topoisomerase were identified which display potent broad-spectrum anti-bacterial activity, including against MDR strains, along with an encouraging in vitro safety profile. In vivo proof of concept was achieved in a A. baumannii mouse thigh infection model.


Assuntos
Oxazolidinonas , Inibidores da Topoisomerase , Animais , Antibacterianos/farmacologia , DNA Girase/metabolismo , Fluoroquinolonas/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Oxazolidinonas/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase/farmacologia
14.
Bioorg Med Chem Lett ; 75: 128808, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35609741

RESUMO

Novel bacterial topoisomerase inhibitors (NBTIs) are the newest members of gyrase inhibitor broad-spectrum antibacterial agents, represented by the most advanced member, gepotidacin, a 4-amino-piperidine linked NBTI, which is undergoing phase III clinical trials for treatment of urinary tract infections (UTI). We have extensively reported studies on oxabicyclooctane linked NBTIs, including AM-8722. The present study summarizes structure activity relationship (SAR) of AM-8722 leading to identification of 7-fluoro-1-cyanomethyl-1,5-naphthyridin-2-one based NBTI (16, AM-8888) with improved potency and spectrum (MIC values of 0.016-4 µg/mL), with Pseudomonas aeruginosa being the least sensitive strain (MIC 4 µg/mL).


Assuntos
Antibacterianos , Inibidores da Topoisomerase , Antibacterianos/química , Antibacterianos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV , Testes de Sensibilidade Microbiana , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Tioinosina/análogos & derivados , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/farmacologia
15.
J Enzyme Inhib Med Chem ; 37(1): 1404-1410, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35603503

RESUMO

Nature has been always a great source of possible lead compounds to develop new drugs against several diseases. Here we report the identification of a natural compound, membranoid G, derived from the Antarctic sponge Dendrilla antarctica displaying an in vitro inhibitory activity against human DNA topoisomerase 1B. The experiments indicate that membranoid G, when pre-incubated with the enzyme, strongly and irreversibly inhibits the relaxation of supercoiled DNA. This compound completely inhibits the cleavage step of the enzyme catalytic mechanism by preventing protein binding to the DNA. Membranoid G displays also a cytotoxic effect on tumour cell lines, suggesting its use as a possible lead compound to develop new anticancer drugs.


Assuntos
Antineoplásicos , Neoplasias , Regiões Antárticas , Antineoplásicos/química , Antineoplásicos/farmacologia , DNA/química , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Humanos , Inibidores da Topoisomerase
16.
Drug Dev Res ; 83(8): 1822-1830, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173896

RESUMO

Ricolinostat has been found to exhibit anticancer effects alone and in combination with various chemotherapeutic drugs in several cancer types. However, to the best of our knowledge, the efficacy of ricolinostat in cervical cancer is still not investigated. Therefore, in this study, we evaluated the effect of ricolinostat in cervical cancer alone and in combination with topoisomerase inhibitors. The effect of ricolinostat on cervical cancer cells was assessed using MTT, cell-cycle arrest, Annexin V/PI staining assay, reactive oxygen species (ROS) measurement, and western blot analysis. The antiproliferative effect of ricolinostat in combination with topoisomerase inhibitors was assessed using the MTT assay and synergism was computed using "CompuSyn" software. We found that ricolinostat inhibited proliferation, and induced G2/M phase arrest and apoptosis in cervical cancer cells. We further found that ricolinostat treatment resulted in increased ROS production, decreased Bcl-xL expression, and induced p21 expression. We also investigated the effect of ricolinostat in combination with topotecan and etoposide in cervical cancer cells. Ricolinostat was found to significantly enhance the antiproliferative activity of both, topotecan and etoposide, in cervical cancer cells in a concentration-dependent manner. In conclusion, our study showed that ricolinostat suppressed proliferation by inducing G2/M phase arrest and promoted apoptosis in cervical cancer cells, indicating that ricolinostat may be a promising antitumor agent in cervical cancer. Also, ricolinostat and topotecan/etoposide combination are synergistic in cervical cancer cells.


Assuntos
Inibidores da Topoisomerase , Neoplasias do Colo do Útero , Feminino , Humanos , Inibidores da Topoisomerase/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Topotecan/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Etoposídeo/farmacologia , Apoptose , Proliferação de Células , Linhagem Celular Tumoral
17.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232843

RESUMO

Topoisomerases are essential enzymes that recognize and modify the topology of DNA to allow DNA replication and transcription to take place. Topoisomerases are divided into type I topoisomerases, that cleave one DNA strand to modify DNA topology, and type II, that cleave both DNA strands. Topoisomerases normally rapidly religate cleaved-DNA once the topology has been modified. Topoisomerases do not recognize specific DNA sequences, but actively cleave positively supercoiled DNA ahead of transcription bubbles or replication forks, and negative supercoils (or precatenanes) behind, thus allowing the unwinding of the DNA-helix to proceed (during both transcription and replication). Drugs that stabilize DNA-cleavage complexes with topoisomerases produce cytotoxic DNA damage and kill fast-dividing cells; they are widely used in cancer chemotherapy. Oligonucleotide-recognizing topoisomerase inhibitors (OTIs) have given drugs that stabilize DNA-cleavage complexes specificity by linking them to either: (i) DNA duplex recognizing triplex forming oligonucleotide (TFO-OTIs) or DNA duplex recognizing pyrrole-imidazole-polyamides (PIP-OTIs) (ii) or by conventional Watson-Crick base pairing (WC-OTIs). This converts compounds from indiscriminate DNA-damaging drugs to highly specific targeted DNA-cleaving OTIs. Herein we propose simple strategies to enable DNA-duplex strand invasion of WC-OTIs giving strand-invading SI-OTIs. This will make SI-OTIs similar to the guide RNAs of CRISPR/Cas9 nuclease bacterial immune systems. However, an important difference between OTIs and CRISPR/Cas9, is that OTIs do not require the introduction of foreign proteins into cells. Recent successful oligonucleotide therapeutics for neurodegenerative diseases suggest that OTIs can be developed to be highly specific gene editing agents for DNA lesions that cause neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Oligonucleotídeos , DNA/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Super-Helicoidal , Humanos , Imidazóis , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Nylons , Oligonucleotídeos/química , Pirróis , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/uso terapêutico
18.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142413

RESUMO

Although ovarian cancer is a rare disease, it constitutes the fifth leading cause of cancer death among women. It is of major importance to develop new therapeutic strategies to improve survival. Combining P8-D6, a novel dual topoisomerase inhibitor with exceptional anti-tumoral properties in ovarian cancer and compounds in preclinical research, and olaparib, a PARP inhibitor targeting DNA damage repair, is a promising approach. P8-D6 induces DNA damage that can be repaired by base excision repair or homologous recombination in which PARP plays a major role. This study analyzed benefits of combining P8-D6 and olaparib treatment in 2D and 3D cultures with ovarian cancer cells. Measurement of viability, cytotoxicity and caspase activity were used to assess therapy efficacy and to calculate the combination index (CI). Further DNA damage was quantified using the biomarkers RAD51 and γH2A.X. The combinational treatment led to an increased caspase activity and reduced viability. CI values partially show synergisms in combinations at 100 nM and 500 nM P8-D6. More DNA damage accumulated, and spheroids lost their membrane integrity due to the combinational treatment. While maintaining the same therapy efficacy as single-drug therapy, doses of P8-D6 and olaparib can be reduced in combinational treatments. Synergisms can be seen in some tested combinations. In summary, the combination therapy indicates benefits and acts synergistic at 100 nM and 500 nM P8-D6.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Carcinoma Epitelial do Ovário/tratamento farmacológico , Caspases/genética , Morte Celular , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Instabilidade Genômica , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores da Topoisomerase
19.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409416

RESUMO

Chemotherapy resistance is one of the reasons for eye loss in patients with retinoblastoma (RB). RB chemotherapy resistance has been studied in different cell culture models, such as WERI-RB1. In addition, chemotherapy-resistant RB subclones, such as the etoposide-resistant WERI-ETOR cell line have been established to improve the understanding of chemotherapy resistance in RB. The objective of this study was to characterize cell line models of an etoposide-sensitive WERI-RB1 and its etoposide-resistant subclone, WERI-ETOR, by proteomic analysis. Subsequently, quantitative proteomics data served for correlation analysis with known drug perturbation profiles. Methodically, WERI-RB1 and WERI-ETOR were cultured, and prepared for quantitative mass spectrometry (MS). This was carried out in a data-independent acquisition (DIA) mode. The raw SWATH (sequential window acquisition of all theoretical mass spectra) files were processed using neural networks in a library-free mode along with machine-learning algorithms. Pathway-enrichment analysis was performed using the REACTOME-pathway resource, and correlated to the molecular signature database (MSigDB) hallmark gene set collections for functional annotation. Furthermore, a drug-connectivity analysis using the L1000 database was carried out to associate the mechanism of action (MOA) for different anticancer reagents to WERI-RB1/WERI-ETOR signatures. A total of 4756 proteins were identified across all samples, showing a distinct clustering between the groups. Of these proteins, 64 were significantly altered (q < 0.05 & log2FC |>2|, 22 higher in WERI-ETOR). Pathway analysis revealed the "retinoid metabolism and transport" pathway as an enriched metabolic pathway in WERI-ETOR cells, while the "sphingolipid de novo biosynthesis" pathway was identified in the WERI-RB1 cell line. In addition, this study revealed similar protein signatures of topoisomerase inhibitors in WERI-ETOR cells as well as ATPase inhibitors, acetylcholine receptor antagonists, and vascular endothelial growth factor receptor (VEGFR) inhibitors in the WERI-RB1 cell line. In this study, WERI-RB1 and WERI-ETOR were analyzed as a cell line model for chemotherapy resistance in RB using data-independent MS. Analysis of the global proteome identified activation of "sphingolipid de novo biosynthesis" in WERI-RB1, and revealed future potential treatment options for etoposide resistance in RB.


Assuntos
Neoplasias da Retina , Retinoblastoma , Linhagem Celular Tumoral , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Humanos , Proteômica , Neoplasias da Retina/metabolismo , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Esfingolipídeos , Inibidores da Topoisomerase , Ubiquitina-Proteína Ligases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431868

RESUMO

Topoisomerase inhibitors have been in use clinically for the treatment of several diseases for decades. Although those enzymes are significant molecular targets in antibacterial and anticancer chemotherapy very little is known about the possibilities to target fungal topoisomerase II (topo II). Raising concern for the fungal infections, lack of effective drugs and a phenomenon of multidrug resistance underlie a strong need to expand the range of therapeutic options. In this review paper, we discussed the usefulness of fungal topo II as a molecular target for new drug discovery. On the basis of previously published data, we described structural and biochemical differences between fungal and human enzymes as well as a molecular basis of differential sensitivity to known anticancer drugs targeting the latter. This review focuses especially on highlighting the differences that may underlie the selectivity of action of new inhibitors. Distinct sites within fungal topo II in comparison with human counterparts are observed and should be further studied to understand the significance of those sites and their possible usage in design of new drugs.


Assuntos
Antifúngicos , DNA Topoisomerases Tipo II , Humanos , Antibacterianos , Antifúngicos/farmacologia , Inibidores da Topoisomerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA