Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 29(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38257317

RESUMEN

The demand for plant-based proteins has increased remarkably over the last decade. Expanding the availability and variety of plant-based protein options has shown positive potential. This study aimed to investigate the qualitative and quantitative changes in amino acids of yellow and red quinoa seeds (YQ and RQ) during a 9-day germination period. The results showed that the germination process led to an increase in the total amino acids by 7.43% and 14.36% in the YQ and RQ, respectively. Both varieties exhibited significant (p < 0.05) increases in non-essential and essential amino acids, including lysine, phenylalanine, threonine, and tyrosine. The content of non-essential amino acids nearly reached the standard values found in chicken eggs. These results were likely attributed to the impact of the germination process in increasing enzymes activity and decreasing anti-nutrient content (e.g., saponins). A linear relationship between increased seeds' hydration and decreased saponins content was observed, indicating the effect of water absorption in changing the chemical composition of the plant. Both sprouts showed positive germination progression; however, the sprouted RQ showed a higher germination rate than the YQ (57.67% vs. 43.33%, respectively). Overall, this study demonstrates that germination is a promising technique for enhancing the nutritional value of quinoa seeds, delivering sprouted quinoa seeds as a highly recommended source of high-protein grains with notable functional properties.


Asunto(s)
Antifibrinolíticos , Chenopodium quinoa , Saponinas , Aminoácidos , Proteínas de Plantas , Lisina , Plantones
2.
Biomolecules ; 13(11)2023 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-38002298

RESUMEN

Pregnancy and lactation are critical periods for human well-being and are sensitive windows for pollutant exposure. Bisphenol A (BPA) is well demonstrated as a toxicant and has been replaced in the plastic industry with other bisphenol analogs that share similarities in structure and characteristics, most commonly Bisphenol S (BPS) and Bisphenol F (BPF). Maternal exposure to BPS or BPF can result in their accumulation in the fetal compartment, leading to chronic exposure and potentially limiting normal fetal growth and development. This review summarizes considerable findings of epidemiological or experimental studies reporting associations between BPS or BPF and impaired fetal growth and development. Briefly, the available findings indicate that exposure to the two bisphenol analogs during pregnancy and lactation can result in multiple disturbances in the offspring, including fetal growth restrictions, neurological dysfunctions, and metabolic disorders with the potential to persist throughout childhood. The occurrence of premature births may also be attributed to exposure to the two bisphenols. The possible mechanisms of actions by which the two bisphenols can induce such effects can be attributed to a complex of interactions between the physiological mechanisms, including impaired placental functioning and development, dysregulation of gene expression, altered hormonal balance, and disturbances in immune responses as well as induced inflammations and oxidative stress. In conclusion, the available evidence suggests that BPS and BPF have a toxic potential in a compartment level to BPA. Future research is needed to provide more intensive information; long-term studies and epidemiological research, including a wide scale of populations with different settings, are recommended. Public awareness regarding the safety of BPA-free products should also be enhanced, with particular emphasis on educating individuals responsible for the well-being of children.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Niño , Humanos , Embarazo , Femenino , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología , Placenta/metabolismo , Fenoles/toxicidad , Fenoles/metabolismo , Compuestos de Bencidrilo/toxicidad , Vitaminas
3.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36770608

RESUMEN

Numerous food organizations have identified excessive calorie consumption and accompanying ailments as significant health risks associated with high sugar consumption. Administering stevioside (ST), sucralose (SU), and the two synergically (SU+ST) affected normal rats' weight gain. In the current study, SU showed the highest undesired effect. Indeed, administering the three treatments to diabetic rats (DR) did not improve the rats' weight gain. Although, insulin injection synergically with the treatments improved the weight gain, as recorded after three weeks. The best-improving rate was observed in the ST group. After the administration of ST and ST+SU to the DR, the blood glucose level (GL) was positively affected, with SU having no effects on reducing the GL. A considerable reduction in serum insulin (SIL) was noted in the DR+SU group. On the contrary, ST did not negatively affect the SIL, rather an improvement was recorded. In addition, giving SU did not significantly affect the ALT level in the DR or normal rats (NR). A significant improvement in total bilirubin (TBILI) was observed when insulin was injected with ST or SU in DR groups. Further, triglycerides (TG) after administering ST, SU, or ST+SU to NR had no significant difference compared to the control group (NR). Although, the three treatments markedly but not significantly lowered TG in the DR. For total cholesterol (CHO), both DR and NR had no significant effect after the three treatments. No histopathological alterations were recorded in the NR group. Diffuse and severe atrophy of the islands of Langerhans due to depletion of their cells and mild papillary hyperplasia of the pancreatic ducts were represented by a slightly folded ductal basement membrane and newly formed ductules in STZ-DR. Simultaneous atrophy and absence of the cells of islands of Langerhans besides ductal hyperplasia were evident in DR+SU. Hyperplastic ductal epithelium and atrophic Langerhans cells were seen in DR+SU+In. Degeneration and mild atrophy were observed in the islands of Langerhans structures. There was essentially no noticeable change after utilizing ST. A slight shrinkage of the Langerhans' islets was detected in DR+ST. In DR+ST+In, no histopathological alterations in the islands of Langerhans were recorded. Congestion in the stromal blood vessels associated with degenerative and necrotic changes in the cells of the islands of Langerhans in DR+SU+ST was observed. In NR+SU, congestion of the blood vessels associated with mild atrophy in the islands of Langerhans and dilatation in stromal blood vessels was noticed. In conclusion, ST is safe, and SU should be taken cautiously, such as mixing with ST and/or taken at a very low concentration to avoid its drastic effect on the human body.


Asunto(s)
Diabetes Mellitus Experimental , Resistencia a la Insulina , Islotes Pancreáticos , Ratas , Animales , Humanos , Glucemia , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Hiperplasia/patología , Sacarosa/farmacología , Insulina , Aumento de Peso
4.
Foods ; 12(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38231757

RESUMEN

Obesity is a major health concern associated with serious conditions such as type 2 diabetes and cardiovascular diseases. This study investigated the potential anti-obesity effects of heat-treated parsley and mallow extracts (PE and ME, respectively) in high-fat diet (HFD)-fed rats. The selected herbs underwent three heat treatments (boiling, blanching, and microwaving), and the most effective treatment was orally administered to the HFD rats for eight weeks. All three treatments effectively increased the total phenolic content (TPC) and antioxidant capacity of the herbs, with boiling treatment exhibiting the most significant increase. Boiled herbs demonstrated approximately 29% higher TPC and an impressive 348% increase in antioxidant activity compared to the other treatments. Oral administration of the boiled herb extracts to the HFD rats resulted in significant reductions in body weight, total cholesterol, triglycerides, and LDL cholesterol levels, while elevating the HDL cholesterol levels compared to the positive control rats. Additionally, the boiled herb extracts exhibited antioxidant, hepatoprotective, and nephroprotective effects. Notably, PE displayed more significant anti-obesity properties compared to ME, potentially due to higher TPC and antioxidant activity observed in PE compared to ME. In conclusion, this study highlights the potential positive effects of boiled parsley against obesity and recommends boiling treatment as the preferred method when heat treatment is required for herbs.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36497992

RESUMEN

Bisphenol A, a well-known endocrine-disrupting chemical, has been replaced with its analogs bisphenol S (BPS) and bisphenol F (BPF) over the last decade due to health concerns. BPS and BPF are present in relatively high concentrations in different products, such as food products, personal care products, and sales receipts. Both BPS and BPF have similar structural and chemical properties to BPA; therefore, considerable scientific efforts have investigated the safety of their exposure. In this review, we summarize the findings of relevant epidemiological studies investigating the association between urinary concentrations of BPS and/or BPF with the incidence of obesity or diabetes. The results showed that BPS and BPF were detected in many urinary samples at median concentrations ranging from 0.03 to 0.4 µg·L-1. At this exposure level, BPS median urinary concentrations (0.4 µg·L-1) were associated with the development of obesity. At a lower exposure level (0.1-0.03 µg·L-1), two studies showed an association with developing diabetes. For BPF exposure, only one study showed an association with obesity. However, most of the reported studies only assessed BPS exposure levels. Furthermore, we also summarize the findings of experimental studies in vivo and in vitro regarding our aim; results support the possible obesogenic effects/metabolic disorders mediated by BPS and/or BPF exposure. Unexpectedly, BPS may promote worse obesogenic effects than BPA. In addition, the possible mode of action underlying the obesogenic effects of BPS might be attributed to various pathophysiological mechanisms, including estrogenic or androgenic activities, alterations in the gene expression of critical adipogenesis-related markers, and induction of oxidative stress and an inflammatory state. Furthermore, susceptibility to the adverse effects of BPS may be altered by sex differences according to the results of both epidemiological and experimental studies. However, the possible mode of action underlying these sex differences is still unclear. In conclusion, exposure to BPS or BPF may promote the development of obesity and diabetes. Future approaches are highly needed to assess the safety of BPS and BPF regarding their potential effects in promoting metabolic disturbances. Other studies in different populations and settings are highly suggested.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus , Femenino , Humanos , Masculino , Compuestos de Bencidrilo/orina , Obesidad/inducido químicamente , Obesidad/epidemiología , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/epidemiología
6.
Nutrients ; 14(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35745095

RESUMEN

Studying the factors that cause diabetes and conducting clinical trials has become a priority, particularly raising awareness of the dangers of the disease and how to overcome it. Diet habits are one of the most important risks that must be understood and carefully applied to reduce the risk of diabetes. Nowadays, consuming enough home-cooked food has become a challenge, particularly with modern life performance, pushing people to use processed foods. Ultra-processed food (UPF) consumption has grown dramatically over the last few decades worldwide. This growth is accompanied by the increasing prevalence of non-communicable diseases (NCDs) such as cardiovascular diseases, hypertension, and type 2 diabetes. UPFs represent three main health concerns: (i) they are generally high in non-nutritive compounds such as sugars, sodium, and trans fat and low in nutritional compounds such as proteins and fibers, (ii) they contain different types of additives that may cause severe health issues, and (iii) they are presented in packages made of synthetic materials that may also cause undesirable health side-effects. The association between the consumption of UPF and the risk of developing diabetes was discussed in this review. The high consumption of UPF, almost more than 10% of the diet proportion, could increase the risk of developing type 2 diabetes in adult individuals. In addition, UPF may slightly increase the risk of developing gestational diabetes. Further efforts are needed to confirm this association; studies such as randomized clinical trials and prospective cohorts in different populations and settings are highly recommended. Moreover, massive improvement in foods' dietary guidelines to increase the awareness of UPF and their health concerns is highly recommended.


Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Dieta/efectos adversos , Comida Rápida/efectos adversos , Conducta Alimentaria , Manipulación de Alimentos , Humanos , Estudios Prospectivos
7.
Antioxidants (Basel) ; 11(6)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35740019

RESUMEN

The ameliorative and antioxidative stress effects of probiotic-enriched fermented oat (FOE) or fermented oat with honey (HFOE) extracts on streptozotocin-induced diabetes in rats were examined. The total phenolic content (TPC) and antioxidant activity (AOA) were increased in FOE and HFOE after 72 h of fermentation, and γ-aminobutyric acid (GABA) reached 7.35 mg 100 g-1 in FOE and 8.49 mg 100 g-1 in HFOE. The ß-glucan levels were slightly decreased to 2.45 g 100 g-1 DW in FOE and 2.63 g 100 g-1 DW in HFOE. The antidiabetic and hypolipidemic properties of FOE and HFOE were studied in a designed animal model with seven treated groups for 6 weeks. Groups were treated as follows: group 1 (negative group, NR) and group 2 (diabetic rats, DR) were administered 7 mL distilled water orally per day; group 3 (DR + MET) rats were orally administered 50 mg standard drug Metformin kg-1 daily; group 4 (DR + FOE1) diabetic rats were orally administered 3.5 mL FOE daily; group 5 (DR + FOE2) rats were orally administered 7 mL FOE daily; group 6 (DR + HFOE1) rats were orally administered 3.5 mL HFOE daily; and group 7 (DR + HFOE2) rats were orally administered 7 mL HFOE daily. The HFOE at the high dose had a synergistic effect, lowering random blood glucose (RBG) and fasting blood glucose (FBG). The hypolipidemic potential of HFOE at the high dose was indicated by significant reductions in triglycerides (TG), total cholesterol (CHO), high- and low-density lipoproteins (HDL and LDL), and very-low-density lipoproteins (VLDL). In addition, 7 mL of HFOE improved liver and kidney function more effectively than other fermented extracts or Metformin. As well as the antioxidant enzyme activity, reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and malonaldehyde (MDA) were significantly enhanced after the administration of HFOE at 7 mL by 68.6%, 71.5%, 55.69%, and 15.98%, respectively, compared to the DR group. In conclusion, administration of L. plantarum-fermented oats supplemented with honey demonstrated antidiabetic effects and a potential approach for controlling glucose levels and lipid profiles, and protecting against oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...