Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JHEP Rep ; 6(6): 101073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38882600

RESUMEN

Background & Aims: Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by excessive circulating toxic lipids, hepatic steatosis, and liver inflammation. Monocyte adhesion to liver sinusoidal endothelial cells (LSECs) and transendothelial migration (TEM) are crucial in the inflammatory process. Under lipotoxic stress, LSECs develop a proinflammatory phenotype known as endotheliopathy. However, mediators of endotheliopathy remain unclear. Methods: Primary mouse LSECs isolated from C57BL/6J mice fed chow or MASH-inducing diets rich in fat, fructose, and cholesterol (FFC) were subjected to multi-omics profiling. Mice with established MASH resulting from a choline-deficient high-fat diet (CDHFD) or FFC diet were also treated with two structurally distinct GSK3 inhibitors (LY2090314 and elraglusib [9-ING-41]). Results: Integrated pathway analysis of the mouse LSEC proteome and transcriptome indicated that leukocyte TEM and focal adhesion were the major pathways altered in MASH. Kinome profiling of the LSEC phosphoproteome identified glycogen synthase kinase (GSK)-3ß as the major kinase hub in MASH. GSK3ß-activating phosphorylation was increased in primary human LSECs treated with the toxic lipid palmitate and in human MASH. Palmitate upregulated the expression of C-X-C motif chemokine ligand 2, intracellular adhesion molecule 1, and phosphorylated focal adhesion kinase, via a GSK3-dependent mechanism. Congruently, the adhesive and transendothelial migratory capacities of primary human neutrophils and THP-1 monocytes through the LSEC monolayer under lipotoxic stress were reduced by GSK3 inhibition. Treatment with the GSK3 inhibitors LY2090314 and elraglusib ameliorated liver inflammation, injury, and fibrosis in FFC- and CDHFD-fed mice, respectively. Immunophenotyping using cytometry by mass cytometry by time of flight of intrahepatic leukocytes from CDHFD-fed mice treated with elraglusib showed reduced infiltration of proinflammatory monocyte-derived macrophages and monocyte-derived dendritic cells. Conclusion: GSK3 inhibition attenuates lipotoxicity-induced LSEC endotheliopathy and could serve as a potential therapeutic strategy for treating human MASH. Impact and Implications: LSECs under lipotoxic stress in MASH develop a proinflammatory phenotype known as endotheliopathy, with obscure mediators and functional outcomes. The current study identified GSK3 as the major driver of LSEC endotheliopathy, examined its pathogenic role in myeloid cell-associated liver inflammation, and defined the therapeutic efficacy of pharmacological GSK3 inhibitors in murine MASH. This study provides preclinical data for the future investigation of GSK3 pharmacological inhibitors in human MASH. The results of this study are important to hepatologists, vascular biologists, and investigators studying the mechanisms of inflammatory liver disease and MASH, as well as those interested in drug development.

2.
Gastroenterology ; 166(5): 826-841.e19, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266738

RESUMEN

BACKGROUND & AIMS: Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease; however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS: Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing the Seahorse XF analyzer. We used a Crohn's disease single-cell RNA sequencing dataset to infer the therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically modified Tregs in CD4+ T-cell-induced murine colitis models. RESULTS: Mitochondria-endoplasmic reticulum appositions, known to mediate pyruvate entry into mitochondria via voltage-dependent anion channel 1 (VDAC1), are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate supplementation. Notably, interleukin (IL) 21 diminished mitochondria-endoplasmic reticulum appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 ß, a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. Methyl pyruvate and glycogen synthase kinase 3 ß pharmacologic inhibitor (LY2090314) reversed IL21-induced metabolic rewiring and inflammatory state. Moreover, IL21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS: IL21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL21-induced metabolism in Tregs may mitigate CD4+ T-cell-driven chronic intestinal inflammation.


Asunto(s)
Colitis , Mitocondrias , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Enfermedad Crónica , Colitis/inmunología , Colitis/metabolismo , Colitis/patología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Interleucinas/metabolismo , Interleucinas/farmacología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Linfocitos T Reguladores/inmunología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética
3.
bioRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333332

RESUMEN

BACKGROUND & AIMS: Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease (IBD); however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS: Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing Seahorse XF analyzer. We utilized Crohn's disease single-cell RNA sequencing dataset to infer therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically-modified Tregs in CD4+ T cell-induced murine colitis models. RESULTS: Mitochondria-endoplasmic reticulum (ER) appositions, known to mediate pyruvate entry into mitochondria via VDAC1, are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate (MePyr) supplementation. Notably, IL-21 diminished mitochondria-ER appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 ß (GSK3ß), a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. MePyr and GSK3ß pharmacologic inhibitor (LY2090314) reversed IL-21-induced metabolic rewiring and inflammatory state. Moreover, IL-21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS: IL-21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL-21-induced metabolism in Tregs may mitigate CD4+ T cell-driven chronic intestinal inflammation.

4.
Hepatol Commun ; 7(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267252

RESUMEN

BACKGROUND: NASH is the progressive form of NAFLD characterized by lipotoxicity, hepatocyte injury, tissue inflammation, and fibrosis. Previously, Rho-associated protein kinase (ROCK) 1 has been implicated in lipotoxic signaling in hepatocytes in vitro and high-fat diet-induced lipogenesis in vivo. However, whether ROCK1 plays a role in liver inflammation and fibrosis during NASH is unclear. Here, we hypothesized that pathogenic activation of ROCK1 promotes murine NASH pathogenesis. METHODS AND RESULTS: Patients with NASH had increased hepatic ROCK1 expression compared with patients with fatty liver. Similarly, hepatic ROCK1 levels and activity were increased in mice with NASH induced by a western-like diet that is high in fat, fructose, and cholesterol (FFC). Hepatocyte-specific ROCK1 knockout mice on the FFC diet displayed a decrease in liver steatosis, hepatic cell death, liver inflammation, and fibrosis compared with littermate FFC-fed controls. Mechanistically, these effects were associated with a significant attenuation of myeloid cell recruitment. Interestingly, myeloid cell-specific ROCK1 deletion did not affect NASH development in FFC-fed mice. To explore the therapeutic opportunities, mice with established NASH received ROCKi, a novel small molecule kinase inhibitor of ROCK1/2, which preferentially accumulates in liver tissue. ROCK inhibitor treatment ameliorated insulin resistance and decreased liver injury, inflammation, and fibrosis. CONCLUSIONS: Genetic or pharmacologic inhibition of ROCK1 activity attenuates murine NASH, suggesting that ROCK1 may be a therapeutic target for treating human NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Quinasas Asociadas a rho , Animales , Humanos , Ratones , Dieta Alta en Grasa/efectos adversos , Fibrosis , Hepatocitos/metabolismo , Inflamación/tratamiento farmacológico , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/enzimología , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética
5.
Gastroenterology ; 164(2): 256-271.e10, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36272457

RESUMEN

BACKGROUND & AIMS: Although T-cell intrinsic expression of G9a has been associated with murine intestinal inflammation, mechanistic insight into the role of this methyltransferase in human T-cell differentiation is ill defined, and manipulation of G9a function for therapeutic use against inflammatory disorders is unexplored. METHODS: Human naive T cells were isolated from peripheral blood and differentiated in vitro in the presence of a G9a inhibitor (UNC0642) before being characterized via the transcriptome (RNA sequencing), chromatin accessibility (assay for transposase-accessible chromatin by sequencing), protein expression (cytometry by time of flight, flow cytometry), metabolism (mitochondrial stress test, ultrahigh performance liquid chromatography-tandem mas spectroscopy) and function (T-cell suppression assay). The in vivo role of G9a was assessed using 3 murine models. RESULTS: We discovered that pharmacologic inhibition of G9a enzymatic function in human CD4 T cells led to spontaneous generation of FOXP3+ T cells (G9a-inibitors-T regulatory cells [Tregs]) in vitro that faithfully reproduce human Tregs, functionally and phenotypically. Mechanistically, G9a inhibition altered the transcriptional regulation of genes involved in lipid biosynthesis in T cells, resulting in increased intracellular cholesterol. Metabolomic profiling of G9a-inibitors-Tregs confirmed elevated lipid pathways that support Treg development through oxidative phosphorylation and enhanced lipid membrane composition. Pharmacologic G9a inhibition promoted Treg expansion in vivo upon antigen (gliadin) stimulation and ameliorated acute trinitrobenzene sulfonic acid-induced colitis secondary to tissue-specific Treg development. Finally, Tregs lacking G9a expression (G9a-knockout Tregs) remain functional chronically and can rescue T-cell transfer-induced colitis. CONCLUSION: G9a inhibition promotes cholesterol metabolism in T cells, favoring a metabolic profile that facilitates Treg development in vitro and in vivo. Our data support the potential use of G9a inhibitors in the treatment of immune-mediated conditions including inflammatory bowel disease.


Asunto(s)
Linfocitos T CD4-Positivos , Colitis , Ratones , Humanos , Animales , Metabolismo de los Lípidos , Linfocitos T Reguladores/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Cromatina , Inflamación , Colesterol , Lípidos , Factores de Transcripción Forkhead/metabolismo
7.
Front Endocrinol (Lausanne) ; 12: 760860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777255

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. A significant proportion of patients with NAFLD develop a progressive inflammatory condition termed nonalcoholic steatohepatitis (NASH), which may eventually advance to cirrhosis and hepatocellular carcinoma (HCC). NASH is characterized by steatosis, hepatocyte ballooning, and lobular inflammation. Heightened immune cell infiltration is a hallmark of NASH, yet the mechanisms whereby hepatic inflammation occurs in NASH and how it contributes to disease initiation and progression remain incompletely understood. Emerging evidence indicates that intrahepatic T cell immune mechanisms play an integral role in the pathogenesis of NASH and its transition to HCC. In this review, we summarize the current knowledge regarding the T cell-mediated mechanisms of inflammation in NASH. We highlight recent preclinical and human studies implicating various subsets of conventional and innate-like T cells in the onset and progression of NASH and HCC. Finally, we discuss the potential therapeutic strategies targeting T cell-mediated responses for the treatment of NASH.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Cirrosis Hepática/inmunología , Neoplasias Hepáticas/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Linfocitos T/inmunología , Animales , Humanos , Inflamación/inmunología
12.
J Clin Invest ; 131(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34128475

RESUMEN

FOXP3+ Tregs are expanded within the inflamed intestine of human Crohn's disease, yet FOXP3-mediated gene repression within these cells is lost. The polycomb repressive complexes play a role in FOXP3 target gene regulation, but deeper mechanistic insight is incomplete. We have now specifically identified the polycomb-repressive complex 1 (PRC1) family member, BMI1 in the regulation of a proinflammatory enhancer network in both human and murine Tregs. Using human Tregs and lamina propria T cells, we inferred PRC1 to regulate Crohn's associated gene networks through assays of chromatin accessibility. Conditional deletion of BMI1 in murine FOXP3+ cells led to systemic inflammation. BMI1-deficient Tregs beared a TH1/TH17-like phenotype as assessed by assays of genome wide transcription, chromatin accessibility and proteomic techniques. Finally, BMI1 mutant FOXP3+ cells did not suppress colitis in the adoptive transfer model of human inflammatory bowel disease. We propose that BMI1 plays an important role in enforcing Treg identity in vitro and in vivo. Loss of Treg identity via genetic or transient BMI1 depletion perturbs the epigenome and converts Tregs into Th1/Th17-like proinflammatory cells, a transition relevant to human Crohn's disease associated CD4+ T cells.


Asunto(s)
Enfermedad de Crohn/inmunología , Epigénesis Genética/inmunología , Complejo Represivo Polycomb 1/inmunología , Proteínas Proto-Oncogénicas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Enfermedad de Crohn/genética , Humanos , Ratones , Ratones Transgénicos , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética , Linfocitos T Reguladores/patología , Células TH1/inmunología , Células Th17/inmunología
19.
J Crohns Colitis ; 14(1): 96-109, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158273

RESUMEN

BACKGROUND: The aetiology of Crohn's disease [CD] involves immune dysregulation in a genetically susceptible individual. Genome-wide association studies [GWAS] have identified 200 loci associated with CD, ulcerative colitis, or both, most of which fall within non-coding DNA regions. Long non-coding RNAs [lncRNAs] regulate gene expression by diverse mechanisms and have been associated with disease activity in inflammatory bowel disease. However, disease-associated lncRNAs have not been characterised in pathogenic immune cell populations. METHODS: Terminal ileal samples were obtained from 22 CD patients and 13 controls. RNA from lamina propria CD4+ T cells was sequenced and long intergenic non-coding RNAs [lincRNAs] were detected. Overall expression patterns, differential expression [DE], and pathway and gene enrichment analyses were performed. Knockdown of novel lincRNAs XLOC_000261 and XLOC_000014 was performed. Expression of Th1 or Th17-associated transcription factors, T-bet and RORγt, respectively, was assessed by flow cytometry. RESULTS: A total of 6402 lincRNAs were expressed, 960 of which were novel. Unsupervised clustering and principal component analysis showed that the lincRNA expression discriminated patients from controls. A total of 1792 lincRNAs were DE, and 295 [79 novel; 216 known] mapped to 267 of 5727 DE protein-coding genes. The novel lincRNAs were enriched in inflammatory and Notch signalling pathways [p <0.05]. Furthermore, DE lincRNAs in CD patients were more frequently found in DNA regions with known inflammatory bowel disease [IBD]-associated loci. The novel lincRNA XLOC_000261 negatively regulated RORγt expression in Th17 cells. CONCLUSIONS: We describe a novel set of DE lincRNAs in CD-associated CD4+ cells and demonstrate that novel lincRNA XLOC_000261 appears to negatively regulate RORγt protein expression in Th17 cells.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Enfermedad de Crohn/etiología , ARN Largo no Codificante/metabolismo , Anciano , Estudios de Casos y Controles , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Membrana Mucosa/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-30510991

RESUMEN

Background & Aims: Forkhead box protein 3 (FOXP3)+ regulatory T cell (Treg) dysfunction is associated with autoimmune diseases; however, the mechanisms responsible for inflammatory bowel disease pathophysiology are poorly understood. Here, we tested the hypothesis that a physical interaction between transcription factor FOXP3 and the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is essential for gene co-repressive function. Methods: Human FOXP3 mutations clinically relevant to intestinal inflammation were generated by site-directed mutagenesis. T lymphocytes were isolated from mice, human blood, and lamina propria of Crohn's disease (CD) patients and non-CD controls. We performed proximity ligation or a co-immunoprecipitation assay in FOXP3-mutant+, interleukin 6 (IL6)-treated or CD-CD4+ T cells to assess FOXP3-EZH2 protein interaction. We studied IL2 promoter activity and chromatin state of the interferon γ locus via luciferase reporter and chromatin-immunoprecipitation assays, respectively, in cells expressing FOXP3 mutants. Results: EZH2 binding was abrogated by inflammatory bowel disease-associated FOXP3 cysteine 232 (C232) mutation. The C232 mutant showed impaired repression of IL2 and diminished EZH2-mediated trimethylation of histone 3 at lysine 27 on interferon γ, indicative of compromised Treg physiologic function. Generalizing this mechanism, IL6 impaired FOXP3-EZH2 interaction. IL6-induced effects were reversed by Janus kinase 1/2 inhibition. In lamina propria-derived CD4+T cells from CD patients, we observed decreased FOXP3-EZH2 interaction. Conclusions: FOXP3-C232 mutation disrupts EZH2 recruitment and gene co-repressive function. The proinflammatory cytokine IL6 abrogates FOXP3-EZH2 interaction. Studies in lesion-derived CD4+ T cells have shown that reduced FOXP3-EZH2 interaction is a molecular feature of CD patients. Destabilized FOXP3-EZH2 protein interaction via diverse mechanisms and consequent Treg abnormality may drive gastrointestinal inflammation.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factores de Transcripción Forkhead/metabolismo , Inflamación/metabolismo , Inflamación/patología , Intestinos/patología , Adulto , Animales , Núcleo Celular/metabolismo , Separación Celular , Proteínas Co-Represoras/metabolismo , Femenino , Humanos , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Interleucina-6/metabolismo , Quinasas Janus/metabolismo , Células Jurkat , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mutación/genética , Fosforilación , Fosfotirosina/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA