Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Diagnostics (Basel) ; 14(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667468

RESUMEN

While neutralizing antibodies (nAbs) induced by monovalent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations are primarily directed against the wildtype (WT), subsequent exposure to the Omicron variants may increase the breadth of the antibodies' cross-neutralizing activity. Here, we analyzed the impact of an Omicron breakthrough infection (BTI) or a fourth monovalent mRNA vaccination on nAb profiles in people living with human immunodeficiency virus (PLWH). Using a multivariant surrogate virus neutralization test (sVNT), we quantified nAbs in 36 three-times vaccinated PLWH, of whom 9 acquired a serologically confirmed Omicron BTI, 8 received a fourth vaccine dose, and 19 were neither infected nor additionally vaccinated. While nAbs against WT and Delta increased after the BTI and a fourth vaccination, a significant increase against BA.1, BA.2, and BA.5 was only observed after the BTI. However, there was no significant difference in nAb concentrations between the samples obtained after the BTI and fourth vaccination. In contrast, nAb levels were significantly lower in PLWH, who were neither infected nor additionally vaccinated after three vaccinations. Thus, our study demonstrates the suitability of a multivariant sVNT to assess hybrid humoral immunity after Omicron BTIs in PLWH vaccinated against SARS-CoV-2.

2.
Vaccines (Basel) ; 12(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38250907

RESUMEN

The capability of antibodies to neutralize different SARS-CoV-2 variants varies among individuals depending on the previous exposure to wild-type or Omicron-specific immunogens by mono- or bivalent vaccinations or infections. Such profiles of neutralizing antibodies (nAbs) usually have to be assessed via laborious live-virus neutralization tests (NTs). We therefore analyzed whether a novel multivariant surrogate-virus neutralization test (sVNT) (adapted from a commercial microarray) that quantifies the antibody-mediated inhibition between the receptor angiotensin-converting enzyme 2 (ACE2) and variant-specific receptor-binding domains (RBDs) can assess the neutralizing activity against the SARS-CoV-2 wild-type, and Delta Omicron BA.1, BA.2, and BA.5 subvariants after a booster with Omicron-adapted bivalent vaccines in a manner similar to live-virus NTs. Indeed, by using the live-virus NTs as a reference, we found a significant correlation between the variant-specific NT titers and levels of ACE2-RBD binding inhibition (p < 0.0001, r ≤ 0.78 respectively). Furthermore, the sVNTs identified higher inhibition values against BA.5 and BA.1 in individuals vaccinated with Omicron-adapted vaccines than in those with monovalent wild-type vaccines. Our data thus demonstrate the ability of sVNTs to detect variant-specific nAbs following a booster with bivalent vaccines.

4.
J Med Virol ; 95(11): e29245, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38009693

RESUMEN

Arthropod-borne flaviviruses include a number of medically relevant human pathogens such as the mosquito-borne dengue (DEN), Zika, and yellow fever (YF) viruses as well as tick-borne encephalitis virus (TBEV). All flaviviruses are antigenically related and anamnestic responses due to prior immunity can modulate antibody specificities in subsequent infections or vaccinations. In our study, we analyzed the induction of broadly flavivirus cross-reactive antibodies in tick-borne encephalitis (TBE) and DEN patients without or with prior flavivirus exposure through TBE and/or YF vaccination, and determined the contribution of these antibodies to TBE and dengue virus (DENV) neutralization. In addition, we investigated the formation of cross-reactive antibodies in TBE-vaccination breakthroughs (VBTs). A TBEV infection without prior YF or TBE vaccination induced predominantly type-specific antibodies. In contrast, high levels of broadly cross-reactive antibodies were found in samples from TBE patients prevaccinated against YF as well as in DEN patients prevaccinated against TBE and/or YF. While these cross-reactive antibodies did not neutralize TBEV, they were effective in neutralizing DENV. This discrepancy points to structural differences between the two viruses and indicates that broadly cross-reactive epitopes are less accessible in TBEV than in DENV. In TBE VBT infections, type-specific antibodies dominated the antibody response, thus revealing no difference from that of unvaccinated TBE patients. Our results emphasize significant differences in the structural properties of different flaviviruses that have an impact on the induction of broadly cross-reactive antibodies and their functional activities in virus neutralization.


Asunto(s)
Dengue , Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Infecciones por Flavivirus , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Encefalitis Transmitida por Garrapatas/prevención & control , Formación de Anticuerpos , Anticuerpos Antivirales , Infecciones por Flavivirus/prevención & control , Vacunación , Dengue/prevención & control
5.
iScience ; 26(11): 108146, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867935

RESUMEN

Despite the similar clinical outcomes after renin-angiotensin system (RAS) inhibitor (RASi) continuation or withdrawal in COVID-19, the effects on angiotensin-converting enzyme 2 (ACE2) and RAS metabolites remain unclear. In a substudy of the randomized controlled Austrian Corona Virus Adaptive Clinical Trial (ACOVACT), patients with hypertension and COVID-19 were randomized 1:1 to either RASi continuation (n = 30) or switch to a non-RASi medication (n = 29). RAS metabolites were analyzed using a mixed linear regression model (n = 30). Time to a sustained clinical improvement was equal and ACE2 did not differ between the groups but increased over time in both. Overall ACE2 was higher with severe COVID-19. ACE-S and Ang II levels increased as expected with ACE inhibitor discontinuation. These data support the safety of RASi continuation in COVID-19, although RASi were frequently discontinued in our post hoc analysis. The study was not powered to draw definite conclusions on clinical outcomes using small sample sizes.

6.
J Autoimmun ; 140: 103118, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37826919

RESUMEN

BACKGROUND: The role of autoreactive T cells on the course of Coronavirus disease-19 (COVID-19) remains elusive. Type II pneumocytes represent the main target cells of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autoimmune responses against antigens highly expressed in type II pneumocytes may influence the severity of COVID-19 disease. OBJECTIVE: The aim of this study was to investigate autoreactive T cell responses against self-antigens highly expressed in type II pneumocytes in the blood of COVID-19 patients with severe and non-severe disease. METHODS: We collected blood samples of COVID-19 patients with varying degrees of disease severity and of pre-pandemic controls. T cell stimulation assays with peptide pools of type II pneumocyte antigens were performed in two independent cohorts to analyze the autoimmune T cell responses in patients with non-severe and severe COVID-19 disease. Target cell lysis assays were performed with lung cancer cell lines to determine the extent of cell killing by type II PAA-specific T cells. RESULTS: We identified autoreactive T cell responses against four recently described self-antigens highly expressed in type II pneumocytes, known as surfactant protein A, surfactant protein B, surfactant protein C and napsin A, in the blood of COVID-19 patients. These antigens were termed type II pneumocyte-associated antigens (type II PAAs). We found that patients with non-severe COVID-19 disease showed a significantly higher frequency of type II PAA-specific autoreactive T cells in the blood when compared to severely ill patients. The presence of high frequencies of type II PAA-specific T cells in the blood of non-severe COVID-19 patients was independent of their age. We also found that napsin A-specific T cells from convalescent COVID-19 patients could kill lung cancer cells, demonstrating the functional and cytotoxic role of these T cells. CONCLUSIONS: Our data suggest that autoreactive type II PAA-specific T cells have a protective role in SARS-CoV-2 infections and the presence of high frequencies of these autoreactive T cells indicates effective viral control in COVID-19 patients. Type II-PAA-specific T cells may therefore promote the killing of infected type II pneumocytes and viral clearance.

7.
Biochemistry ; 62(17): 2517-2529, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37554055

RESUMEN

Antigen conformation shapes CD4+ T-cell specificity through mechanisms of antigen processing, and the consequences for immunity may rival those from conformational effects on antibody specificity. CD4+ T cells initiate and control immunity to pathogens and cancer and are at least partly responsible for immunopathology associated with infection, autoimmunity, and allergy. The primary trigger for CD4+ T-cell maturation is the presentation of an epitope peptide in the MHC class II antigen-presenting protein (MHCII), most commonly on an activated dendritic cell, and then the T-cell responses are recalled by subsequent presentations of the epitope peptide by the same or other antigen-presenting cells. Peptide presentation depends on the proteolytic fragmentation of the antigen in an endosomal/lysosomal compartment and concomitant loading of the fragments into the MHCII, a multistep mechanism called antigen processing and presentation. Although the role of peptide affinity for MHCII has been well studied, the role of proteolytic fragmentation has received less attention. In this Perspective, we will briefly summarize evidence that antigen resistance to unfolding and proteolytic fragmentation shapes the specificity of the CD4+ T-cell response to selected viral envelope proteins, identify several remarkable examples in which the immunodominant CD4+ epitopes most likely depend on the interaction of processing machinery with antigen conformation, and outline how knowledge of antigen conformation can inform future efforts to design vaccines.


Asunto(s)
Linfocitos T CD4-Positivos , Epítopos de Linfocito T , Linfocitos T CD4-Positivos/metabolismo , Epítopos de Linfocito T/química , Epítopos de Linfocito T/metabolismo , Proteínas Virales de Fusión/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Presentación de Antígeno , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/metabolismo
8.
NPJ Vaccines ; 8(1): 110, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542025

RESUMEN

We report SARS-CoV-2 neutralizing antibody titers in sera of triple-vaccinated individuals who received a booster dose of an original monovalent or a bivalent BA.1- or BA.4/BA.5-adapted vaccine or had a breakthrough infection with Omicron variants BA.1, BA.2 or BA.4/BA.5. A bivalent BA.4/BA.5 booster or Omicron-breakthrough infection induced increased Omicron-neutralization titers compared with the monovalent booster. The XBB.1.5 variant effectively evaded neutralizing-antibody responses elicited by current vaccines and/or infection with previous variants.

9.
Diagnostics (Basel) ; 13(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37443672

RESUMEN

Primary infection with the Omicron variant of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) can be serologically identified with distinct profiles of neutralizing antibodies (nAbs), as indicated by high titers against the Omicron variant and low titers against the ancestral wild-type (WT). Here, we evaluated whether a novel surrogate virus neutralization assay (sVNT) that simultaneously quantifies the binding inhibition of angiotensin-converting enzyme 2 (ACE2) to the proteins of the WT- and Omicron-specific receptor-binding domains (RBDs) can identify nAb profiles after primary Omicron infection with accuracy similar to that of variant-specific live-virus neutralization tests (NTs). Therefore, we comparatively tested 205 samples from individuals after primary infection with the Omicron variant and the WT, and vaccinated subjects with or without Omicron breakthrough infections. Indeed, variant-specific RBD-ACE2 binding inhibition levels significantly correlated with respective NT titers (p < 0.0001, Spearman's r = 0.92 and r = 0.80 for WT and Omicron, respectively). In addition, samples from individuals after primary Omicron infection were securely identified with the sVNT according to their distinctive nAb profiles (area under the curve = 0.99; sensitivity: 97.2%; specificity: 97.84%). Thus, when laborious live-virus NTs are not feasible, the novel sVNT we evaluated in this study may serve as an acceptable substitute for the serological identification of individuals with primary Omicron infection.

10.
J Med Virol ; 95(6): e28830, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37282809

RESUMEN

In 2022, Austria experienced a severe respiratory syncytial virus (RSV) epidemic with an earlier-than-usual start (Weeks 35/2021-45/2022) and increased numbers of pediatric patients in emergency departments. This surge came 2 years after a season with no cases detected as a result of coronavirus disease 2019 nonpharmaceutical interventions. We analyzed epidemiologic patterns and the phylodynamics of RSV based on approximately 30 800 respiratory specimens collected year-round over 10 years from ambulatory and hospitalized patients from 248 locations in Austria. Genomic surveillance and phylogenetic analysis of 186 RSV-A and 187 RSV-B partial glycoprotein sequences collected from 2018 to 2022 revealed that the 2022/2023 surge was driven by RSV-B in contrast to the surge in the 2021/2022 season that was driven by RSV-A. Whole-genome sequencing and phylodynamic analysis indicated that the RSV-B strain GB5.0.6a was the predominant genotype in the 2022/2023 season and emerged in late 2019. The results provide insight into RSV evolution and epidemiology that will be applicable to future monitoring efforts with the advent of novel vaccines and therapeutics.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitiales Respiratorios , Niño , Humanos , Austria/epidemiología , COVID-19/epidemiología , Monitoreo Epidemiológico , Evolución Molecular , Técnicas de Genotipaje , Epidemiología Molecular , Filogenia , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/clasificación , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/aislamiento & purificación , Secuenciación Completa del Genoma
11.
Microbiol Spectr ; 11(1): e0231422, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36622205

RESUMEN

Neutralizing antibodies (nAbs) are considered a valuable marker for measuring humoral immunity against SARS-CoV-2. However, live-virus neutralization tests (NTs) require high-biosafety-level laboratories and are time-consuming. Therefore, surrogate virus neutralization tests (sVNTs) have been widely applied, but unlike most anti-spike (S) antibody assays, NTs and sVNTs are not harmonized, requiring further evaluation and comparative analyses. This study compared seven commercial sVNTs and anti-S-antibody assays with a live-virus NT as a reference, using a panel of 720 single and longitudinal serum samples from 666 convalescent patients after SARS-CoV-2 infection. The sensitivity of these assays for detecting antibodies ranged from 48 to 94% after PCR-confirmed infection and from 56% to 100% relative to positivity in the in-house live-virus NT. Furthermore, we performed receiver operating characteristic (ROC) curve analyses to determine which immunoassays were most suitable for assessing nAb titers exceeding a specific cutoff (NT titer, ≥80) and found that the NeutraLISA and the cPass assays reached the highest area under the curve (AUC), exceeding 0.91. In addition, when the assays were compared for their correlation with nAb kinetics over time in a set of longitudinal samples, the extent of the measured decrease of nAbs after infection varied widely among the evaluated immunoassays. Finally, in vaccinated convalescent patients, high titers of nAbs exceeded the upper limit of the evaluated assays' quantification ranges. Based on data from this study, we conclude that commercial immunoassays are acceptable substitutes for live-virus NTs, particularly when additional adapted cutoffs are employed to detect nAbs beyond a specific threshold titer. IMPORTANCE While the measurement of neutralizing antibodies is considered a valuable tool in assessing protection against SARS-CoV-2, neutralization tests employ live-virus isolates and cell culture, requiring advanced laboratory biosafety levels. Including a large sample panel (over 700 samples), this study provides adapted cutoff values calculated for seven commercial immunoassays (including four surrogate neutralization assays and a protein-based microarray) that robustly correlate with specific titers of neutralizing antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Anticuerpos Neutralizantes , Pruebas de Neutralización , Inmunoglobulina G , Anticuerpos Antivirales
12.
Ann Rheum Dis ; 82(2): 292-300, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36109141

RESUMEN

OBJECTIVES: A third COVID-19 vaccination is recommended for immunosuppressed patients. However, data on immunogenicity and safety of a third COVID-19 vaccination in patients with immune-mediated inflammatory diseases (IMIDs) are sparse and therefore addressed within this clinical trial. METHODS: 60 immunosuppressed patients and 48 healthy controls (HCs) received a third vaccination with an mRNA vaccine. The primary endpoint was defined as the presence of antibody levels against the receptor-binding domain (RBD)>1500 BAU/mL in patients with IMIDs versus HCs. Further endpoints included differences in neutralising antibodies and cellular immune responses after the third vaccination. Reactogenicity was recorded for 7 days, and safety was evaluated until week 4. RESULTS: Rate of individuals with anti-RBD antibodies>1500 BAU/mL was not significantly different after the third vaccination between patients with IMIDs and HCs (91% vs 100% p=0.101). Anti-RBD and neutralising antibody levels were significantly lower in patients with IMIDs after the third vaccination than in HCs (p=0.002 and p=0.016, respectively). In contrast, fold increase in antibody levels between week 0 and 4 was higher in patients with IMIDs. Treatment with biological (b) disease-modifying anti-rheumatic drugs (DMARD) or combination of bDMARDs and conventional synthetic DMARDs was associated with reduced antibody levels. Enhanced cellular immune response to wild type and Omicron peptide stimulation was observed after the third vaccination. No serious adverse event was attributed to the third vaccination. CONCLUSION: Our clinical trial data support the immunogenicity and safety of a third COVID-19 vaccination in patients with IMIDs. However, effects of DMARD therapy on immunogenicity should be considered. TRIAL REGISTRATION NUMBER: EudraCT No: 2021-002693-10.


Asunto(s)
Vacunas contra la COVID-19 , Humanos , Anticuerpos Antivirales , Antirreumáticos , COVID-19 , Vacunas contra la COVID-19/efectos adversos , Inmunogenicidad Vacunal , Agentes Inmunomoduladores , Vacunación
13.
Sci Rep ; 12(1): 20117, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418458

RESUMEN

SARS-CoV-2 gains cell entry via angiotensin-converting enzyme (ACE) 2, a membrane-bound enzyme of the "alternative" (alt) renin-angiotensin system (RAS). ACE2 counteracts angiotensin II by converting it to potentially protective angiotensin 1-7. Using mass spectrometry, we assessed key metabolites of the classical RAS (angiotensins I-II) and alt-RAS (angiotensins 1-7 and 1-5) pathways as well as ACE and ACE2 concentrations in 159 patients hospitalized with COVID-19, stratified by disease severity (severe, n = 76; non-severe: n = 83). Plasma renin activity (PRA-S) was calculated as the sum of RAS metabolites. We estimated ACE activity using the angiotensin II:I ratio (ACE-S) and estimated systemic alt-RAS activation using the ratio of alt-RAS axis metabolites to PRA-S (ALT-S). We applied mixed linear models to assess how PRA-S and ACE/ACE2 concentrations affected ALT-S, ACE-S, and angiotensins II and 1-7. Median angiotensin I and II levels were higher with severe versus non-severe COVID-19 (angiotensin I: 86 versus 30 pmol/L, p < 0.01; angiotensin II: 114 versus 58 pmol/L, p < 0.05), demonstrating activation of classical RAS. The difference disappeared with analysis limited to patients not taking a RAS inhibitor (angiotensin I: 40 versus 31 pmol/L, p = 0.251; angiotensin II: 76 versus 99 pmol/L, p = 0.833). ALT-S in severe COVID-19 increased with time (days 1-6: 0.12; days 11-16: 0.22) and correlated with ACE2 concentration (r = 0.831). ACE-S was lower in severe versus non-severe COVID-19 (1.6 versus 2.6; p < 0.001), but ACE concentrations were similar between groups and correlated weakly with ACE-S (r = 0.232). ACE2 and ACE-S trajectories in severe COVID-19, however, did not differ between survivors and non-survivors. Overall RAS alteration in severe COVID-19 resembled severity of disease-matched patients with influenza. In mixed linear models, renin activity most strongly predicted angiotensin II and 1-7 levels. ACE2 also predicted angiotensin 1-7 levels and ALT-S. No single factor or the combined model, however, could fully explain ACE-S. ACE2 and ACE-S trajectories in severe COVID-19 did not differ between survivors and non-survivors. In conclusion, angiotensin II was elevated in severe COVID-19 but was markedly influenced by RAS inhibitors and driven by overall RAS activation. ACE-S was significantly lower with severe COVID-19 and did not correlate with ACE concentrations. A shift to the alt-RAS axis because of increased ACE2 could partially explain the relative reduction in angiotensin II levels.


Asunto(s)
COVID-19 , Hormonas Peptídicas , Humanos , Enzima Convertidora de Angiotensina 2 , Sistema Renina-Angiotensina , Angiotensina I , Angiotensina II , SARS-CoV-2 , Renina , Antihipertensivos
15.
Nat Commun ; 13(1): 5362, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097029

RESUMEN

Impaired response to COVID-19 vaccination is of particular concern in immunosuppressed patients. To determine the best vaccination strategy for this vulnerable group we performed a single center, 1:1 randomized blinded clinical trial. Patients who failed to seroconvert upon two mRNA vaccinations (BNT162b2 or mRNA-1273) are randomized to receive either a third dose of the same mRNA or the vector vaccine ChAdOx1 nCoV-19. Primary endpoint is the difference in SARS-CoV-2 spike antibody seroconversion rate between vector and mRNA vaccinated patients four weeks after the third dose. Secondary outcomes include cellular immune responses. Seroconversion rates at week four are significantly higher in the mRNA (homologous vaccination, 15/24, 63%) as compared to the vector vaccine group (heterologous vaccination, 4/22, 18%). SARS-CoV-2-specific T-cell responses are reduced but could be increased after a third dose of either vector or mRNA vaccine. In a multivariable logistic regression analysis, patient age and vaccine type are associated with seroconversion. No serious adverse event is attributed to COVID-19 booster vaccination. Efficacy and safety data underline the importance of a booster vaccination and support the use of a homologous mRNA booster vaccination in immunosuppressed patients.Trial registration: EudraCT No.: 2021-002693-10.


Asunto(s)
Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , ChAdOx1 nCoV-19 , Humanos , Inmunización Secundaria , ARN Mensajero , SARS-CoV-2/genética , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
16.
Ann Rheum Dis ; 81(12): 1750-1756, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35977809

RESUMEN

OBJECTIVES: Patients under rituximab therapy are at high risk for a severe COVID-19 disease course. Humoral immune responses to SARS-CoV-2 vaccination are vastly diminished in B-cell-depleted patients, even after a third vaccine dose. However, it remains unclear whether these patients benefit from a fourth vaccination and whether continued rituximab therapy affects antibody development. METHODS: In this open-label extension trial, 37 rituximab-treated patients who received a third dose with either a vector or mRNA-based vaccine were vaccinated a fourth time with an mRNA-based vaccine (mRNA-1273 or BNT162b2). Key endpoints included the humoral and cellular immune response as well as safety after a fourth vaccination. RESULTS: The number of patients who seroconverted increased from 12/36 (33%) to 21/36 (58%) following the fourth COVID-19 vaccination. In patients with detectable antibodies to the spike protein's receptor-binding domain (median: 8.0 binding antibody units (BAU)/mL (quartiles: 0.4; 13.8)), elevated levels were observed after the fourth vaccination (134.0 BAU/mL (quartiles: 25.5; 1026.0)). Seroconversion and antibody increase were strongly diminished in patients who received rituximab treatment between the third and the fourth vaccination. The cellular immune response declined 12 weeks after the third vaccination, but could only be slightly enhanced by a fourth vaccination. No unexpected safety signals were detected, one serious adverse event not related to vaccination occurred. CONCLUSIONS: A fourth vaccine dose is immunogenic in a fraction of rituximab-treated patients. Continuation of rituximab treatment reduced humoral immune response, suggesting that rituximab affects a second booster vaccination. It might therefore be considered to postpone rituximab treatment in clinically stable patients. TRIAL REGISTRATION NUMBER: 2021-002348-57.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , Rituximab/efectos adversos , Anticuerpos Antivirales , SARS-CoV-2 , Vacuna BNT162 , Vacunación , ARN Mensajero , Inmunogenicidad Vacunal
17.
Front Immunol ; 13: 946318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928813

RESUMEN

Background and Methods: The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron (B.1.1.529) variant is the antigenically most distinct variant to date. As the heavily mutated spike protein enables neutralization escape, we studied serum-neutralizing activities of naïve and vaccinated individuals after Omicron BA.1 or BA.2 sub-lineage infections in live virus neutralization tests with Omicron BA.1, Omicron BA.2, wildtype (WT, B1.1), and Delta (B.1.617.2) strains. Serum samples obtained after WT infections and three-dose mRNA vaccinations with and without prior infection were included as controls. Results: Primary BA.1 infections yielded reduced neutralizing antibody levels against WT, Delta, and Omicron BA.2, while samples from BA.2-infected individuals showed almost no cross-neutralization against the other variants. Serum neutralization of Omicron BA.1 and BA.2 variants was detectable after three-dose mRNA vaccinations, but with reduced titers. Vaccination-breakthrough infections with either Omicron BA.1 or BA.2, however, generated equal cross-neutralizing antibody levels against all SARS-CoV-2 variants tested. Conclusions: Our study demonstrates that although Omicron variants are able to enhance cross-neutralizing antibody levels in pre-immune individuals, primary infections with BA.1 or BA.2 induced mostly variant-specific neutralizing antibodies, emphasizing the differently shaped humoral immunity induced by the two Omicron variants. These data thus contribute substantially to the understanding of antibody responses induced by primary Omicron infections or multiple exposures to different SARS-CoV-2 variants and are of particular importance for developing vaccination strategies in the light of future emerging variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Humanos , Glicoproteínas de Membrana , Pruebas de Neutralización , ARN Mensajero , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral
18.
Microbiol Spectr ; 10(5): e0212922, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36005839

RESUMEN

The SARS-CoV-2 Omicron variant is characterized by substantial changes in the antigenic structure of the Spike (S) protein. Therefore, antibodies induced by primary Omicron infection lack neutralizing activity against earlier variants. In this study, we analyzed whether these antigenic changes impact the sensitivity of commercial anti-SARS-CoV-2 antibody assays. Sera from 37 unvaccinated, convalescent individuals after putative primary Omicron infection were tested with a panel of 20 commercial anti-SARS-CoV-2 immunoassays. As controls, we used samples from 43 individuals after primary infection with the SARS-CoV-2 ancestral wild-type strain. In addition, variant-specific live-virus neutralization assays were used as a reference for the presence of SARS-CoV-2-specific antibodies in the samples. Notably, in Omicron convalescents, there was a statistically significant reduction in the sensitivity of all antibody assays containing S or its receptor-binding-domain (RBD) as antigens. Furthermore, antibody levels quantified by these assays displayed a weaker correlation with Omicron-specific neutralizing antibody titers than with those against the wild type. In contrast, the sensitivity of nucleocapsid-protein-specific immunoassays was similar in wild-type and Omicron-infected subjects. In summary, the antigenic changes in the Omicron S lead to reduced immunoreactivity in the current commercial S- and RBD-specific antibody assays, impairing their diagnostic performance. IMPORTANCE This study demonstrates that the antigenic changes of the SARS-CoV-2 Omicron variant affect test results from commercial Spike- and RBD-specific antibody assays, significantly diminishing their sensitivities and diagnostic abilities to assess neutralizing antibodies.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Pruebas de Neutralización , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , SARS-CoV-2 , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , COVID-19/diagnóstico , Anticuerpos Antivirales , Anticuerpos Neutralizantes
19.
Open Forum Infect Dis ; 9(7): ofac255, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35873290

RESUMEN

Usutu virus (USUV) is a mosquito-borne flavivirus closely related to West Nile virus (WNV) that is endemic in many European countries. We report the first case of USUV neuroinvasive disease in Austria and discuss challenges in differentiating USUV from WNV infections in areas where both viruses are endemic.

20.
Vaccines (Basel) ; 10(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35891294

RESUMEN

BACKGROUND AND OBJECTIVE: This prospective cohort study analyzed the immune response to COVID-19 mRNA vaccines in lung transplant recipients (LuTRs) compared to healthy controls (HCs) at a 6-month follow-up. METHODS: After the first two doses of either BNT162b2 or mRNA-1273, SARS-CoV-2 antibodies were measured in LuTRs (n = 57) and sex- and age-matched HCs (n = 57). Antibody kinetics during a 6-month follow-up and the effect of a third vaccine dose were evaluated. Humoral responses were assessed using the Elecsys® Anti-SARS-CoV-2 S immunoassay. In 16 LuTRs, SARS-CoV-2-specific T cell responses were quantified using IFN-γ ELISpot assays. RESULTS: Seroconversion rates were 94% and 100% after the first and second vaccine dose, respectively, in HCs, while only 19% and 56% of LuTRs developed antibodies. Furthermore, 22 of 24 LuTRs who received the third vaccine dose showed seroconversion (five of seven primary non-responders and 17 of 17 primary responders). A T cell response against SARS-CoV-2-spike S1 and/or S2 was detected in 100% (16/16) of HCs and 50% (8/16) of LuTRs. CONCLUSIONS: The data suggest that LuTRs have reduced humoral and cellular immune responses after two doses of COVID-19 mRNA vaccination when compared to HCs. A third dose may be of substantial benefit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA