Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 180: 113054, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31881395

RESUMEN

The challenges in transferring and executing a near-infrared (NIR) spectroscopic method for croscarmellose (disintegrant) in binary blends for a continuous manufacturing (CM) process are presented. This work demonstrates the development of a NIR calibration model and its use to determine the blending parameters needed for binary blends at a development plant and later used to predict CM process blends. The calibration models were developed with laboratory scale powder blends ranging from 4.32%-64.77 (%w/w) of croscarmellose and evaluated using independent test blends. The selected model was then transferred to the continuous manufacturing development site to determine the croscarmellose concentration for spectra collected in real-time. A total of 18 development plant runs were monitored using an in-line NIR spectrometer, however, these spectra showed high baseline variations. The baseline variations were caused by the poor flow of the material within the system. An inconsistent bias which varied from 2.51 to 14.95 (%w/w) was observed in the predictions of croscarmellose. High baseline spectra were eliminated and the bias was significantly reduced by 42-51%. Experiments at lower flow rate speeds did not show significant changes in baseline and bias values showed more consistency. The calibration model was then transferred to two NIR spectrometers installed at-line at the commercial site, where powder samples were collected at the beginning middle and end of each CM plant run. The NIR calibration model predicted disintegrant concentration from the powder samples. Results showed the bias values for the NIR (1) varied from 0.74 to 2.21 (%w/w) and NIR (2) from 0.28 to 3.39 (%w/w). Average concentration values for both equipments were very close to the reference concentration values of 43.18 and 50.98 (%w/w). The study showed the model was able to identify flow issues, identified as baseline shifts, that could be used to alert to problems in the powder bed that may warrant diversion from a production line. These powder flow problems such as air gaps and inconsistent powder bed height affected the NIR spectra collected at the development plant and provided results with high bias. A lower bias was obtained in samples collected at line after blending.


Asunto(s)
Espectroscopía Infrarroja Corta/métodos , Espectroscopía Infrarroja Corta/normas , Tecnología Farmacéutica/métodos , Calibración , Carboximetilcelulosa de Sodio/química , Celulosa/química , Química Farmacéutica , Composición de Medicamentos , Excipientes/química , Polvos , Tecnología Farmacéutica/instrumentación , Humectabilidad
2.
Int J Pharm ; 538(1-2): 167-178, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29355655

RESUMEN

The implementation of process analytical technology and continuous manufacturing at an FDA approved commercial manufacturing site is described. In this direct compaction process the blends produced were monitored with a Near Infrared (NIR) spectroscopic calibration model developed with partial least squares (PLS) regression. The authors understand that this is the first study where the continuous manufacturing (CM) equipment was used as a gravimetric reference method for the calibration model. A principal component analysis (PCA) model was also developed to identify the powder blend, and determine whether it was similar to the calibration blends. An air diagnostic test was developed to assure that powder was present within the interface when the NIR spectra were obtained. The air diagnostic test as well the PCA and PLS calibration model were integrated into an industrial software platform that collects the real time NIR spectra and applies the calibration models. The PCA test successfully detected an equipment malfunction. Variographic analysis was also performed to estimate the sampling analytical errors that affect the results from the NIR spectroscopic method during commercial production. The system was used to monitor and control a 28 h continuous manufacturing run, where the average drug concentration determined by the NIR method was 101.17% of label claim with a standard deviation of 2.17%, based on 12,633 spectra collected. The average drug concentration for the tablets produced from these blends was 100.86% of label claim with a standard deviation of 0.4%, for 500 tablets analyzed by Fourier Transform Near Infrared (FT-NIR) transmission spectroscopy. The excellent agreement between the mean drug concentration values in the blends and tablets produced provides further evidence of the suitability of the validation strategy that was followed.


Asunto(s)
Química Farmacéutica/métodos , Preparaciones Farmacéuticas/administración & dosificación , Espectroscopía Infrarroja Corta/métodos , Tecnología Farmacéutica/métodos , Calibración , Composición de Medicamentos/métodos , Etiquetado de Medicamentos , Diseño de Equipo , Análisis de los Mínimos Cuadrados , Preparaciones Farmacéuticas/química , Análisis de Componente Principal , Espectroscopía Infrarroja por Transformada de Fourier , Comprimidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...