Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 1552, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707683

RESUMEN

Hemp seed bran (HB) is an industrial food byproduct that is generally discarded. Knowledge on the functional capabilities of HB is limited and it is not known the impact of HB on human colon microbiota, where vegetable fibers are metabolized. In this work, we investigated in depth the prebiotic potential of HB and HB protein extract hydrolyzed by alcalase (HBPA) in comparison to fructooligosaccharides (FOS) after human distal colonic fermentation using MICODE (multi-unit in vitro colon gut model). During the 24 h of fermentation, metabolomics (SPME GC/MS) and microbiomics (MiSeq and qPCR) analyses were performed. The results indicated that HBPA on a colonic fermentation had a higher prebiotic index than HB (p < 0.05), and slightly lower to that of FOS (p > 0.05). This feature was described and explained as HBPA colonic fermentation produces beneficial organic fatty acids (e.g. Pentanoic and Hexanoic acids); reduces detrimental phenol derivates (e.g. p-Cresol); produces bioactives VOCs (e.g. Acetophenone or 4-Terpineol); increases beneficial bacteria (e.g. 1.76 fold and 2.07 fold more of Bifidobacterium bifidum and Bacteroides fragilis, respectively) and limits opportunistic bacteria (e.g. 3.04 fold and 2.07 fold less of Bilophila wadsworthia and Desulfovibrio, respectively). Our study evidenced the prebiotic role of HB and HBPA, and within the principles of OneHealth it valorizes a byproduct from the queen plant of sustainable crops as a food supplement.


Asunto(s)
Cannabis , Microbioma Gastrointestinal , Humanos , Prebióticos , Fermentación , Cannabis/metabolismo , Colon/metabolismo , Heces/microbiología , Ácidos Grasos Volátiles/metabolismo
2.
Front Plant Sci ; 13: 929918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909767

RESUMEN

One of the major challenges for the modern society, is the development of a sustainable economy also aiming at the valorization of agro-industrial by-products in conjunction with at a significant reduction of generated residues from farm to retail. In this context, the present study demonstrates a biotechnological approach to yield bioactive peptides from a protein fraction obtained as a by-product of the rice starch production. Enzymatic hydrolysis, with the commercial proteases Alcalase and Protamex, were optimized in bioreactor up to 2 L of volume. The two best digestates, selected with respect to peptide release and extract antioxidant capacity, were further fractionated (cut-offs of 10, 5, and 1 kDa) via cross-flow filtration. Amino acid composition indicated that most of the fractions showed positive nutritional characteristics, but a putative bitter taste. A fraction obtained with Alcalase enzyme (retentate 8 kDa) exerted anti-inflammatory potential, while the smaller molecular weight fractions (retentate 1-5 kDa and permeate < 1 kDa) were more active in tyrosinase inhibition. The latter were further sub-fractionated by size-exclusion chromatography. From the 15 most anti-tyrosinase sub-fractions, 365 peptide sequences were identified via liquid chromatography coupled with high resolution mass spectrometry. The present data support the possible exploitation of bioactive peptide from rice starch by-product as ingredients into food, nutraceutical, pharmaceutical, and cosmetic formulations.

3.
Microorganisms ; 9(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34946020

RESUMEN

Following the One Health principles in food science, the challenge to valorize byproducts from the industrial sector is open. Hemp (Cannabis sativa subsp. sativa) is considered an important icon of sustainability and as an alternative food source. Hemp seed bran, in particular, is a byproduct of industrial hemp seed processing, which is not yet valorized. The success, and a wider market diffusion of hemp seed for food applications, is hindered by its unpleasant taste, which is produced by certain compounds that generally overwhelm the pleasant bouquet of the fresh product. This research concerns the exploration of hemp seed bran through fermentation using beneficial lactobacilli, focusing on the sensorial and bioactive traits of the products when they are subjected to bacterial transformation. By studying of the aromatic profile formation during the fermentation process the aim was to modulate it in order to reduce off-odors without affecting the presence of healthy volatile organic compounds (VOCs). Applying multivariate analyses, it was possible to target the contribution of processing parameters to the generation of flavoring and bioactive compounds. To conclude, the fermentation process proposed was able to reduce unpleasant VOCs, whilst at the same time keeping the healthy ones, and it also improved nutritional quality, depending on time and bacterial starters. The fermentation proposed was a sustainable biotechnological approach that fitted perfectly with the valorization of hemp byproducts from the perspective of a green-oriented industrial process that avoids synthetic masking agents.

4.
J Agric Food Chem ; 69(32): 9220-9228, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34353019

RESUMEN

Proteins from hemp bran (HPB), a byproduct of the hemp seed food-processing chain, were chemically extracted, hydrolyzed by Alcalase, and separated by membrane ultrafiltration into four fractions (MW <1, 1-3, 3-5, and >5 kDa). The antioxidant and antihypertensive properties of the initial extract and the fractions were evaluated by in vitro assays for their ability to scavenge radical species, bind with metal ions, reduce ferric ions, and inhibit angiotensin-converting enzyme (ACE) activity. Bioactive peptides were identified by high-resolution mass spectrometry and sequence comparison with BIOPEP and BioPep DB databases. The hydrolysate was strongly antioxidant and ACE-inhibiting; the most bioactive peptides were further concentrated by ultrafiltration. Of the 239 peptides identified, 47 (12 antioxidant and 35 ACE-inhibitory) exhibited structural features correlated with the specific bioactivity. These results highlight the promise of hydrolysate and size-based HPB fractions as natural functional ingredients for the food or pharmaceutical industry.


Asunto(s)
Cannabis , Hidrolisados de Proteína , Inhibidores de la Enzima Convertidora de Angiotensina , Antioxidantes , Hidrólisis , Péptidos , Peptidil-Dipeptidasa A , Subtilisinas
5.
Food Chem ; 333: 127410, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32682227

RESUMEN

Insects represent a novel source of edible high nutritional value proteins which are gaining increasing interest as an alternative to traditional animal foods. In this work, cricket flour was used to produce gluten-free sourdough breads, suitable for celiac people and "source of proteins". The doughs were fermented by different methods and pH and microbial growth, volatile compounds, protein profile, and antioxidant activity, before and after baking, were analyzed and compared to standard gluten-free doughs. The results showed that cricket-enriched doughs and the standard had similar fermentation processes. Cricket enrichment conferred to the breads a typical flavoring profile, characterized by a unique bouquet of volatile compounds, made by nonanoic acid, 2,4-nonadienal (E,E), 1-hexanol, 1-heptanol, and 3-octen-2-one, expressed in different amounts depending on the type of inoculum. Finally, antioxidant activities were significantly enhanced in cricket breads, indicating that cricket powder provides to bakery gluten-free goods high nutritional value proteins and antioxidant properties.


Asunto(s)
Antioxidantes/análisis , Pan/análisis , Dieta Sin Gluten , Harina/análisis , Proteínas de Plantas/análisis , Pan/microbiología , Fermentación , Harina/microbiología , Concentración de Iones de Hidrógeno
6.
Microorganisms ; 8(7)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630107

RESUMEN

The rice-starch processing industry produces large amounts of a protein-rich byproducts during the conversion of broken rice to powder and crystal starch. Given the poor protein solubility, this material is currently discarded or used as animal feed. To fully exploit rice's nutritional properties and reduce this waste, a biotechnological approach was adopted, inducing fermentation with selected microorganisms capable of converting the substrate into peptide fractions with health-related bioactivity. Lactic acid bacteria were preferred to other microorganisms for their safety, efficient proteolytic system, and adaptability to different environments. Peptide fractions with different molecular weight ranges were recovered from the fermented substrate by means of cross-flow membrane filtration. The fractions displayed in vitro antioxidant, antihypertensive, and anti-tyrosinase activities as well as cell-based anti-inflammatory and anti-aging effects. In the future, the peptide fractions isolated from this rice byproduct could be directly exploited as health-promoting functional foods, dietary supplements, and pharmaceutical preparations. The suggested biotechnological process harnessing microbial bioconversion may represent a potential solution for many different protein-containing substrates currently treated as byproducts (or worse, waste) by the food industry.

7.
Food Chem ; 330: 127120, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32526646

RESUMEN

Enzymatic hydrolysis of plant-derived proteins can improve their quality by offering opportunities for food applications. In this study, three proteolytic enzymes (pepsin, trypsin, Alcalase®) were used, alone or combined, to produce faba bean protein hydrolysates (PHs). Their functional, nutritional and antioxidant properties were evaluated, and the peptidomic profile was assessed by LC-MS/MS. Hydrolysis improved solubility of faba proteins at acidic and neutral pH, and their antioxidant properties. Peptidomic analysis identified 2031 peptides in the different PHs. Among them, 9 showed 100% homology with previously known antioxidant peptides and several others had antioxidant motifs in their sequences. Sensory data analysis showed that after addition of PHs to apple juice, no significant differences were perceived between control and some of the PHs. This study demonstrates that enzymatic hydrolysis enhances the functional and antioxidant properties of faba bean proteins. Specifically, hydrolysates can be used as functional food ingredients to produce fortified beverages.


Asunto(s)
Antioxidantes/química , Jugos de Frutas y Vegetales/análisis , Malus/química , Proteínas de Plantas/química , Hidrolisados de Proteína/química , Vicia faba/química , Cromatografía Liquida , Hidrólisis , Malus/metabolismo , Proteínas de Plantas/metabolismo , Hidrolisados de Proteína/metabolismo , Semillas/química , Semillas/metabolismo , Vicia faba/metabolismo
8.
Front Physiol ; 10: 1581, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32009982

RESUMEN

Desmin (DES) and Vimentin (VIM) exert an essential role in maintaining muscle cytoarchitecture and since are considered reliable markers for muscle regeneration, their expression has been extensively investigated in dystrophic muscles. Thus, exhibiting features similar to those of human dystrophic muscles, the present study aimed at assessing the distribution of VIM and DES proteins and the expression of the corresponding genes in Pectoralis major muscles affected by white striping (WS), wooden breast (WB), and spaghetti meat (SM) abnormalities as well as in those having macroscopically normal appearance (NORM). For this purpose, 20 Pectoralis major muscles (5/group) were collected from the same flock of fast-growing broilers to perform immunohistochemistry, immunoblotting and gene expression. Immunohistochemical analyses showed an increased number of fibers immunoreactive to both VIM and DES in WS and WB, while only a few immunoreactive fibers were observed in NORM. Concerning the protein level, if compared with NORM, a 55% increase in VIM content was found in WB affected cases (P < 0.05) thus suggesting the development of intense regenerative processes in an early-stage within these muscles. The significantly higher amount of DES (+53%) found in WS might be attributed to a progression of the regenerative processes that require its synthesis to preserve the structural organization of the developing fibers. On the other hand, significantly lower VIM and DES contents were found in SM. About gene expression, VIM mRNA levels gradually increased from the NORM to the SM group, with significantly higher gene expressions in WB and SM samples compared to the NORM group (P = 0.009 for WB vs. NORM and P = 0.004 for SM vs. NORM). Similarly, the expression of DES gene showed an increase from the NORM to WB group (P = 0.05). Overall, the findings of the present study suggest that intense regenerative processes take place in both WB and WS muscles although a different progression of regeneration might be hypothesized. On the other hand, the lack of correspondence between VIM gene expression and its protein product observed in SM suggests that VIM may also exert a role in the development of the SM phenotype.

9.
Food Chem ; 228: 186-196, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28317712

RESUMEN

Bioactive antioxidant peptides are more and more attracting the attention of food manufacturers for their potential to transform food in functional food, able to prevent a variety of chronic diseases associated with oxidative stress. In the present study proteins extracted from different vegetable sources (KAMUT® khorasan wheat, emmer, lupine and pea) were hydrolyzed with commercial enzymes and Lactobacillus spp. strains. Hydrolysates were separated by size exclusion chromatography and purified fractions were analyzed for their antioxidant activity. Peptides from the fractions with the highest activity were identified by nanoLC-ESI-QTOF-MS and thirteen peptides were selected for synthesis on the basis of their sequence. Four peptides (VLPPQQQY, TVTSLDLPVLRW, VTSLDLPVLRW, FVPY) were found able to scavenge superoxide anion and hydroxyl radicals, organic nitro-radicals (ABTS, DPPH) and to inhibit lipid peroxidation. The impact of this work is targeted to add hydrolysed vegetable proteins to reformulated functional food or to produce health-promoting ingredients and nutraceuticals.


Asunto(s)
Antioxidantes/química , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Péptidos/química , Proteínas de Vegetales Comestibles/química , Hidrólisis , Peroxidación de Lípido , Oxidación-Reducción
10.
J Agric Food Chem ; 63(20): 4973-8, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-25966609

RESUMEN

A bioactive compound is a food component that may have an impact on health. Its bioaccessibility, defined as the fraction released from the food matrix into the gastrointestinal tract during digestion, depends on compound stability, interactions with other food components, and supramolecular organization of food. In this study, the effect of pH on the bioaccessibility of the bioactive dipeptide carnosine was evaluated in two commercial samples of the Italian cured beef meat bresaola at two key points of digestion: before the gastric and after the duodenal phases. The digestion process was simulated using an in vitro static system, whereas capillary zone electrophoresis (CZE) and (1)H nuclear magnetic resonance (NMR) were used for quantitative analysis. The gap between the total carnosine content, measured by CZE, and its free diffusible fraction observable by NMR spectroscopy, was 11 and 19% for two independent bresaola products, where such percentages represent the fraction of carnosine not accessible for intestinal absorption because it was adsorbed to the food matrix dispersed in the digestion fluid.


Asunto(s)
Carnosina/metabolismo , Digestión , Tracto Gastrointestinal/metabolismo , Productos de la Carne/análisis , Animales , Carnosina/química , Bovinos , Humanos , Absorción Intestinal , Modelos Biológicos
11.
Food Chem ; 155: 199-206, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24594175

RESUMEN

Small peptides show higher antioxidant capacity than native proteins and may be absorbed in the intestine without further digestion. In our study, a protein by-product from rice starch industry was hydrolyzed with commercial proteolytic enzymes (Alcalase, Neutrase, Flavourzyme) and microbial whole cells of Bacillus spp. and the released peptides were tested for antioxidant activity. Among enzymes, Alcalase was the most performing, while microbial proteolytic activity was less efficient. Conversely, the antioxidant activity was higher in the samples obtained by microbial hydrolysis and particularly with Bacillus pumilus AG1. The sequences of low molecular weight antioxidant peptides were determined and analyzed for aminoacidic composition. The results obtained so far suggest that the hydrolytic treatment of this industrial by-product, with selected enzymes and microbial systems, can allow its exploitation for the production of functional additives and supplements rich in antioxidant peptides, to be used in new food formulas for human consumption.


Asunto(s)
Oryza/química , Péptidos/química , Hidrolisados de Proteína/química , Almidón/química , Residuos/análisis , Secuencia de Aminoácidos , Antioxidantes/química , Bacillus/enzimología , Biocatálisis , Humanos , Hidrólisis , Datos de Secuencia Molecular , Péptido Hidrolasas/química , Mapeo Peptídico
12.
Electrophoresis ; 35(11): 1607-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24436037

RESUMEN

The present work describes a foodomics protocol coupling an in vitro static simulation of digestion to a combination of omics techniques, to grant an overview of the protein digestibility of a meat-based food, namely Bresaola. The proteolytic activity mediated by the digestive enzymes is evaluated through Bradford and SDS-PAGE assays, combined to NMR relaxometry and spectroscopy, to obtain information ranging from the microscopic to the molecular level, respectively. The simple proteomics tool adopted here points out that a clear increase of bioaccessible proteins occurs in the gastric phase, rapidly disappearing during the following duodenal digestion. However, SDS-PAGE and the Bradford assay cannot follow the fate of the digested proteins when the products are sized <5 kDa. Conversely, NMR spectroscopy is able to capture the overall molecular profile of small fragments and peptides, which are mainly formed during the duodenal phase, thus giving the kinetics of the whole digestion process. Time domain NMR relaxometry, finally, detects the swelling phenomenon occurring during the gastric phase, when the digestion fluid enters the meat matrix.


Asunto(s)
Carne , Proteínas/metabolismo , Proteolisis , Proteómica/métodos , Animales , Duodeno/metabolismo , Electroforesis en Gel de Poliacrilamida/métodos , Análisis de los Alimentos/métodos , Mucosa Gástrica/metabolismo , Humanos , Carne/análisis , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/análisis
13.
J Agric Food Chem ; 59(17): 9271-9, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21806070

RESUMEN

Substantial equivalence is a key concept in the evaluation of unintended and potentially harmful metabolic impact consequent to a genetic modification of food. The application of unsupervised multivariate data analysis to the metabolic profiles is expected to improve the effectiveness of such evaluation. The present study uses NMR spectra of hydroalcoholic extracts, as holistic representations of the metabolic profiles of grapes, to evaluate the effect of the insertion of one or three copies of the DefH9-iaaM construct in plants of Silcora and Thompson Seedless cultivars. The comparison of the metabolic profiles of transgenic derivatives with respect to their corresponding natural lines pointed out that the overall metabolic changes occur in the same direction, independent of the host genotype, although the two cultivars are modified to different extents. A higher number of copies not only produces a larger effect but also modifies the whole pattern of perturbed metabolites.


Asunto(s)
Alimentos Modificados Genéticamente , Frutas/química , Espectroscopía de Resonancia Magnética , Metaboloma , Plantas Modificadas Genéticamente/química , Vitis , Frutas/metabolismo , Ácidos Indolacéticos/metabolismo
14.
Protein Expr Purif ; 80(1): 1-7, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21782027

RESUMEN

The human multiprotein bridging factor 1 (hMBF1) has been established in different cellular types to have the role of transcriptional coactivator. It is also reported to be a putative Calmodulin (CaM) target, able to bind CaM in its calcium-free state, but little is known about the structural features and the biological relevance of this interaction. We applied NMR to investigate the interaction between the two proteins in solution and compared the results with those obtained with CaM-agarose affinity chromatography. No changes in ¹H-¹5N HSQC spectrum of both apo-CaM and Ca²âº-CaM upon addition of hMBF1 prove that the two proteins do not interact in vitro. These results were confirmed by CaM-agarose affinity chromatography when operating under the same conditions. The discrepancy between present and previous experiments performed with CaM-agarose affinity chromatography depends on different experimental parameters suggesting that particular attention must be paid when CaM, or other immobilized proteins, are used to measure their affinity with putative partners. These results also imply that if an interaction between the two proteins exists in vivo, as reported for hMBF1 of endothelial cells, it might involve a posttranslational modified form of the proteins or it relies on other conditions imposed by the cellular environment.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Calmodulina/metabolismo , Secuencia de Aminoácidos , Calmodulina/química , Proteínas de Unión a Calmodulina/química , Cromatografía en Agarosa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica
15.
J Biol Inorg Chem ; 16(2): 243-56, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21046186

RESUMEN

The homodimeric structure of human S100A16 in the apo state has been obtained both in the solid state and in solution, resulting in good agreement between the structures with the exception of two loop regions. The homodimeric solution structure of human S100A16 was also calculated in the calcium(II)-bound form. Differently from most S100 proteins, the conformational rearrangement upon calcium binding is minor. This characteristic is likely to be related to the weak binding affinity of the protein for the calcium(II) ions. In turn, this is ascribed to the lack of the glutamate residue at the end of the S100-specific N-domain binding site, which in most S100 proteins provides two important side chain oxygen atoms as calcium(II) ligands. Furthermore, the presence of hydrophobic interactions stronger than for other S100 proteins, present in the closed form of S100A16 between the third and fourth helices, likely make the closed structure of the second EF-hand particularly stable, so even upon calcium(II) binding such a conformation is not disrupted.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al Calcio/química , Calorimetría , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
16.
Magn Reson Chem ; 49 Suppl 1: S61-70, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22290711

RESUMEN

The content of essential amino acids is an important aspect for determining the nutritional value of food proteins, but their digestibility is also a key property, deeply affected by food processing. The production of Parmigiano Reggiano cheese is closely related to the nutritional quality of the final product; in particular the high digestibility of its proteins is claimed to be proportional to cheese aging. Two different kinds of Parmigiano Reggiano, young (aged 15 months) and old (aged 30 months), were separately digested using an in vitro system that simulates digestive processes in the mouth, stomach and small intestine. Samples were collected at different stages of digestion and the process of protein hydrolysis was explored and compared by low-field (LF) and high-resolution (HR) NMR, together with other biochemical methods. HR-NMR allowed to simultaneously observe the quantity of free amino acids, peptides and proteins, also giving for these latter qualitative information about their dimension. LF-NMR, instead, gave the possibility to observe digestion with no treatments whatsoever, thus representing a technique suitable for on-line measurements. The results pointed out that cheeses with different aging times, although starting from distinct initial compositions, conclude digestion in a similar way, in terms of free amino acids and small organic compounds, but evolve with different kinetics of hydrolysis and peptide formation, discriminating the young from the old cheese.


Asunto(s)
Queso/análisis , Queso/clasificación , Manipulación de Alimentos , Espectroscopía de Resonancia Magnética , Digestión , Electroforesis en Gel de Poliacrilamida , Humanos
17.
J Gen Physiol ; 136(3): 311-23, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20805576

RESUMEN

The two human CLC Cl(-) channels, ClC-Ka and ClC-Kb, are almost exclusively expressed in kidney and inner ear epithelia. Mutations in the genes coding for ClC-Kb and barttin, an essential CLC-K channel beta subunit, lead to Bartter syndrome. We performed a biophysical analysis of the modulatory effect of extracellular Ca(2+) and H(+) on ClC-Ka and ClC-Kb in Xenopus oocytes. Currents increased with increasing [Ca(2+)](ext) without full saturation up to 50 mM. However, in the absence of Ca(2+), ClC-Ka currents were still 20% of currents in 10 mM [Ca(2+)](ext), demonstrating that Ca(2+) is not strictly essential for opening. Vice versa, ClC-Ka and ClC-Kb were blocked by increasing [H(+)](ext) with a practically complete block at pH 6. Ca(2+) and H(+) act as gating modifiers without changing the single-channel conductance. Dose-response analysis suggested that two protons are necessary to induce block with an apparent pK of approximately 7.1. A simple four-state allosteric model described the modulation by Ca(2+) assuming a 13-fold higher Ca(2+) affinity of the open state compared with the closed state. The quantitative analysis suggested separate binding sites for Ca(2+) and H(+). A mutagenic screen of a large number of extracellularly accessible amino acids identified a pair of acidic residues (E261 and D278 on the loop connecting helices I and J), which are close to each other but positioned on different subunits of the channel, as a likely candidate for forming an intersubunit Ca(2+)-binding site. Single mutants E261Q and D278N greatly diminished and the double mutant E261Q/D278N completely abolished modulation by Ca(2+). Several mutations of a histidine residue (H497) that is homologous to a histidine that is responsible for H(+) block in ClC-2 did not yield functional channels. However, the triple mutant E261Q/D278N/H497M completely eliminated H(+) -induced current block. We have thus identified a protein region that is involved in binding these physiologically important ligands and that is likely undergoing conformational changes underlying the complex gating of CLC-K channels.


Asunto(s)
Calcio/metabolismo , Canales de Cloruro/metabolismo , Activación del Canal Iónico , Riñón/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico , Sitios de Unión , Canales de Cloruro/química , Canales de Cloruro/genética , Ácido Glutámico , Humanos , Concentración de Iones de Hidrógeno , Cinética , Potenciales de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Técnicas de Placa-Clamp , Subunidades de Proteína , Relación Estructura-Actividad , Xenopus
18.
Proc Natl Acad Sci U S A ; 105(4): 1369-73, 2008 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-18216243

RESUMEN

ClC-Ka and ClC-Kb Cl(-) channels are pivotal for renal salt reabsorption and water balance. There is growing interest in identifying ligands that allow pharmacological interventions aimed to modulate their activity. Starting from available ligands, we followed a rational chemical strategy, accompanied by computational modeling and electrophysiological techniques, to identify the molecular requisites for binding to a blocking or to an activating binding site on ClC-Ka. The major molecular determinant that distinguishes activators from blockers is the level of planarity of the aromatic portions of the molecules: only molecules with perfectly coplanar aromatic groups display potentiating activity. Combining several molecular features of various CLC-K ligands, we discovered that phenyl-benzofuran carboxylic acid derivatives yield the most potent ClC-Ka inhibitors so far described (affinity <10 microM). The increase in affinity compared with 3-phenyl-2-p-chlorophenoxy-propionic acid (3-phenyl-CPP) stems primarily from the conformational constraint provided by the phenyl-benzofuran ring. Several other key structural elements for high blocking potency were identified through a detailed structure-activity relationship study. Surprisingly, some benzofuran-based drugs inhibit ClC-Kb with a similar affinity of <10 microM, thus representing the first inhibitors for this CLC-K isoform identified so far. Based on our data, we established a pharmacophore model that will be useful for the development of drugs targeting CLC-K channels.


Asunto(s)
Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/metabolismo , Animales , Benzofuranos/química , Benzofuranos/farmacología , Unión Competitiva , Canales de Cloruro CLC-2 , Canales de Cloruro/genética , Humanos , Ligandos , Ácido Niflúmico/análogos & derivados , Ácido Niflúmico/química , Ácido Niflúmico/farmacología , Técnicas de Placa-Clamp , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Xenopus laevis
19.
Science ; 318(5855): 1464-8, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-18048692

RESUMEN

A persistent puzzle in the field of biological electron transfer is the conserved iron-sulfur cluster motif in both high potential iron-sulfur protein (HiPIP) and ferredoxin (Fd) active sites. Despite this structural similarity, HiPIPs react oxidatively at physiological potentials, whereas Fds are reduced. Sulfur K-edge x-ray absorption spectroscopy uncovers the substantial influence of hydration on this variation in reactivity. Fe-S covalency is much lower in natively hydrated Fd active sites than in HiPIPs but increases upon water removal; similarly, HiPIP covalency decreases when unfolding exposes an otherwise hydrophobically shielded active site to water. Studies on model compounds and accompanying density functional theory calculations support a correlation of Fe-S covalency with ease of oxidation and therefore suggest that hydration accounts for most of the difference between Fd and HiPIP reduction potentials.


Asunto(s)
Proteínas Bacterianas/química , Ferredoxinas/química , Proteínas Hierro-Azufre/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Sitios de Unión , Electroquímica , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Hierro/química , Ligandos , Oxidación-Reducción , Pliegue de Proteína , Solventes , Análisis Espectral , Electricidad Estática , Azufre/química , Agua/química
20.
J Membr Biol ; 216(2-3): 73-82, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17659402

RESUMEN

CLC-K Cl(-) channels belong to the CLC protein family. In kidney and inner ear, they are involved in transepithelial salt transport. Mutations in ClC-Kb lead to Bartter's syndrome, and mutations in the associated subunit barttin produce Bartter's syndrome and deafness. We have previously found that 3-phenyl-CPP blocks hClC-Ka and rClC-K1 from the extracellular side in the pore entrance. Recently, we have shown that niflumic acid (NFA), a nonsteroidal anti-inflammatory fenamate, produces biphasic behavior on human CLC-K channels that suggests the presence of two functionally different binding sites: an activating site and a blocking site. Here, we investigate in more detail the interaction of NFA on CLC-K channels. Mutants that altered block by 3-phenyl-2-(p-chlorophenoxy)propionic acid (CPP) had no effect on NFA block, indicating that the inhibition binding site of NFA is different from that of 3-phenyl-CPP and flufenamic acid. Moreover, NFA does not compete with extracellular Cl(-) ions, suggesting that the binding sites of NFA are not located deep in the pore. Differently from ClC-Ka, on the rat homologue ClC-K1, NFA has only an inhibitory effect. We developed a quantitative model to describe the complex action of NFA on ClC-Ka. The model predicts that ClC-Ka possesses two NFA binding sites: when only one site is occupied, NFA increases ClC-Ka currents, whereas the occupation of both binding sites leads to channel block.


Asunto(s)
Canales de Cloruro/efectos de los fármacos , Riñón/fisiología , Ácido Niflúmico/farmacología , Animales , Sinergismo Farmacológico , Ácido Flufenámico/farmacología , Humanos , Riñón/efectos de los fármacos , Modelos Biológicos , Fenilpropionatos/farmacología , Ratas , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...