Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645062

RESUMEN

The interactions between Campylobacter jejuni , a critical foodborne cause of gastroenteritis, and the intestinal microbiota during infection are not completely understood. The crosstalk between C. jejuni and its host is impacted by the gut microbiota through mechanisms of competitive exclusion, microbial metabolites, or immune response. To investigate the role of gut microbiota on C. jejuni pathogenesis, we examined campylobacteriosis in the IL10KO mouse model, which was characterized by an increase in the relative abundance of intestinal proteobacteria, E. coli , and inflammatory cytokines during C. jejuni infection. We also found a significantly increased abundance of microbial metabolite Trimethylamine N-Oxide (TMAO) in the colonic lumens of IL10KO mice. We further investigated the effects of TMAO on C. jejuni pathogenesis. We determined that C. jejuni senses TMAO as a chemoattractant and the administration of TMAO promotes C. jejuni invasion into Caco-2 monolayers. TMAO also increased the transmigration of C. jejuni across polarized monolayers of Caco-2 cells, decreased TEER, and increased C. jejuni -mediated intestinal barrier damage. Interestingly, TMAO treatment and presence during C. jejuni infection of Caco-2 cells synergistically caused an increased inflammatory cytokine expression, specifically IL-1ß and IL-8. These results establish that C. jejuni utilizes microbial metabolite TMAO for increased virulence during infection.

2.
Nat Commun ; 14(1): 5471, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673907

RESUMEN

Gut dysbiosis contributes to Alzheimer's disease (AD) pathogenesis, and Bacteroides strains are selectively elevated in AD gut microbiota. However, it remains unknown which Bacteroides species and how their metabolites trigger AD pathologies. Here we show that Bacteroides fragilis and their metabolites 12-hydroxy-heptadecatrienoic acid (12-HHTrE) and Prostaglandin E2 (PGE2) activate microglia and induce AD pathogenesis in neuronal C/EBPß transgenic mice. Recolonization of antibiotics cocktail-pretreated Thy1-C/EBPß transgenic mice with AD patient fecal samples elicits AD pathologies, associated with C/EBPß/Asparaginyl endopeptidase (AEP) pathway upregulation, microglia activation, and cognitive disorders compared to mice receiving healthy donors' fecal microbiota transplantation (FMT). Microbial 16S rRNA sequencing analysis shows higher abundance of proinflammatory Bacteroides fragilis in AD-FMT mice. Active components characterization from the sera and brains of the transplanted mice revealed that both 12-HHTrE and PGE2 activate primary microglia, fitting with poly-unsaturated fatty acid (PUFA) metabolites enrichment identified by metabolomics. Strikingly, recolonization with live but not dead Bacteroides fragilis elicited AD pathologies in Thy1-C/EBPß transgenic mice, so did 12-HHTrE or PGE2 treatment alone. Collectively, our findings support a causal role for Bacteroides fragilis and the PUFA metabolites in activating microglia and inducing AD pathologies in Thy1- C/EBPß transgenic mice.


Asunto(s)
Enfermedad de Alzheimer , Infecciones Bacterianas , Microbioma Gastrointestinal , Ratones , Animales , Bacteroides fragilis/genética , Ratones Transgénicos , Enfermedad de Alzheimer/terapia , Dinoprostona , Microglía , ARN Ribosómico 16S/genética , Bacteroides , Hidroxiácidos
3.
Mol Psychiatry ; 28(3): 1337-1350, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36543925

RESUMEN

Gut dysbiosis contributes to Parkinson's disease (PD) pathogenesis. Gastrointestinal disturbances in PD patients, along with gut leakage and intestinal inflammation, take place long before motor disorders. However, it remains unknown what bacterial species in gut microbiomes play the key role in driving PD pathogenesis. Here we show that Helicobacter hepaticus (H. hepaticus), abundant in gut microbiota from rotenone-treated human α-Synuclein gene (SNCA) transgenic mice and PD patients, initiates α-Synuclein pathology and motor deficits in an AEP-dependent manner in SNCA mice. Chronic Dextran sodium sulfate (DSS) treatment, an inflammatory inducer in the gut, activates AEP (asparagine endopeptidase) that cleaves α-Synuclein N103 and triggers its aggregation, promoting inflammation in the gut and the brain and motor defects in SNCA mice. PD fecal microbiota transplant or live H. hepaticus administration into antibiotics cocktail (Abx)-pretreated SNCA mice induces α-Synuclein pathology, inflammation in the gut and brain, and motor dysfunctions, for which AEP is indispensable. Hence, Helicobacter hepaticus enriched in PD gut microbiomes may facilitate α-Synuclein pathologies and motor impairments via activating AEP.


Asunto(s)
Trastornos Motores , Enfermedad de Parkinson , Ratones , Humanos , Animales , Enfermedad de Parkinson/genética , alfa-Sinucleína , Helicobacter hepaticus , Ratones Transgénicos , Dopamina , Inflamación
4.
Gut ; 71(11): 2233-2252, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017199

RESUMEN

OBJECTIVE: This study is to investigate the role of gut dysbiosis in triggering inflammation in the brain and its contribution to Alzheimer's disease (AD) pathogenesis. DESIGN: We analysed the gut microbiota composition of 3×Tg mice in an age-dependent manner. We generated germ-free 3×Tg mice and recolonisation of germ-free 3×Tg mice with fecal samples from both patients with AD and age-matched healthy donors. RESULTS: Microbial 16S rRNA sequencing revealed Bacteroides enrichment. We found a prominent reduction of cerebral amyloid-ß plaques and neurofibrillary tangles pathology in germ-free 3×Tg mice as compared with specific-pathogen-free mice. And hippocampal RNAseq showed that inflammatory pathway and insulin/IGF-1 signalling in 3×Tg mice brain are aberrantly altered in the absence of gut microbiota. Poly-unsaturated fatty acid metabolites identified by metabolomic analysis, and their oxidative enzymes were selectively elevated, corresponding with microglia activation and inflammation. AD patients' gut microbiome exacerbated AD pathologies in 3×Tg mice, associated with C/EBPß/asparagine endopeptidase pathway activation and cognitive dysfunctions compared with healthy donors' microbiota transplants. CONCLUSIONS: These findings support that a complex gut microbiome is required for behavioural defects, microglia activation and AD pathologies, the gut microbiome contributes to pathologies in an AD mouse model and that dysbiosis of the human microbiome might be a risk factor for AD.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Insulinas , Enfermedad de Alzheimer/metabolismo , Animales , Cognición , Modelos Animales de Enfermedad , Disbiosis , Ácidos Grasos Insaturados , Microbioma Gastrointestinal/fisiología , Humanos , Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina , Ratones , Enfermedades Neuroinflamatorias , Placa Amiloide/patología , ARN Ribosómico 16S
5.
EMBO J ; 40(17): e106320, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34260075

RESUMEN

Inflammation plays an important role in the pathogenesis of Alzheimer's disease (AD). Some evidence suggests that misfolded protein aggregates found in AD brains may have originated from the gut, but the mechanism underlying this phenomenon is not fully understood. C/EBPß/δ-secretase signaling in the colon was investigated in a 3xTg AD mouse model in an age-dependent manner. We applied chronic administration of 1% dextran sodium sulfate (DSS) to trigger gut leakage or colonic injection of Aß or Tau fibrils or AD patient brain lysates in 3xTg mice and combined it with excision/cutting of the gut-brain connecting vagus nerve (vagotomy), in order to explore the role of the gut-brain axis in the development of AD-like pathologies and to monitor C/EBPß/δ-secretase signaling under those conditions. We found that C/EBPß/δ-secretase signaling is temporally activated in the gut of AD patients and 3xTg mice, initiating formation of Aß and Tau fibrils that spread to the brain. DSS treatment promotes gut leakage and facilitates AD-like pathologies in both the gut and the brain of 3xTg mice in a C/EBPß/δ-secretase-dependent manner. Vagotomy selectively blunts this signaling, attenuates Aß and Tau pathologies, and restores learning and memory. Aß or Tau fibrils or AD patient brain lysates injected into the colon propagate from the gut into the brain via the vagus nerve, triggering AD pathology and cognitive dysfunction. The results indicate that inflammation activates C/EBPß/δ-secretase and initiates AD-associated pathologies in the gut, which are subsequently transmitted to the brain via the vagus nerve.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Colitis/metabolismo , Colon/metabolismo , Proteínas tau/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Cisteína Endopeptidasas/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Sci Adv ; 6(31): eaba0466, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32832679

RESUMEN

The gut-brain axis is bidirectional, and gut microbiota influence brain disorders including Alzheimer's disease (AD). CCAAT/enhancer binding protein ß/asparagine endopeptidase (C/EBPß/AEP) signaling spatiotemporally mediates AD pathologies in the brain via cleaving both ß-amyloid precursor protein and Tau. We show that gut dysbiosis occurs in 5xFAD mice, and is associated with escalation of the C/EBPß/AEP pathway in the gut with age. Unlike that of aged wild-type mice, the microbiota of aged 3xTg mice accelerate AD pathology in young 3xTg mice, accompanied by active C/EBPß/AEP signaling in the brain. Antibiotic treatment diminishes this signaling and attenuates amyloidogenic processes in 5xFAD, improving cognitive functions. The prebiotic R13 inhibits this pathway and suppresses amyloid aggregates in the gut. R13-induced Lactobacillus salivarius antagonizes the C/EBPß/AEP axis, mitigating gut leakage and oxidative stress. Our findings support the hypothesis that C/EBPß/AEP signaling is activated by gut dysbiosis, implicated in AD pathologies in the gut.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Disbiosis/patología , Ratones
7.
FASEB J ; 34(6): 8596-8610, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32359121

RESUMEN

We previously reported that high levels of plasma neurotensin (NT), a gut hormone released from enteroendocrine cells of the small bowel, contribute to obesity and comorbid conditions. Gut microbiota has been implicated in the obesity development. Paneth cells are critical in maintaining gut microbiota composition and homeostasis by releasing antimicrobial proteins including α-defensins. The purpose of our current study was to determine the possible role of NT in gut microbiota composition and α-defensin gene expression associated with obesity. Here we show that the ratio of Firmicutes/Bacteroidetes (F/B ratio) and intestinal proinflammatory cytokines is significantly increased in NT+/+ mice fed with a high-fat diet (HFD) which were improved in NT-deficient mice. HFD disrupted the intestinal Mmp7/α-defensin axis, which was completely prevented in NT-/- mice. In addition, NT treatment inhibited DEFA5 expression and concurrent NF-κB activity, which was blocked by a pan PKC inhibitor (Gö6983) or an inhibitor for atypical PKCs (CRT0066854). More importantly, the shRNA-mediated knockdown of atypical PKCτ reversed NT-attenuated DEFA5 expression and increased NF-κB activity. NT contributes to the HFD-induced disruption of gut microbiota composition and α-defensin expression. PKCτ/λ plays a central role in NT-mediated α-defensin gene expression which might be mediated through the inhibition of NF-κB signaling pathways in Paneth cells.


Asunto(s)
Disbiosis/metabolismo , Inflamación/metabolismo , Metaloproteinasa 7 de la Matriz/metabolismo , Neurotensina/metabolismo , alfa-Defensinas/metabolismo , Tejido Adiposo/metabolismo , Animales , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Disbiosis/patología , Microbioma Gastrointestinal/fisiología , Inflamación/patología , Resistencia a la Insulina/fisiología , Intestinos/patología , Masculino , Ratones , Ratones Obesos , FN-kappa B/metabolismo , Obesidad/metabolismo , Células de Paneth/metabolismo , Transducción de Señal/fisiología
8.
Cell Res ; 30(1): 70-87, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31649329

RESUMEN

Lewy pathology, composed of α-Synuclein (α-Syn) inclusions, a hallmark of Parkinson's disease (PD), progressively spreads from the enteric nervous system (ENS) to the central nervous system (CNS). However, it remains unclear how this process is regulated at a molecular level. Here we show that δ-secretase (asparagine endopeptidase, AEP) cleaves both α-Syn at N103 and Tau at N368, and mediates their fibrillization and retrograde propagation from the gut to the brain, triggering nigra dopaminergic neuronal loss associated with Lewy bodies and motor dysfunction. α-Syn N103 and Tau N368 robustly interact with each other and are highly elevated in PD patients' gut and brain. Chronic oral administration of the neurotoxin rotenone induces AEP activation and α-Syn N103/Tau N368 complex formation in the gut, eliciting constipation and dopaminergic neuronal death in an AEP-dependent manner. Preformed fibrils (PFFs) of α-Syn N103/Tau N368 are more neurotoxic and compact, and aggregate more quickly along the vagus nerve than their FL/FL counterparts or the individual fragments' fibrils. Colonic injection of PFFs induces PD pathologies, motor dysfunctions, and cognitive impairments. Thus, δ-secretase plays a crucial role in initiating PD pathology progression from the ENS to the CNS.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/etiología , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animales , Encéfalo/enzimología , Tronco Encefálico , Línea Celular , Células Cultivadas , Colon , Tracto Gastrointestinal/enzimología , Humanos , Ratones , Ovillos Neurofibrilares , Enfermedad de Parkinson/patología , Fosforilación , Ratas , Rotenona/toxicidad , Sinucleinopatías/etiología , Nervio Vago , alfa-Sinucleína/administración & dosificación , alfa-Sinucleína/química , Proteínas tau/administración & dosificación , Proteínas tau/química
9.
Am J Pathol ; 189(11): 2221-2232, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31472109

RESUMEN

Recent evidence has demonstrated that reactive oxygen (eg, hydrogen peroxide) can activate host cell signaling pathways that function in repair. We show that mice deficient in their capacity to generate reactive oxygen by the NADPH oxidase 2 holoenzyme, an enzyme complex highly expressed in neutrophils and macrophages, have disrupted capacity to orchestrate signaling events that function in mucosal repair. Similar observations were made for mice after neutrophil depletion, pinpointing this cell type as the source of the reactive oxygen driving oxidation-reduction protein signaling in the epithelium. To simulate epithelial exposure to high levels of reactive oxygen produced by neutrophils and gain new insight into this oxidation-reduction signaling, epithelial cells were treated with hydrogen peroxide, biochemical experiments were conducted, and a proteome-wide screen was performed using isotope-coded affinity tags to detect proteins oxidized after exposure. This analysis implicated signaling pathways regulating focal adhesions, cell junctions, and maintenance of the cytoskeleton. These pathways are also known to act via coordinated phosphorylation events within proteins that constitute the focal adhesion complex, including focal adhesion kinase and Crk-associated substrate. We identified the Rho family small GTP-binding protein Ras-related C3 botulinum toxin substrate 1 and p21 activated kinases 2 as operational in these signaling and localization pathways. These data support the hypothesis that reactive oxygen species from neutrophils can orchestrate epithelial cell-signaling events functioning in intestinal repair.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Intestinos/lesiones , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiología , Intestinos/efectos de los fármacos , Intestinos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2/genética , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/fisiología
10.
Gastroenterology ; 157(1): 179-192.e2, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30930024

RESUMEN

BACKGROUND & AIMS: Reduced gastrointestinal (GI) motility is a feature of disorders associated with intestinal dysbiosis and loss of beneficial microbes. It is not clear how consumption of beneficial commensal microbes, marketed as probiotics, affects the enteric nervous system (ENS). We studied the effects of the widely used probiotic and the commensal Lactobacillus rhamnosus GG (LGG) on ENS and GI motility in mice. METHODS: Conventional and germ free C57B6 mice were gavaged with LGG and intestinal tissues were collected; changes in the enteric neuronal subtypes were assessed by real-time polymerase chain reaction, immunoblots, and immunostaining. Production of reactive oxygen species (ROS) in the jejunal myenteric plexi and phosphorylation (p) of mitogen-activated protein kinase 1 (MAPK1) in the enteric ganglia were assessed by immunoblots and immunostaining. Fluorescence in situ hybridization was performed on jejunal cryosections with probes to detect formyl peptide receptor 1 (FPR1). GI motility in conventional mice was assessed after daily gavage of LGG for 1 week. RESULTS: Feeding of LGG to mice stimulated myenteric production of ROS, increased levels of phosphorylated MAPK1, and increased expression of choline acetyl transferase by neurons (P < .001). These effects were not observed in mice given N-acetyl cysteine (a ROS inhibitor) or LGGΩSpaC (an adhesion-mutant strain of LGG) or FPR1-knockout mice. Gavage of mice with LGG for 1 week significantly increased stool frequency, reduced total GI transit time, and increased contractions of ileal circular muscle strips in ex vivo experiments (P < .05). CONCLUSIONS: Using mouse models, we found that LGG-mediated signaling in the ENS requires bacterial adhesion, redox mechanisms, and FPR1. This pathway might be activated to increase GI motility in patients.


Asunto(s)
Motilidad Gastrointestinal/fisiología , Tránsito Gastrointestinal/fisiología , Íleon/metabolismo , Yeyuno/metabolismo , Lacticaseibacillus rhamnosus , Plexo Mientérico/metabolismo , Neuronas/metabolismo , Probióticos , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Colina O-Acetiltransferasa/metabolismo , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Motilidad Gastrointestinal/efectos de los fármacos , Tránsito Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Íleon/efectos de los fármacos , Íleon/inervación , Hibridación Fluorescente in Situ , Yeyuno/efectos de los fármacos , Yeyuno/inervación , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Contracción Muscular/efectos de los fármacos , Plexo Mientérico/citología , Neuronas/efectos de los fármacos , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Formil Péptido/genética
11.
Tissue Barriers ; 6(3): 1539595, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30404570

RESUMEN

The mammalian intestine harbors a highly complex and abundant ensemble of bacteria that flourish in a nutrient-rich environment while profoundly influencing many aspects of host biology. The intestine coevolved with its resident microbes in a manner where the mucosa developed a barrier function to segregate the resident microbes from the rest of the body, and yet paradoxically, allowing integration of microbial signals for the host benefit. In this review, we provided a comprehensive overview of why the gut microbiota is key to the efficient development and maintenance of the intestinal barrier. We also highlighted how a destabilized equilibrium between gut microbiota and the host may eventuate in a wide range of intestinal diseases characterized by the disrupted intestinal barrier. Finally, the review delineated how microenvironmental changes in the injured mucosa result in an enrichment of a pro-regenerating consortium of bacteria, which augments mucosal wound repair and restoration of barrier functions.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Cicatrización de Heridas/inmunología
12.
Nat Microbiol ; 1: 15021, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27571978

RESUMEN

The mammalian intestine houses a complex microbial community, which influences normal epithelial growth and development, and is integral to the repair of damaged intestinal mucosa(1-3). Restitution of injured mucosa involves the recruitment of immune cells, epithelial migration and proliferation(4,5). Although microenvironmental alterations have been described in wound healing(6), a role for extrinsic influences, such as members of the microbiota, has not been reported. Here, we show that a distinct subpopulation of the normal mucosal-associated gut microbiota expands and preferentially colonizes sites of damaged murine mucosa in response to local environmental cues. Our results demonstrate that formyl peptide receptor 1 (FPR1) and neutrophilic NADPH oxidase (NOX2) are required for the rapid depletion of microenvironmental oxygen and compensatory responses, resulting in a dramatic enrichment of an anaerobic bacterial consortium. Furthermore, the dominant member of this wound-mucosa-associated microbiota, Akkermansia muciniphila (an anaerobic, mucinophilic gut symbiont(7,8)), stimulated proliferation and migration of enterocytes adjacent to the colonic wounds in a process involving FPR1 and intestinal epithelial-cell-specific NOX1-dependent redox signalling. These findings thus demonstrate how wound microenvironments induce the rapid emergence of 'probiont' species that contribute to enhanced repair of mucosal wounds. Such microorganisms could be exploited as potential therapeutics.


Asunto(s)
Bacterias Anaerobias/crecimiento & desarrollo , Microbioma Gastrointestinal , Mucosa Intestinal/lesiones , Mucosa Intestinal/microbiología , Heridas y Lesiones/microbiología , Anaerobiosis , Animales , Movimiento Celular , Proliferación Celular , Enterocitos/fisiología , Ratones , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 2/metabolismo , Receptores de Formil Péptido/metabolismo
13.
Toxins (Basel) ; 7(10): 4099-110, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26473925

RESUMEN

Most pathogenic, non-O1/non-O139 serogroup Vibrio cholerae strains cause diarrheal disease in the absence of cholera toxin. Instead, many use Type 3 Secretion System (T3SS) mediated mechanisms to disrupt host cell homeostasis. We identified a T3SS effector protein, VopX, which is translocated into mammalian cells during in vitro co-culture. In a S. cerevisiae model system, we found that expression of VopX resulted in a severe growth defect that was partially suppressed by a deletion of RLM1, encoding the terminal transcriptional regulator of the Cell Wall Integrity MAP kinase (CWI) regulated pathway. Growth of yeast cells in the presence of sorbitol also suppressed the defect, supporting a role for VopX in destabilizing the cell wall. Expression of VopX activated expression of ß-galactosidase from an RLM1-reponsive element reporter fusion, but failed to do so in cells lacking MAP kinases upstream of Rlm1. The results suggest that VopX inhibits cell growth by stimulating the CWI pathway through Rlm1. Rlm1 is an ortholog of mammalian MEF2 transcription factors that are proposed to regulate cell differentiation, proliferation, and apoptosis. The collective findings suggest that VopX contributes to disease by activating MAP kinase cascades that elicit changes in cellular transcriptional programs.


Asunto(s)
Proteínas de Dominio MADS/genética , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sistemas de Secreción Tipo III/genética , Vibrio cholerae/patogenicidad , Factores de Virulencia/genética , Ciclo Celular/genética , Pared Celular/enzimología , Pared Celular/genética , Eliminación de Gen , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Vibrio cholerae/genética
14.
J Clin Invest ; 125(3): 1215-27, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25664854

RESUMEN

Epithelial restitution is an essential process that is required to repair barrier function at mucosal surfaces following injury. Prolonged breaches in epithelial barrier function result in inflammation and further damage; therefore, a better understanding of the epithelial restitution process has potential for improving the development of therapeutics. In this work, we demonstrate that endogenous annexin A1 (ANXA1) is released as a component of extracellular vesicles (EVs) derived from intestinal epithelial cells, and these ANXA1-containing EVs activate wound repair circuits. Compared with healthy controls, patients with active inflammatory bowel disease had elevated levels of secreted ANXA1-containing EVs in sera, indicating that ANXA1-containing EVs are systemically distributed in response to the inflammatory process and could potentially serve as a biomarker of intestinal mucosal inflammation. Local intestinal delivery of an exogenous ANXA1 mimetic peptide (Ac2-26) encapsulated within targeted polymeric nanoparticles (Ac2-26 Col IV NPs) accelerated healing of murine colonic wounds after biopsy-induced injury. Moreover, one-time systemic administration of Ac2-26 Col IV NPs accelerated recovery following experimentally induced colitis. Together, our results suggest that local delivery of proresolving peptides encapsulated within nanoparticles may represent a potential therapeutic strategy for clinical situations characterized by chronic mucosal injury, such as is seen in patients with IBD.


Asunto(s)
Anexina A1/fisiología , Exosomas/fisiología , Mucosa Intestinal/fisiopatología , Animales , Anexina A1/administración & dosificación , Antiinflamatorios/administración & dosificación , Línea Celular , Colitis/sangre , Colitis/fisiopatología , Humanos , Mucosa Intestinal/efectos de los fármacos , Ratones Noqueados , Nanopartículas , Péptidos/administración & dosificación , Cicatrización de Heridas
15.
EMBO J ; 32(23): 3017-28, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24141879

RESUMEN

The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryotic-eukaryotic cross-talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)-dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox-mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential.


Asunto(s)
Proliferación Celular , Drosophila/microbiología , Intestinos/citología , Larva/citología , NADH NADPH Oxidorreductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Madre/citología , Animales , Diferenciación Celular , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Histonas/metabolismo , Interacciones Huésped-Patógeno , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Lactobacillus/patogenicidad , Larva/metabolismo , Larva/microbiología , Ratones , NADPH Oxidasa 1 , Oxidación-Reducción , Fosforilación , Transducción de Señal , Células Madre/metabolismo , Células Madre/microbiología , Simbiosis
16.
J Clin Invest ; 123(1): 443-54, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23241962

RESUMEN

N-formyl peptide receptors (FPRs) are critical regulators of host defense in phagocytes and are also expressed in epithelia. FPR signaling and function have been extensively studied in phagocytes, yet their functional biology in epithelia is poorly understood. We describe a novel intestinal epithelial FPR signaling pathway that is activated by an endogenous FPR ligand, annexin A1 (ANXA1), and its cleavage product Ac2-26, which mediate activation of ROS by an epithelial NADPH oxidase, NOX1. We show that epithelial cell migration was regulated by this signaling cascade through oxidative inactivation of the regulatory phosphatases PTEN and PTP-PEST, with consequent activation of focal adhesion kinase (FAK) and paxillin. In vivo studies using intestinal epithelial specific Nox1(-/-IEC) and AnxA1(-/-) mice demonstrated defects in intestinal mucosal wound repair, while systemic administration of ANXA1 promoted wound recovery in a NOX1-dependent fashion. Additionally, increased ANXA1 expression was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of ulcerative colitis patients compared with normal intestinal mucosa. Our findings delineate a novel epithelial FPR1/NOX1-dependent redox signaling pathway that promotes mucosal wound repair.


Asunto(s)
Anexina A1/metabolismo , Colitis Ulcerosa/metabolismo , Mucosa Intestinal/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasas/metabolismo , Transducción de Señal , Cicatrización de Heridas , Animales , Anexina A1/genética , Línea Celular , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Femenino , Regulación de la Expresión Génica/genética , Humanos , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , NADH NADPH Oxidorreductasas/genética , NADPH Oxidasa 1 , NADPH Oxidasas/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Péptidos/genética , Péptidos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
J Biol Chem ; 286(44): 38448-38455, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21921027

RESUMEN

The normal microbial occupants of the mammalian intestine are crucial for maintaining gut homeostasis, yet the mechanisms by which intestinal cells perceive and respond to the microbiota are largely unknown. Intestinal epithelial contact with commensal bacteria and/or their products has been shown to activate noninflammatory signaling pathways, such as extracellular signal-related kinase (ERK), thus influencing homeostatic processes. We previously demonstrated that commensal bacteria stimulate ERK pathway activity via interaction with formyl peptide receptors (FPRs). In the current study, we expand on these findings and show that commensal bacteria initiate ERK signaling through rapid FPR-dependent reactive oxygen species (ROS) generation and subsequent modulation of MAP kinase phosphatase redox status. ROS generation induced by the commensal bacteria Lactobacillus rhamnosus GG and the FPR peptide ligand, N-formyl-Met-Leu-Phe, was abolished in the presence of selective inhibitors for G protein-coupled signaling and FPR ligand interaction. In addition, pretreatment of cells with inhibitors of ROS generation attenuated commensal bacteria-induced ERK signaling, indicating that ROS generation is required for ERK pathway activation. Bacterial colonization also led to oxidative inactivation of the redox-sensitive and ERK-specific phosphatase, DUSP3/VHR, and consequent stimulation of ERK pathway signaling. Together, these data demonstrate that commensal bacteria and their products activate ROS signaling in an FPR-dependent manner and define a mechanism by which cellular ROS influences the ERK pathway through a redox-sensitive regulatory circuit.


Asunto(s)
Fosfatasa 3 de Especificidad Dual/metabolismo , Enterobacteriaceae/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Bacteriana de la Expresión Génica , Intestinos/microbiología , Oxidación-Reducción , Receptores de Formil Péptido/metabolismo , Animales , Línea Celular , Proliferación Celular , Células Epiteliales/metabolismo , Humanos , Lacticaseibacillus rhamnosus/metabolismo , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno
18.
Infect Immun ; 79(4): 1728-40, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21282418

RESUMEN

AM-19226 is a pathogenic O39 serogroup Vibrio cholerae strain that lacks the typical virulence factors for colonization (toxin-coregulated pilus [TCP]) and toxin production (cholera toxin [CT]) and instead encodes a type III secretion system (T3SS). The mechanism of pathogenesis is unknown, and few effector proteins have been identified. We therefore undertook a survey of the open reading frames (ORFs) within the ∼49.7-kb T3SS genomic island to identify potential effector proteins. We identified 15 ORFs for their ability to inhibit growth when expressed in yeast and then used a ß-lactamase (TEM1) fusion reporter system to demonstrate that 11 proteins were bona fide effectors translocated into HeLa cells in vitro in a T3SS-dependent manner. One effector, which we named VopX (A33_1663), is conserved only in V. cholerae and Vibrio parahaemolyticus T3SS-positive strains and has not been previously studied. A vopX deletion reduces the ability of strain AM-19226 to colonize in vivo, and the bile-induced expression of a vopX-lacZ transcriptional fusion in vitro is regulated by the T3SS-encoded transcriptional regulators VttR(A) and VttR(B). An RLM1 yeast deletion strain rescued the growth inhibition induced by VopX expression, suggesting that VopX interacts with components of the cell wall integrity mitogen-activated protein kinase (MAPK) pathway. The collective results show that the V. cholerae T3SS encodes multiple effector proteins, one of which likely has novel activities that contribute to disease via interference with eukaryotic signaling pathways.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Factores de Virulencia/genética , Animales , Secuencia de Bases , Western Blotting , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Ratones , Microscopía Confocal , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Infect Immun ; 78(6): 2554-70, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20385759

RESUMEN

Strain AM-19226 is a pathogenic non-O1/non-O139 serogroup Vibrio cholerae strain that does not encode the toxin-coregulated pilus or cholera toxin but instead causes disease using a type three secretion system (T3SS). Two genes within the T3SS pathogenicity island, herein named vttR(A) (locus tag A33_1664) and vttR(B) (locus tag A33_1675), are predicted to encode proteins that show similarity to the transcriptional regulator ToxR, which is found in all strains of V. cholerae. Strains with a deletion of vttR(A) or vttR(B) showed attenuated colonization in vivo, indicating that the T3SS-encoded regulatory proteins play a role in virulence. lacZ transcriptional reporter fusions to intergenic regions upstream of genes encoding the T3SS structural components identified growth in the presence of bile as a condition that modulates gene expression. Under this condition, VttR(A) and VttR(B) were necessary for maximal gene expression. In contrast, growth in bile did not substantially alter the expression of a reporter fusion to the vopF gene, which encodes an effector protein. Increased vttR(B) reporter fusion activity was observed in a DeltavttR(B) strain background, suggesting that VttR(B) may regulate its own expression. The collective results are consistent with the hypothesis that T3SS-encoded regulatory proteins are essential for pathogenesis and control the expression of selected T3SS genes.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/biosíntesis , Bilis/metabolismo , Regulación Bacteriana de la Expresión Génica , Estrés Fisiológico , Factores de Transcripción/biosíntesis , Vibrio cholerae no O1/efectos de los fármacos , Animales , Fusión Artificial Génica , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Eliminación de Gen , Genes Reporteros , Ratones , Factores de Transcripción/genética , Vibrio cholerae no O1/genética , Virulencia , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/genética
20.
Infect Immun ; 74(9): 5161-8, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16926408

RESUMEN

We applied an immunoscreening technique, in vivo-induced antigen technology (IVIAT), to identify immunogenic bacterial proteins expressed during human infection with Salmonella enterica serovar Typhi, the cause of typhoid fever. We were able to assign a functional classification to 25 of 35 proteins identified by IVIAT. Of these 25, the majority represent proteins with known or potential roles in the pathogenesis of S. enterica. These include proteins implicated in fimbrial structure and biogenesis, antimicrobial resistance, heavy metal transport, bacterial adhesion, and extracytoplasmic substrate trafficking as well as secreted hydrolases. The 10 remaining antigens represent proteins with unknown functions. Of the 35 identified antigens, four had no immunoreactivity when probed with control sera from individuals never exposed to serovar Typhi organisms; these four included PagC, TcfB, and two antigens of unknown function encoded by STY0860 and STY3683. PagC is a virulence factor known to be upregulated in vivo in S. enterica serovar Typhimurium infection of mice. TcfB is the major structural subunit of a fimbrial operon found in serovar Typhi with no homolog in serovar Typhimurium organisms. By examining differential immunoreactivities in acute- versus convalescent-phase human serum samples, we found specific anti-PagC and anti-TcfB immunoglobulin G responses in patients with serovar Typhi bacteremia. Serovar Typhi antigens identified by IVIAT warrant further evaluation for their contributions to pathogenesis, and they may have diagnostic, therapeutic, or preventive uses.


Asunto(s)
Antígenos Bacterianos/análisis , Proteínas Bacterianas/análisis , Proteínas de la Membrana/análisis , Salmonella typhi/inmunología , Fiebre Tifoidea/inmunología , Antígenos Bacterianos/clasificación , Antígenos Bacterianos/genética , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Humanos , Inmunoensayo , Inmunoglobulina G/sangre , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Salmonella typhi/genética , Fiebre Tifoidea/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...