Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245232

RESUMEN

eIF4E, the mRNA cap-binding protein, is well known as a general initiation factor allowing for mRNA-ribosome interaction and cap-dependent translation in eukaryotic cells. In this review we focus on eIF4E and its interactors in unicellular organisms such as yeasts and protozoan eukaryotes. In a first part, we describe eIF4Es from yeast species such as Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces pombe. In the second part, we will address eIF4E and interactors from parasite unicellular species-trypanosomatids and marine microorganisms-dinoflagellates. We propose that different strategies have evolved during evolution to accommodate cap-dependent translation to differing requirements. These evolutive "adjustments" involve various forms of eIF4E that are not encountered in all microorganismic species. In yeasts, eIF4E interactors, particularly p20 and Eap1 are found exclusively in Saccharomycotina species such as S. cerevisiae and C. albicans. For protozoan parasites of the Trypanosomatidae family beside a unique cap4-structure located at the 5'UTR of all mRNAs, different eIF4Es and eIF4Gs are active depending on the life cycle stage of the parasite. Additionally, an eIF4E-interacting protein has been identified in Leishmania major which is important for switching from promastigote to amastigote stages. For dinoflagellates, little is known about the structure and function of the multiple and diverse eIF4Es that have been identified thanks to widespread sequencing in recent years.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Proteínas Fúngicas/metabolismo , Biosíntesis de Proteínas/genética , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Candida albicans/genética , Candida albicans/metabolismo , Dinoflagelados/genética , Dinoflagelados/metabolismo , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Proteínas Fúngicas/genética , Fosforilación , Unión Proteica , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trypanosomatina/genética , Trypanosomatina/metabolismo
2.
ACS Synth Biol ; 8(4): 744-757, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30901519

RESUMEN

The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development, and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis noninvasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, AsLOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photoactivated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate human eIF4E-dependent translation initiation in a mechanistically defined manner.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Optogenética/métodos , Iniciación de la Cadena Peptídica Traduccional/genética , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/genética , Regulación hacia Abajo/genética , Humanos , Unión Proteica/genética
3.
Sci Rep ; 8(1): 6707, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712996

RESUMEN

Yeast p20 is a small, acidic protein that binds eIF4E, the cap-binding protein. It has been proposed to affect mRNA translation and degradation, however p20's function as an eIF4E-binding protein (4E-BP) and its physiological significance has not been clearly established. In this paper we present data demonstrating that p20 is capable of binding directly to mRNA due to electrostatic interaction of a stretch of arginine and histidine residues in the protein with negatively charged phosphates in the mRNA backbone. This interaction contributes to formation of a ternary eIF4E/p20/capped mRNA complex that is more stable than complexes composed of capped mRNA bound to eIF4E in the absence of p20. eIF4E/p20 complex was found to have a more pronounced stimulatory effect on capped mRNA translation than purified eIF4E alone. Addition of peptides containing the eIF4E-binding domains present in p20 (motif  YTIDELF), in eIF4G (motif  YGPTFLL) or Eap1 (motif  YSMNELY) completely inhibited eIF4E-dependent capped mRNA translation (in vitro), but had a greatly reduced inhibitory effect when eIF4E/p20 complex was present. We propose that the eIF4E/p20/mRNA complex serves as a stable depository of mRNAs existing in a dynamic equilibrium with other complexes such as eIF4E/eIF4G (required for translation) and eIF4E/Eap1 (required for mRNA degradation).


Asunto(s)
Factor 4E Eucariótico de Iniciación/química , Complejo Proteico Nuclear de Unión a la Caperuza/química , ARN Mensajero/química , Proteínas de Saccharomyces cerevisiae/química , Factores Complejos Ternarios/química , Secuencia de Aminoácidos/genética , Arginina/química , Sitios de Unión , Factor 4E Eucariótico de Iniciación/genética , Histidina/química , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Motivos de Nucleótidos/genética , Unión Proteica/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores Complejos Ternarios/genética
4.
Methods ; 107: 57-62, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27020892

RESUMEN

We present a protocol that enables easy extraction of translating mRNAs by purification of tagged ribosomes and associated mRNAs. By studying three different examples of stress influenced genes, we demonstrate the effectiveness and compare our rapid method to an older protocol (Halbeisen et al., 2009).


Asunto(s)
Fraccionamiento Celular/métodos , Biología Molecular/métodos , ARN Mensajero/aislamiento & purificación , Ribosomas/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/química , ARN Mensajero/genética , Ribosomas/química
5.
PLoS One ; 7(11): e50773, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226381

RESUMEN

eIF4E, the cytoplasmatic cap-binding protein, is required for efficient cap-dependent translation. We have studied the influence of mutations that alter the activity and/or expression level of eIF4E on haploid and diploid cells in the yeast S. cerevisiae. Temperature-sensitive eIF4E mutants with reduced levels of expression and reduced cap-binding affinity clearly show a loss in haploid adhesion and diploid pseudohyphenation upon starvation for nitrogen. Some of these mutations affect the interaction of the cap-structure of mRNAs with the cap-binding groove of eIF4E. The observed reduction in adhesive and pseudohyphenating properties is less evident for an eIF4E mutant that shows reduced interaction with p20 (an eIF4E-binding protein) or for a p20-knockout mutant. Loss of adhesive and pseudohyphenating properties was not only observed for eIF4E mutants but also for knockout mutants of components of eIF4F such as eIF4B and eIF4G1. We conclude from these experiments that mutations that affect components of the eIF4F-complex loose properties such as adhesion and pseudohyphal differentiation, most likely due to less effective translation of required mRNAs for such processes.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Hifa/citología , Hifa/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Adhesión Celular , Diploidia , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Haploidia , Hifa/genética , Hifa/metabolismo , Mutación , Biosíntesis de Proteínas , Caperuzas de ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
6.
PLoS One ; 7(7): e42338, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22860115

RESUMEN

Ethanolamine phosphoglycerol (EPG) is a protein modification attached exclusively to eukaryotic elongation factor 1A (eEF1A). In mammals and plants, EPG is linked to conserved glutamate residues located in eEF1A domains II and III, whereas in the unicellular eukaryote Trypanosoma brucei, only domain III is modified by a single EPG. A biosynthetic precursor of EPG and structural requirements for EPG attachment to T. brucei eEF1A have been reported, but nothing is known about the EPG modifying enzyme(s). By expressing human eEF1A in T. brucei, we now show that EPG attachment to eEF1A is evolutionarily conserved between T. brucei and Homo sapiens. In contrast, S. cerevisiae eEF1A, which has been shown to lack EPG is not modified in T. brucei. Furthermore, we show that eEF1A cannot functionally complement across species when using T. brucei and S. cerevisiae as model organisms. However, functional complementation in yeast can be obtained using eEF1A chimera containing domains II or III from other species. In contrast, yeast domain I is strictly required for functional complementation in S. cerevisiae.


Asunto(s)
Prueba de Complementación Genética , Factor 1 de Elongación Peptídica/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Electroforesis en Gel de Poliacrilamida , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/química , Saccharomyces cerevisiae/genética , Espectrometría de Masas en Tándem , Trypanosoma brucei brucei/genética
7.
FEBS J ; 278(15): 2613-24, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21624055

RESUMEN

Covalent modifications of proteins often modulate their biological functions or change their subcellular location. Among the many known protein modifications, three are exceptional in that they only occur on single proteins: ethanolamine phosphoglycerol, diphthamide and hypusine. Remarkably, the corresponding proteins carrying these modifications, elongation factor 1A, elongation factor 2 and initiation factor 5A, are all involved in elongation steps of translation. For diphthamide and, in part, hypusine, functional essentiality has been demonstrated, whereas no functional role has been reported so far for ethanolamine phosphoglycerol. We review the biosynthesis, attachment and physiological roles of these unique protein modifications and discuss common and separate features of the target proteins, which represent essential proteins in all organisms.


Asunto(s)
Factor 5 Eucariótico de Iniciación/metabolismo , Histidina/análogos & derivados , Lisina/análogos & derivados , Factor 1 de Elongación Peptídica/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Fosfatidiletanolaminas/metabolismo , Animales , Histidina/metabolismo , Humanos , Lisina/metabolismo , Procesamiento Proteico-Postraduccional
9.
Trends Biochem Sci ; 35(2): 63-73, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19926289

RESUMEN

Translation in eukaryotes is a complex process that is closely regulated, mainly at the initiation step. Both universal and lineage-specific mechanisms regulate translation initiation. Considerable progress in our understanding of the regulation of translation has been achieved, but how these regulatory mechanisms evolved remains poorly understood. New discoveries in different fields suggest that the mechanisms that regulate translation emerged at different times during the evolution of eukaryotes, and that some initially evolved independently of the translation apparatus and were later incorporated into it. Overall, the emerging view suggests that 'tinkering' (i.e. co-opting and assembling molecules and regulatory mechanisms from other cellular processes) contributed importantly to the development of the mechanisms that regulate translation initiation during eukaryotic evolution.


Asunto(s)
Eucariontes/metabolismo , Evolución Molecular , Iniciación de la Cadena Peptídica Traduccional , Animales , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Humanos
10.
Proc Natl Acad Sci U S A ; 105(28): 9564-9, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18606994

RESUMEN

Translation initiation factors eIF4A and eIF4G form, together with the cap-binding factor eIF4E, the eIF4F complex, which is crucial for recruiting the small ribosomal subunit to the mRNA 5' end and for subsequent scanning and searching for the start codon. eIF4A is an ATP-dependent RNA helicase whose activity is stimulated by binding to eIF4G. We report here the structure of the complex formed by yeast eIF4G's middle domain and full-length eIF4A at 2.6-A resolution. eIF4A shows an extended conformation where eIF4G holds its crucial DEAD-box sequence motifs in a productive conformation, thus explaining the stimulation of eIF4A's activity. A hitherto undescribed interaction involves the amino acid Trp-579 of eIF4G. Mutation to alanine results in decreased binding to eIF4A and a temperature-sensitive phenotype of yeast cells that carry a Trp579Ala mutation as its sole source for eIF4G. Conformational changes between eIF4A's closed and open state provide a model for its RNA-helicase activity.


Asunto(s)
Factor 4A Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/química , ARN Helicasas/química , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
PLoS One ; 3(2): e1583, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18270573

RESUMEN

RNA helicases represent a large family of proteins implicated in many biological processes including ribosome biogenesis, splicing, translation and mRNA degradation. However, these proteins have little substrate specificity, making inhibition of selected helicases a challenging problem. The prototypical DEAD box RNA helicase, eIF4A, works in conjunction with other translation factors to prepare mRNA templates for ribosome recruitment during translation initiation. Herein, we provide insight into the selectivity of a small molecule inhibitor of eIF4A, hippuristanol. This coral-derived natural product binds to amino acids adjacent to, and overlapping with, two conserved motifs present in the carboxy-terminal domain of eIF4A. Mutagenesis of amino acids within this region allowed us to alter the hippuristanol-sensitivity of eIF4A and undertake structure/function studies. Our results provide an understanding into how selective targeting of RNA helicases for pharmacological intervention can be achieved.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Esteroles/farmacología , Animales , Sitios de Unión , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación , Ratones , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Esteroles/química
12.
Eukaryot Cell ; 5(12): 1969-79, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17041189

RESUMEN

The 5' cap structure of trypanosomatid mRNAs, denoted cap 4, is a complex structure that contains unusual modifications on the first four nucleotides. We examined the four eukaryotic initiation factor 4E (eIF4E) homologues found in the Leishmania genome database. These proteins, denoted LeishIF4E-1 to LeishIF4E-4, are located in the cytoplasm. They show only a limited degree of sequence homology with known eIF4E isoforms and among themselves. However, computerized structure prediction suggests that the cap-binding pocket is conserved in each of the homologues, as confirmed by binding assays to m(7)GTP, cap 4, and its intermediates. LeishIF4E-1 and LeishIF4E-4 each bind m(7)GTP and cap 4 comparably well, and only these two proteins could interact with the mammalian eIF4E binding protein 4EBP1, though with different efficiencies. 4EBP1 is a translation repressor that competes with eIF4G for the same residues on eIF4E; thus, LeishIF4E-1 and LeishIF4E-4 are reasonable candidates for serving as translation factors. LeishIF4E-1 is more abundant in amastigotes and also contains a typical 3' untranslated region element that is found in amastigote-specific genes. LeishIF4E-2 bound mainly to cap 4 and comigrated with polysomal fractions on sucrose gradients. Since the consensus eIF4E is usually found in 48S complexes, LeishIF4E-2 could possibly be associated with the stabilization of trypanosomatid polysomes. LeishIF4E-3 bound mainly m(7)GTP, excluding its involvement in the translation of cap 4-protected mRNAs. It comigrates with 80S complexes which are resistant to micrococcal nuclease, but its function is yet unknown. None of the isoforms can functionally complement the Saccharomyces cerevisiae eIF4E, indicating that despite their structural conservation, they are considerably diverged.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Leishmania major/metabolismo , Leishmania mexicana/metabolismo , Proteínas Protozoarias/metabolismo , Regiones no Traducidas 3' , Animales , Sitios de Unión/genética , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Regulación de la Expresión Génica , Genes Protozoarios , Técnicas In Vitro , Cinética , Leishmania major/genética , Leishmania mexicana/genética , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Análogos de Caperuza de ARN/genética , Análogos de Caperuza de ARN/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad de la Especie
13.
Mech Dev ; 122(4): 529-43, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15804566

RESUMEN

The Drosophila genome-sequencing project has revealed a total of seven genes encoding eight eukaryotic initiation factor 4E (eIF4E) isoforms. Four of them (eIF4E-1,2, eIF4E-3, eIF4E-4 and eIF4E-5) share exon/intron structure in their carboxy-terminal part and form a cluster in the genome. All eIF4E isoforms bind to the cap (m7GpppN) structure. All of them, except eIF4E-6 and eIF4E-8 were able to interact with Drosophila eIF4G or eIF4E-binding protein (4E-BP). eIF4E-1, eIF4E-2, eIF4E-3, eIF4E-4 and eIF4E-7 rescued a yeast eIF4E-deficient mutant in vivo. Only eIF4E-1 mRNAs and, at a significantly lower level, eIF4E3 and eIF4E-8 are expressed in embryos and throughout the life cycle of the fly. The transcripts of the remaining isoforms were detected from the third instar larvae onwards. This indicates the cap-binding activity relies mostly on eIF4E-1 during embryogenesis. This agrees with the proteomic analysis of the eIF4F complex purified from embryos and with the rescue of l(3)67Af, an embryonic lethal mutant for the eIF4E-1,2 gene, by transgenic expression of eIF4E-1. Overexpression of eIF4E-1 in wild-type embryos and eye imaginal discs results in phenotypic defects in a dose-dependent manner.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Genes de Insecto/genética , Envejecimiento/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Drosophila melanogaster/química , Factor 4E Eucariótico de Iniciación/química , Ojo/embriología , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Ojo/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteómica , Alineación de Secuencia
14.
Eur J Biochem ; 271(14): 2923-36, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15233788

RESUMEN

Eukaryotic initiation factor (eIF) 4B is part of the protein complex involved in the recognition and binding of mRNA to the ribosome. DrosophilaeIF4B is a single-copy gene that encodes two isoforms, termed eIF4B-L (52.2 kDa) and eIF4B-S (44.2 kDa), generated as a result of the alternative recognition of two polyadeynlation signals during transcription termination and subsequent alternative splicing of the two pre-mRNAs. Both eIF4B mRNAs and proteins are expressed during the entire embryogenesis and life cycle. The proteins are cytoplasmic with polarized distribution. The two isoforms bind RNA with the same affinity. eIF4B-L and eIF4B-S preferentially enhance cap-dependent over IRES-dependent translation initiation in a Drosophila cell-free translation system. RNA interference experiments suggest that eIF4B is required for cell survival, although only a modest reduction in rate of protein synthesis is observed. Overexpression of eIF4B in Drosophila cells in culture and in developing eye imaginal discs promotes cell proliferation.


Asunto(s)
División Celular/fisiología , Supervivencia Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas , Isoformas de Proteínas/metabolismo , Caperuzas de ARN , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Regulación del Desarrollo de la Expresión Génica , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Células Fotorreceptoras de Invertebrados/embriología , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestructura , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
15.
J Biol Chem ; 279(35): 37087-94, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15215245

RESUMEN

Ypr118w is a non-essential, low copy number gene product from Saccharomyces cerevisiae. It belongs to the PFAM family PF01008, which contains the alpha-, beta-, and delta-subunits of eukaryotic translation initiation factor eIF2B, as well as proteins of unknown function from all three kingdoms. Recently, one of those latter proteins from Bacillus subtilis has been characterized as a 5-methylthioribose-1-phosphate isomerase, an enzyme of the methionine salvage pathway. We report here the crystal structure of Ypr118w, which reveals a dimeric protein with two domains and a putative active site cleft. The C-terminal domain resembles ribose-5-phosphate isomerase from Escherichia coli with a similar location of the active site. In vivo, Ypr118w protein is required for yeast cells to grow on methylthioadenosine in the absence of methionine, showing that Ypr118w is involved in the methionine salvage pathway. The crystal structure of Ypr118w reveals for the first time the fold of a PF01008 member and allows a deeper discussion of an enzyme of the methionine salvage pathway, which has in the past attracted interest due to tumor suppression and as a target of aniprotozoal drugs.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Factor 2B Eucariótico de Iniciación/química , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Sitios de Unión , División Celular , Cristalografía por Rayos X , Dimerización , Escherichia coli/metabolismo , Vectores Genéticos , Iones , Modelos Moleculares , Datos de Secuencia Molecular , Biosíntesis de Proteínas , Conformación Proteica , Estructura Terciaria de Proteína , Ribulosafosfatos/química , Homología de Secuencia de Aminoácido , Sulfatos/química
16.
RNA ; 10(2): 277-86, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14730026

RESUMEN

The 5'-region of the TIF4631 gene of Saccharomyces cerevisiae (encoding the translation initiation factor eIF4G1) was reported earlier to harbor a very active internal ribosome entry site (IRES) allowing for internal initiation of translation of TIF4631 mRNA. Here, we report the presence of a promoter in the region -112 to -36 relative to the translation initiation codon of the TIF4631 gene. This promoter stimulates transcription from a start site at position -36 and generates an mRNA that is actively translated in vitro and able to sustain growth of yeast cells in vivo as the only source of eIF4G. The data show that the IRES activity reported earlier is due to this promoter. On the contrary, the presumed IRES represents a strongly inhibitory element for translation in vitro.


Asunto(s)
Factores de Iniciación de Péptidos/genética , Regiones Promotoras Genéticas , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5' , Animales , Sitios de Unión/genética , Factor 4F Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Luciferasas/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitio de Iniciación de la Transcripción
17.
RNA ; 9(7): 871-80, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12810920

RESUMEN

We identified and mapped RNA-binding sites of yeast Saccharomyces cerevisiae translation initiation factor eIF4G1 and examined their importance for eIF4G1 function in vitro and in vivo. Yeast eIF4G1 binds to single-stranded RNA with three different sites, the regions of amino acids 1-82 (N terminus), 492-539 (middle), and 883-952 (C terminus). The middle and C-terminal RNA-binding sites represent RS (arginine and serine)-rich domains; the N-terminal site is asparagine-, glutamine- and glycine-rich. The three RNA-binding sites have similar affinity for single-stranded RNA, whereas the affinity for single-stranded RNA full-length eIF4G1 is about 100-fold higher (approximate K(d) of 5 x 10(-8) M). Replacement of the arginine residues in the middle RS site by alanine residues abolishes its RNA-binding activity. Deletion of individual RNA-binding sites shows that eIF4G1 molecules lacking one binding site are still active in supporting growth of yeast cells and translation in vitro, whereas eIF4G1 molecules lacking two or all three RNA-binding sites are strongly impaired or inactive. These data suggest that RNA-binding activity is required for eIF4G1 function.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Poli U/metabolismo , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Sitios de Unión , Cromatografía de Afinidad , Cartilla de ADN , Factor 4G Eucariótico de Iniciación , Cinética , Datos de Secuencia Molecular , Iniciación de la Cadena Peptídica Traduccional , Fragmentos de Péptidos/aislamiento & purificación , Factores de Iniciación de Péptidos/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
EMBO J ; 22(5): 1199-209, 2003 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-12606584

RESUMEN

The [URE3] phenotype in Saccharomyces cerevisiae is caused by the inactive, altered (prion) form of the Ure2 protein (Ure2p), a regulator of nitrogen catabolism. Ure2p has two functional domains: an N-terminal domain necessary and sufficient for prion propagation and a C-terminal domain responsible for nitrogen regulation. We show here that the mRNA encoding Ure2p possesses an IRES (internal ribosome entry site). Internal initiation leads to the synthesis of an N-terminally truncated active form of the protein (amino acids 94-354) lacking the prion-forming domain. Expression of the truncated Ure2p form (94-354) mediated by the IRES element cures yeast cells of the [URE3] phenotype. We assume that the balance between the full-length and truncated (94-354) Ure2p forms plays an important role in yeast cell physiology and differentiation.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , Priones/metabolismo , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animales , Tamaño de la Célula , Codón Iniciador , Genes Reporteros , Glutatión Peroxidasa , Fenotipo , Priones/química , Priones/genética , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Regiones no Traducidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...