Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(6): e17267, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37408902

RESUMEN

Cancer is considered one of the top global causes of death. Natural products have been used in oncology medicine either in crude form or by utilizing isolated secondary metabolites. Biologically active phytomolecules such as gallic acid and quercetin have confirmed antioxidant, anti-bacterial, and neoplastic properties. There is an agreement that microorganisms could mediate oncogenesis or alter the immune system. This research project aims to develop a novel formulation of co-loaded gallic acid and quercetin into nanoliposomes and investigate the efficacy of the free and combined agents against multiple cancerous cell lines and bacterial strains. Thin-film hydration technique was adopted to synthesize the nanocarriers. Particle characteristics were measured using a Zetasizer. The morphology of nanoliposomes was examined by scanning electron microscopy, Encapsulation efficiency and drug loading were evaluated using High-Performance Liquid Chromatography. Cytotoxicity was determined against Breast Cancer Cells MCF-7, Human Carcinoma Cells HT-29, and A549 Lung Cancer Cells. The antibacterial activities were evaluated against Acinetobacter baumannii, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Staphylococcus aureus. Therapeutic formulas were categorized into groups: free gallic acid, free quercetin, free-mix, and their nano-counterparts. Findings revealed that drug loading capacity was 0.204 for the mix formula compared to 0.092 and 0.68 for free gallic acid and quercetin, respectively. Regarding the Zeta potential, the mix formula showed more amphiphilic charge than the free quercetin and free gallic acid formulas (P-values 0.003 and 0.002 receptively). On the contrary, no significant difference in polydispersity indices was reported. Lung cancerous cells were the most affected by the treatments. The best estimated IC50 values were observed in breast and lung cancer lines for the nano-gallic acid and co-loaded particles. The nano-quercetin formula exhibited the least cytotoxicity with an IC50 value of ≥200 µg/mL in both breast (MCF-7) and colorectal adenocarcinoma cell lines (HT-29) with no activity against the lung. A remarkable improvement in the efficacy of quercetin was measured after mixing it with gallic acid against the breast and lungs. The tested therapeutic agents exhibited antimicrobial activity against gram-positive bacteria. Nano-liposomes can either enhance or reduce the cytotoxicity activity of active compounds depending on the physical and chemical properties of drug-loaded and type of cancer cells.

2.
J Appl Microbiol ; 133(3): 1414-1421, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35639018

RESUMEN

AIMS: To test the effect of zinc oxide nanoparticle (ZnO-NP) supplementation for enhancing the efficacy of Pseudomonas fluorescens NK4 siderophore as a biocontrol agent against P. viridiflava NK2 and a plant growth promoter. METHODS AND RESULTS: Cucumber seedlings were treated with a suspension of P. fluorescens NK4 and its siderophore generated in siderophore-inducing medium (SIM), SIM supplemented with ZnO-NP (<100 nm) and SIM supplemented with Zn2+ ions from Zn(NO3 )2 . Supplementing SIM with ZnO-NP increased siderophore secretion in P. fluorescens NK4, and irrigation of cucumber seedlings with a filtrate containing the ZnO-NP-supplemented siderophore increased survival, improved vegetative and root growth, and thus increased yield similar to the effects of dipping seedlings in a P. fluorescens NK4 suspension. Both P. fluorescens NK4 and its ZnO-NP-supplemented siderophore inhibited P. viridiflava NK2 population growth in planta. CONCLUSIONS: The siderophore of P. fluorescens NK4 produced by ZnO-NP supplementation can be employed as a biocontrol agent and biofertilizer. SIGNIFICANCE AND IMPACT OF THE STUDY: ZnO-NPs can boost the synthesis of siderophores, which can then be employed as biofertilizers to boost iron bioavailability in iron-deficient soils.


Asunto(s)
Cucumis sativus , Pseudomonas fluorescens , Óxido de Zinc , Hierro , Sideróforos/farmacología , Óxido de Zinc/farmacología
3.
Biol Chem ; 402(4): 513-524, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33938181

RESUMEN

Increasing antibiotic resistance in Gram-negative bacteria has mandated the development of both novel antibiotics and alternative therapeutic strategies. Evidence of interplay between several gastrointestinal peptides and the gut microbiota led us to investigate potential and broad-spectrum roles for the incretin hormone, human glucose-dependent insulinotropic polypeptide (GIP) against the Enterobacteriaceae bacteria, Escherichia coli and Erwinia amylovora. GIP had a potent disruptive action on drug efflux pumps of the multidrug resistant bacteria E. coli TG1 and E. amylovora 1189 strains. The effect was comparable to bacterial mutants lacking the inner and outer membrane efflux pump factor proteins AcrB and TolC. While GIP was devoid of direct antimicrobial activity, it has a potent membrane depolarizing effect, and at low concentrations, it significantly potentiated the activity of eight antibiotics and bile salt by reducing MICs by 4-8-fold in E. coli TG1 and 4-20-fold in E. amylovora 1189. GIP can thus be regarded as an antimicrobial adjuvant with potential for augmenting the available antibiotic arsenal.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Enterobacteriaceae/efectos de los fármacos , Erwinia amylovora/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Péptidos Similares al Glucagón/farmacología , Antibacterianos/química , Péptidos Similares al Glucagón/química , Humanos , Pruebas de Sensibilidad Microbiana
4.
J Infect Dev Ctries ; 13(11): 1013-1020, 2019 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-32087073

RESUMEN

INTRODUCTION: Resistance against commonly used antibacterial agents has become a globally recognized threat to human health. Therefore, the development of new and effective antibacterial agents is necessary to treat infections caused by resistant bacterial strains; plants are a promising source of new agents to be tested. METHODOLOGY: The minimum inhibitory concentrations (MIC) of ethanolic extracts of Erodium gruinum, Euphorbia hierosolymitana, Logoecia cuminoides, and Tamarix tetragyna against 10 Gram-negative and 5 Gram-positive bacteria were determined using agar well diffusion and microtiter plate dilution methods, respectively. The phytochemical composition of the crude extracts of the plants was determined using HPLC. RESULTS: Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae, Proteus mirabilis, and Acinetobacter baumannii were sensitive to E. gruinum and E. hierosolymitana extracts. P. aeruginosa ATCC 27853 and M. catarrhalis were sensitive to L. cuminoides extract. P. aeruginosa ATCC 27853, P. mirabilis, and K. pneumoniae were sensitive to T. tetragyna extracts. For Gram-positive bacteria, Staphylococcus aureus ATCC 33591 and ATCC 43300 were sensitive to E. gruinum and E. hierosolymitana extracts. S. aureus ATCC 43300 and ATCC 33591 and Group D Streptococcus were sensitive to T. tetragyna extract. All Gram-positive bacteria were completely resistant to the extract of L. cuminoides. The major phytochemical components of the plant extracts belonged to flavonoids, tannins, terpenes, quinones, phytosterols, phytoestrogens, carbohydrates, fatty acids, and coumarin. CONCLUSION: The study showed the potential of the development of antibacterial agents from these plants. Phytochemical analysis revealed compounds that are candidates for new antibacterial drugs.


Asunto(s)
Antibacterianos/farmacología , Euphorbia/química , Geraniaceae/química , Extractos Vegetales/farmacología , Tamaricaceae/química , Antibacterianos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Fitoquímicos/análisis , Fitoquímicos/farmacología , Extractos Vegetales/química , Plantas Medicinales/química
5.
Molecules ; 22(5)2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-28531095

RESUMEN

Helicobacter pylori infection can lead to gastritis, peptic ulcer, and the development of mucosa associated lymphoid tissue (MALT) lymphoma. Treatment and eradication of H. pylori infection can prevent relapse and accelerate the healing of gastric and duodenal ulcers as well as regression of malignancy. Due to the increasing emergence of antibiotic resistance among clinical isolates of H. pylori, alternative approaches using newly discovered antimicrobial agents in combination with the standard antibiotic regimens for the treatment of H. pylori are of major importance. The purpose of the present study was to investigate the effect of newly synthesized 8-amino 7-substituted fluoroquinolone and their correspondent cyclized triazolo derivatives when either alone or combined with metronidazole against metronidazole-resistant H. pylori. Based on standard antimicrobial susceptibility testing methods and checkerboard titration assay, all of the tested compounds showed interesting antimicrobial activity against 12 clinical strains of H. pylori, with best in vitro effect for compounds 4b and 4c. Fractional inhibitory concentration (FIC) mean values showed synergistic pattern in all compounds of Group 5. In addition, additive activities of some of the tested compounds of Group 4 were observed when combined with metronidazole. In contrast, the tested compounds showed no significant urease inhibition activity. These results support the potential of new fluoroquinolone derivatives to be useful in combination with anti-H. pylori drugs in the management of H. pylori-associated diseases.


Asunto(s)
Antiinfecciosos/síntesis química , Farmacorresistencia Bacteriana/efectos de los fármacos , Fluoroquinolonas/síntesis química , Helicobacter pylori/efectos de los fármacos , Triazoles/síntesis química , Antiinfecciosos/farmacología , Sinergismo Farmacológico , Quimioterapia Combinada , Fluoroquinolonas/farmacología , Helicobacter pylori/crecimiento & desarrollo , Metronidazol/farmacología , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Triazoles/farmacología
6.
Open Microbiol J ; 11: 372-383, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29399218

RESUMEN

INTORDUCTION: Dead Sea is a hypersaline lake with 34% salinity, gains its name due to the absence of any living macroscopic creatures. Despite the extreme hypersaline environment, it is a unique ecosystem for various halophilic microorganisms adapted to this environment. AIMS & OBJECTIVES: Halophilic microorganisms are known for various potential biotechnological applications, the purpose of the current research is isolation and screening of halophilic bacteria from Dead Sea mud for potential antimicrobial applications. METHODS & MATERIALS: Screening for antagonistic bacteria was conducted by bacterial isolation from Dead Sea mud samples and agar plate antagonistic assay. The potential antagonistic isolates were subjected to biochemical characterization and identification by 16S-rRNA sequencing. Among the collected isolates, four isolates showed potential antagonistic activity against Bacillus subtilis 6633 and Escherichia coli 8739. The most active isolate (24-DSM) was subjected for antagonistic activity and minimal inhibitory concentration against different gram positive and negative bacterial strains after cultivation in different salt concentration media. Results: The results of 16S-rRNA analysis revealed that 24-DSM is very closely related to Bacillus persicus strain B48, which was isolated from hypersaline lake in Iran. CONCLUSION: Therefore, the isolate 24-DSM is assigned as a new strain of B. persicusi isolated from the Dead Sea mud. B. persicusi 24-DSM showed higher antimicrobial activity, when it was cultivated with saline medium, against all tested bacterial strains, where the most sensitive bacterial strain was Corynebacterium diphtheria 51696.

7.
BMC Microbiol ; 15: 48, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25886911

RESUMEN

BACKGROUND: Pseudomonas syringae pv. glycinea PG4180 causes bacterial blight on soybean plants and enters the leaf tissue through stomata or open wounds, where it encounters a sucrose-rich milieu. Sucrose is utilized by invading bacteria via the secreted enzyme, levansucrase (Lsc), liberating glucose and forming the polyfructan levan. P. syringae PG4180 possesses two functional lsc alleles transcribed at virulence-promoting low temperatures. RESULTS: We hypothesized that transcription of lsc is controlled by the hexose metabolism repressor, HexR, since potential HexR binding sites were identified upstream of both lsc genes. A hexR mutant of PG4180 was significantly growth-impaired when incubated with sucrose or glucose as sole carbon source, but exhibited wild type growth when arabinose was provided. Analyses of lsc expression resulted in higher transcript and protein levels in the hexR mutant as compared to the wild type. The hexR mutant's ability to multiply in planta was reduced. HexR did not seem to impact hrp gene expression as evidenced by the hexR mutant's unaltered hypersensitive response in tobacco and its unmodified protein secretion pattern as compared to the wild type under hrp-inducing conditions. CONCLUSIONS: Our data suggested a co-regulation of genes involved in extra-cellular sugar acquisition with those involved in intra-cellular energy-providing metabolic pathways in P. syringae.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Hexosiltransferasas/biosíntesis , Pseudomonas syringae/enzimología , Pseudomonas syringae/genética , Proteínas Represoras/metabolismo , Carbono/metabolismo , Metabolismo Energético , Fructanos/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Glucosa/metabolismo , Pseudomonas syringae/crecimiento & desarrollo , Pseudomonas syringae/metabolismo , Glycine max/microbiología , Sacarosa/metabolismo , Nicotiana/microbiología
8.
Genes (Basel) ; 3(1): 115-37, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24704846

RESUMEN

In the plant pathogenic bacterium, Pseudomonas syringae, the exopolysaccharide levan is synthesized by extracellular levansucrase (Lsc), which is encoded by two conserved 1,296-bp genes termed lscB and lscC in P. syringae strain PG4180. A third gene, lscA, is homologous to the 1,248-bp lsc gene of the bacterium Erwinia amylovora, causing fire blight. However, lscA is not expressed in P. syringae strain PG4180. Herein, PG4180 lscA was shown to be expressed from its native promoter in the Lsc-deficient E. amylovora mutant, Ea7/74-LS6, suggesting that lscA might be closely related to the E. amylovora lsc gene. Nucleotide sequence analysis revealed that lscB and lscC homologs in several P. syringae strains are part of a highly conserved 1.8-kb region containing the ORF, flanked by 450-452-bp and 49-51-bp up- and downstream sequences, respectively. Interestingly, the 450-452-bp upstream sequence, along with the initial 48-bp ORF sequence encoding for the N-terminal 16 amino acid residues of Lsc, were found to be highly similar to the respective sequence of a putatively prophage-borne glycosyl hydrolase-encoding gene in several P. syringae genomes. Minimal promoter regions of lscB and lscC were mapped in PG4180 by deletion analysis and were found to be located in similar positions upstream of lsc genes in three P. syringae genomes. Thus, a putative 498-500-bp promoter element was identified, which possesses the prophage-associated com gene and DNA encoding common N-terminal sequences of all 1,296-bp Lsc and two glycosyl hydrolases. Since the gene product of the non-expressed 1,248-bp lscA is lacking this conserved N-terminal region but is otherwise highly homologous to those of lscB and lscC, it was concluded that lscA might have been the ancestral lsc gene in E. amylovora and P. syringae. Our data indicated that its highly expressed paralogs in P. syringae are probably derived from subsequent recombination events initiated by insertion of the 498-500-bp promoter element, described herein, containing a translational start site.

9.
Int J Mol Sci ; 10(2): 629-645, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19333425

RESUMEN

AcrAB-TolC is the major multidrug efflux system in Enterobacteriaceae recognizing structurally unrelated molecules including antibiotics, dyes, and detergents. Additionally, in Escherichia coli it mediates resistance to bile salts. In the plant pathogen Erwinia amylovora AcrAB-TolC is required for virulence and phytoalexin resistance. Exchange analysis of AcrAB-TolC was conducted by complementing mutants of both species defective in acrB or tolC with alleles from either species. The acrB and tolC mutants exhibited increased susceptibility profiles for 24 different antibiotics. All mutants were complemented with acrAB or tolC, respectively, regardless of the taxonomic origin of the alleles. Importantly, complementation of E. amylovora mutants with respective E. coli genes restored virulence on apple plants. It was concluded that AcrAB and TolC of both species could interact and that these interactions did not yield in altered functions despite the divergent ecological niches, to which E. coli and E. amylovora have adopted.


Asunto(s)
Ecosistema , Erwinia amylovora/genética , Transferencia de Gen Horizontal , Genes Bacterianos/genética , Genes MDR/genética , Proteínas de la Membrana Bacteriana Externa/genética , Farmacorresistencia Bacteriana Múltiple/genética , Erwinia amylovora/patogenicidad , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Prueba de Complementación Genética , Lipoproteínas/genética , Malus/microbiología , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación
10.
Microb Biotechnol ; 2(4): 465-75, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21255278

RESUMEN

Erwinia amylovora causes fire blight on several plant species such as apple and pear, which produce diverse phytoalexins as defence mechanisms. An evolutionary successful pathogen thus must develop resistance mechanisms towards these toxic compounds. The E. amylovora outer membrane protein, TolC, might mediate phytoalexin resistance through its interaction with the multidrug efflux pump, AcrAB. To prove this, a tolC mutant and an acrB/tolC double mutant were constructed. The minimal inhibitory concentrations of diverse antimicrobials and phytoalexins were determined for these mutants and compared with that of a previously generated acrB mutant. The tolC and arcB/tolC mutants were considerably more susceptible than the wild type but showed similar levels as the acrB mutant. The results clearly indicated that neither TolC nor AcrAB significantly interacted with other transport systems during the efflux of the tested toxic compounds. Survival and virulence assays on inoculated apple plants showed that pathogenicity and the ability of E. amylovora to colonize plant tissue were equally impaired by mutations of tolC and acrB/tolC. Our results allowed the conclusion that TolC plays an important role as a virulence and fitness factor of E. amylovora by mediating resistance towards phytoalexins through its exclusive interaction with AcrAB.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Farmacorresistencia Bacteriana , Erwinia amylovora/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Enfermedades de las Plantas/microbiología , Sesquiterpenos/toxicidad , Factores de Virulencia/metabolismo , Antibacterianos/metabolismo , Antibacterianos/toxicidad , Proteínas de la Membrana Bacteriana Externa/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Erwinia amylovora/patogenicidad , Eliminación de Gen , Malus/microbiología , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Datos de Secuencia Molecular , Pyrus/microbiología , Análisis de Secuencia de ADN , Sesquiterpenos/metabolismo , Virulencia , Factores de Virulencia/genética , Fitoalexinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...