Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 630
Filtrar
1.
Chin Med Sci J ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845179

RESUMEN

Objective: Variations are present in common clinical practices regarding best practice in managing hyperkalaemia (HK), there is therefore a need to establish a multi-specialty approach to optimal renin-angiotensin-aldosterone system inhibitors (RAASi) usage and HK management in patients with chronic kidney disease (CKD) & heart failure (HF).This study aimed to establish a multi-speciality approach to the optimal use of RAASi and how to manage HK in patients with CKD and HF.Methods: A steering expert group of cardiology and nephrology experts from across China convened to discuss challenges to HK management through a nominal group technique (NGT). The group then created a list of 41 statements for a consensus questionnaire, which was distributed for a further survey of in extended panel group of cardiologists and nephrologists across China. Consensus was assessed using a modified Delphi technique, with agreement defined as "strong" (≥75% and <90%) and "very strong" (≥90%). The steering group, data collection, and analysis were aided by an independent facilitator. Results: A total of 150 responses from 21 provinces across China were recruited in the survey. Respondents were comprised of an even split (n=75, 50%) between cardiologists and nephrologists. All 41 statements achieved the 75% consensus agreement threshold, of which 27 statements attained very strong consensus (≥90% agreement) and 14 attained strong consensus (agreement between 75% and 90%). Conclusions: Based on the agreement levels from respondents, the steering group agreed a set of recommendations intended to improve patient outcomes in the use of RAASi therapy and HK management in China.

2.
Kidney Dis (Basel) ; 10(3): 193-199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835405

RESUMEN

Introduction: Roxadustat, the first-in-class drug for the treatment of renal anemia, has demonstrated efficacy in renal anemia with microinflammation. Additional data are needed regarding the efficacy of roxadustat on renal anemia with systemic macroinflammation. Methods: Three cohorts of renal anemia based on the basic level of high-sensitivity CRP were included. Patients with hsCRP ≤2 mg/L were selected as non-inflammation (NI) group; 2< hsCRP ≤10 mg/L as microinflammation (MI) group; hsCRP≥10 mg/L as macroinflammation (MA) group. Patients received oral roxadustat three times per week for 52 weeks. The primary end point was the hemoglobin level over weeks 12-52. The second end point was the cumulative proportion of patients achieving hemoglobin response by the end of week 12. Results: A total of 107 patients with chronic kidney diseases (CKDs) were enrolled. Overall, the baseline hemoglobin level of patients was 79.99 ± 11.20 g/L. Roxadustat could significantly increase the hemoglobin level in all of the three groups and did not show any significant difference (p > 0.05, respectively). Meanwhile, compared with that of the NI group, there was no significant difference in hemoglobin response rate in the MA group both at week 12 (p = 0.06; 95% confidence interval [CI], 0.9531-13.75) and week 52 (p = 0.37; 95% CI, 0.5080-7.937). Moreover, the hemoglobin response was independent of baseline hsCRP level (p = 0.72, 95% CI, -0.1139 to 0.0794). More importantly, roxadustat significantly reduced ferritin and serum iron levels and increased total iron-binding capacity in the three groups, which showed no significant differences among the three groups (p > 0.05, respectively). Conclusion: Roxadustat significantly improves anemia in CKD patients with systemic macroinflammation.

3.
Br J Pharmacol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698737

RESUMEN

BACKGROUND AND PURPOSE: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS: Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS: We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.

4.
Kidney Int ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697478

RESUMEN

Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.

5.
Nat Chem ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769366

RESUMEN

Electrophilic halogenation is a widely used tool employed by medicinal chemists to either pre-functionalize molecules for further diversity or incorporate a halogen atom into drugs or drug-like compounds to solve metabolic problems or modulate off-target effects. Current methods to increase the power of halogenation rely on either the invention of new reagents or activating commercially available reagents with various additives such as Lewis or Brønsted acids, Lewis bases and hydrogen-bonding activators. There is a high demand for new reagents that can halogenate otherwise unreactive compounds under mild conditions. Here we report the invention of a class of halogenating reagents based on anomeric amides, taking advantage of the energy stored in the pyramidalized nitrogen of N-X anomeric amides as a driving force. These robust halogenating methods are compatible with a variety of functional groups and heterocycles, as exemplified on over 50 compounds (including 13 gram-scale examples and 1 flow chemistry scale-up).

7.
Planta ; 259(5): 115, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589536

RESUMEN

MAIN CONCLUSION: A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.


Asunto(s)
Arabidopsis , Oryza , Glicosiltransferasas/análisis , Oryza/metabolismo , Xilanos/metabolismo , Arabidopsis/metabolismo , Simulación del Acoplamiento Molecular , UDP Xilosa Proteína Xilosiltransferasa , Poaceae/metabolismo , Pared Celular/metabolismo
8.
Science ; 384(6691): 113-118, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574151

RESUMEN

The synthesis of quaternary carbons often requires numerous steps and complex conditions or harsh reagents that act on heavily engineered substrates. This is largely a consequence of conventional polar-bond retrosynthetic disconnections that in turn require multiple functional group interconversions, redox manipulations, and protecting group chemistry. Here, we report a simple catalyst and reductant combination that converts two types of feedstock chemicals, carboxylic acids and olefins, into tetrasubstituted carbons through quaternization of radical intermediates. An iron porphyrin catalyst activates each substrate by electron transfer or hydrogen atom transfer, and then combines the fragments using a bimolecular homolytic substitution (SH2) reaction. This cross-coupling reduces the synthetic burden to procure numerous quaternary carbon---containing products from simple chemical feedstocks.

9.
Sci Rep ; 14(1): 9311, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654049

RESUMEN

Titanium alloy with high corrosion resistance, high strength-to-density ratio, and excellent biocompatibility has a wide range of applications in the field of biomedical implants. Polishing experiments of titanium alloy with a small size and complex shapes were investigated using an ultrasonic assisted magnetorheological finishing (UMRF) device excited by a three-pole magnetic field generator. The models of the normal force and the shear force were first proposed based on the Preston equation to analyze the mechanism of material removal in the UMRF process. Subsequently, the single-factor experiments using titanium alloy nuts (M3) and the MR polishing fluid with silicon carbide abrasives were carried out. Furthermore, to improve the surface roughness and the change rate of surface roughness of nuts, orthogonal tests with a standard L9(34) orthogonal array were designed and performed based on the optimized process parameters obtained from the single-factor experiment. The results indicated the effect on surface roughness and change rate of surface roughness as applied current > roller speed > ultrasonic amplitude > spindle speed and applied current > roller speed > spindle speed > ultrasonic amplitude, respectively. Moreover, the surface roughness was improved from an initial 1.247 µm to a final 0.104 µm after the polishing for 80 min under these optimal process parameters.

10.
Aging (Albany NY) ; 16(8): 6937-6953, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643461

RESUMEN

AIMS: This study aimed to evaluate the effects of VC on SIMI in rats. METHODS: In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1ß, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS: High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/ß in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE: Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.


Asunto(s)
Ácido Ascórbico , Autofagia , Lesiones Cardíacas , Miocardio , Sepsis , Animales , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Apoptosis/efectos de los fármacos , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Autofagia/efectos de los fármacos , Lesiones Cardíacas/tratamiento farmacológico , Lesiones Cardíacas/etiología , Lesiones Cardíacas/metabolismo , Miocardio/metabolismo , Miocardio/patología , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
11.
Pharmaceut Med ; 38(3): 157-166, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38573457

RESUMEN

Use of real-world data (RWD) is gaining wide attention. To bridge the gap between diverse healthcare stakeholders and to leverage the impact of Chinese real-world evidence (RWE) globally, a multi-stakeholder External Advisory Committee (EAC) and EAC meetings were initiated, aiming to elucidate the current and evolving RWD landscape in China, articulate the values of RWE in ensuring Chinese patients' equitable access to affordable medicines and solutions, and identify strategic opportunities and partnerships for expansion of RWE generation in China. Chinese and international experts who are clinicians and academic researchers were selected as EAC members based on their professional background and familiarity with RWD/RWE. Three EAC meetings were held quarterly in 2023. Various topics were presented and discussed for insights and suggestions. Nine experts from China, one from South Korea, and two from Europe were selected as EAC members and attended these meetings. Experts' presentations were summarized by theme, including the RWD landscape and RWE enablement in China, as well as global development of a patient-centric ecosystem. Experts' insights and suggestions on maximizing the RWD/RWE value to accelerate healthcare transformation in China were collected. We concluded that though data access, sharing, and quality are still challenging, RWD is developing to support evidence generation in the medicinal product lifecycle, inform clinical practice, and empower patient management in China. RWD/RWE creates value, accelerates healthcare transformation, and improves patient outcomes. Fostering a patient-centric ecosystem across healthcare stakeholders and maintaining global partnerships and collaboration are essential for unlocking the power of RWD/RWE.


Asunto(s)
Comités Consultivos , China , Comités Consultivos/organización & administración , Humanos , Atención a la Salud , Participación de los Interesados , Accesibilidad a los Servicios de Salud
12.
Oncol Lett ; 27(5): 192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38495833

RESUMEN

As a novel tyrosine kinase inhibitor (TKI), pyrotinib can irreversibly block dual pan-ErbB receptors and has been used in the treatment of advanced or metastatic human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, there are limited data on the use of pyrotinib in early breast cancer. Therefore, the present meta-analysis was conducted to evaluate the safety and efficacy of pyrotinib in the neoadjuvant setting for patients with early-stage or locally advanced HER2-positive breast cancer. Online databases (Pubmed, Web of Science, Embase and Cochrane Library) were comprehensively searched for eligible prospective clinical trials on August 17, 2023. The primary endpoint was the treatment-related adverse events (TRAEs), and the secondary endpoint was pathological complete response (pCR) rate. In total, seven trials with a total enrolment of 407 patients were included. A total of seven studies evaluated pyrotinib in combination with trastuzumab and chemotherapy in the neoadjuvant setting. The median age ranged from 47-50 years. The most common TRAEs were diarrhea [98% of patients; 95% confidence interval (CI): 92-100%], followed by anemia (71%; 95% CI: 55-89%), vomiting (69%; 95% CI: 55-82%), and leucopenia (66%; 95% CI: 35-91%). No treatment-related deaths occurred. The pooled pCR rate was 57% (95% CI: 47-68%). It was concluded that pyrotinib-containing neoadjuvant therapy could be an effective treatment strategy in patients with early-stage or locally advanced HER2-positive breast cancer; however, the management of adverse events should be a key consideration. The management of adverse events should be paid great attention to, during pyrotinib therapy, although pyrotinib-contained neoadjuvant therapy could be an effective treatment for patients with early-stage or locally advanced HER2-positive breast cancer. Head-to-head randomized clinical trials are warranted to further confirm the benefits and risks associated with pyrotinib therapy in patients with breast cancer.

13.
JCI Insight ; 9(8)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512421

RESUMEN

HIPK2 is a multifunctional kinase that acts as a key pathogenic mediator of chronic kidney disease and fibrosis. It acts as a central effector of multiple signaling pathways implicated in kidney injury, such as TGF-ß/Smad3-mediated extracellular matrix accumulation, NF-κB-mediated inflammation, and p53-mediated apoptosis. Thus, a better understanding of the specific HIPK2 regions necessary for distinct downstream pathway activation is critical for optimal drug development for CKD. Our study now shows that caspase-6-mediated removal of the C-terminal region of HIPK2 (HIPK2-CT) lead to hyperactive p65 NF-κB transcriptional response in kidney cells. In contrast, the expression of cleaved HIPK2-CT fragment could restrain the NF-κB transcriptional activity by cytoplasmic sequestration of p65 and the attenuation of IκBα degradation. Therefore, we examined whether HIPK2-CT expression can be exploited to restrain renal inflammation in vivo. The induction of HIPK2-CT overexpression in kidney tubular cells attenuated p65 nuclear translocation, expression of inflammatory cytokines, and macrophage infiltration in the kidneys of mice with unilateral ureteral obstruction and LPS-induced acute kidney injury. Collectively, our findings indicate that the HIPK2-CT is involved in the regulation of nuclear NF-κB transcriptional activity and that HIPK2-CT or its analogs could be further exploited as potential antiinflammatory agents to treat kidney disease.


Asunto(s)
FN-kappa B , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , FN-kappa B/metabolismo , Humanos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Inflamación/metabolismo , Inflamación/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Masculino , Ratones Endogámicos C57BL , Riñón/patología , Riñón/metabolismo , Modelos Animales de Enfermedad , Factor de Transcripción ReIA/metabolismo
14.
Front Endocrinol (Lausanne) ; 15: 1345203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469143

RESUMEN

Background: Tyrosine kinase inhibitors (TKIs) contribute to the treatment of patients with anaplastic thyroid cancer (ATC). Although prospective clinical studies of TKIs exhibit limited efficacy, whether ATC patients benefit from TKI treatment in real-world clinical practice may enlighten future explorations. Therefore, we conducted this effective analysis based on real-world retrospective studies to illustrate the efficacy of TKI treatment in ATC patients. Methods: We systematically searched the online databases on September 03, 2023. Survival curves were collected and reconstructed to summarize the pooled curves. Responses were analyzed by using the "meta" package. The primary endpoints were progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and disease control rate (DCR). Results: 12 studies involving 227 patients were enrolled in the study. Therapeutic strategies included: anlotinib, lenvatinib, dabrafenib plus trametinib, vemurafenib, pembrolizumab plus dabrafenib and trametinib, pembrolizumab plus lenvatinib, pembrolizumab plus trametinib, and sorafenib. The pooled median OS and PFS were 6.37 months (95% CI 4.19-10.33) and 5.50 months (95% CI 2.17-12.03). The integrated ORR and DCR were 32% (95% CI 23%-41%) and 40% (95% CI 12%-74%). Conclusion: In real-world clinical practice, ATC patients could benefit from TKI therapy. In future studies, more basic experiments and clinical explorations are needed to enhance the effects of TKIs in the treatment of patients with ATC.


Asunto(s)
Imidazoles , Oximas , Compuestos de Fenilurea , Quinolinas , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Estudios Retrospectivos , Estudios Prospectivos , Neoplasias de la Tiroides/tratamiento farmacológico
15.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481813

RESUMEN

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Asunto(s)
Lesión Renal Aguda , Factor 1 de Crecimiento de Fibroblastos , Humanos , Ratones , Animales , Factor 1 de Crecimiento de Fibroblastos/genética , Quinasas Ciclina-Dependientes/genética , Riñón , Lesión Renal Aguda/inducido químicamente , Inestabilidad Genómica
16.
Chin Med J (Engl) ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38445356

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD. METHODS: We generated a microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t-test were used to analyze the data. RESULTS: Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes. CONCLUSIONS: Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.

17.
Acta Physiol (Oxf) ; 240(4): e14121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409944

RESUMEN

AIM: Mitochondrial dysfunction, a characteristic pathological feature of renal Ischemic/reperfusion injury (I/RI), predisposes tubular epithelial cells to maintain an inflammatory microenvironment, however, the exact mechanisms through which mitochondrial dysfunction modulates the induction of tubular injury remains incompletely understood. METHODS: ESI-QTRAP-MS/MS approach was used to characterize the targeted metabolic profiling of kidney with I/RI. Tubule injury, mitochondrial dysfunction, and fumarate level were evaluated using qPCR, transmission electron microscopy, ELISA, and immunohistochemistry. RESULTS: We demonstrated that tubule injury occurred at the phase of reperfusion in murine model of I/RI. Meanwhile, enhanced glycolysis and mitochondrial dysfunction were found to be associated with tubule injury. Further, we found that tubular fumarate, which resulted from fumarate hydratase deficiency and released from dysfunctional mitochondria, promoted tubular injury. Mechanistically, fumarate induced tubular injury by causing disturbance of glutathione (GSH) hemostasis. Suppression of GSH with buthionine sulphoximine administration could deteriorate the fumarate inhibition-mediated tubule injury recovery. Reactive oxygen species/NF-κB signaling activation played a vital role in fumarate-mediated tubule injury. CONCLUSION: Our studies demonstrated that the mitochondrial-derived fumarate promotes tubular epithelial cell injury in renal I/RI. Blockade of fumarate-mediated ROS/NF-κB signaling activation may serve as a novel therapeutic approach to ameliorate hypoxic tubule injury.


Asunto(s)
Lesión Renal Aguda , Enfermedades Mitocondriales , Daño por Reperfusión , Ratones , Animales , FN-kappa B/metabolismo , Espectrometría de Masas en Tándem , Riñón/metabolismo , Mitocondrias/metabolismo , Daño por Reperfusión/metabolismo , Reperfusión , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Isquemia/patología , Apoptosis
18.
Target Oncol ; 19(2): 203-212, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38289445

RESUMEN

BACKGROUND: Immunotherapy has revolutionized the treatment of hepatocellular carcinoma (HCC). However, whether adding immunotherapy to antiangiogenic therapy benefits patients with unresectable HCC (uHCC) more in the first-line setting remains controversial. OBJECTIVE: In this analysis, we compared the clinical outcomes of lenvatinib monotherapy with atezolizumab plus bevacizumab combination therapy in advanced uHCC in real-world clinical practice. METHODS: The MEDLINE, Embase, and Cochrane CENTRAL databases were systematically searched on 23 April 2023. The "metaSurvival" and "meta" packages of the R software (version 4.2.2) were used to summarize the survival curves and meta-analyze the survival data. Overall survival (OS) and progression-free survival (PFS) were defined as dual primary endpoints. Secondary endpoints included the objective response rate (ORR) and disease control rate (DCR). RESULTS: Overall, the pooled median OS was 18.4 months in the lenvatinib group versus 18.5 months in the atezolizumab plus bevacizumab group; the pooled median PFS was 6.9 months in the lenvatinib group versus 7.3 months in the atezolizumab plus bevacizumab group. Lenvatinib therapy showed similar OS [hazard ratio (HR): 0.91, 95% confidence interval (CI): 0.55-1.52, p = 0.72] and PFS (HR: 0.79, 95% CI: 0.56-1.12, p = 0.19) compared with atezolizumab plus bevacizumab therapy. In addition, a comparable ORR [odds ratio (OR): 0.89, 95% CI: 0.65-1.20, p = 0.44) was observed between lenvatinib and atezolizumab plus bevacizumab. CONCLUSIONS: Comprehensive analysis suggested that lenvatinib monotherapy exhibited survival outcomes comparable to those of atezolizumab plus bevacizumab combination therapy, which may provide useful insights for clinicians in future clinical practice.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compuestos de Fenilurea , Quinolinas , Humanos , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico
19.
Clin Kidney J ; 17(1): sfad191, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38186888

RESUMEN

Background: The discovery of phospholipase A2 receptor (PLA2R) and its antibody (aPLA2Rab) has paved the way for diagnosing PLA2R-associated membranous nephropathy (PLA2R-MN) with a high specificity of 98%. However, the sensitivity was only 40% to 83.9%, and there is ongoing discussion around determining the optimal threshold for diagnosis. Recent advancements in the use of exosomes, a novel form of "liquid biopsy," have shown great promise in identifying markers for various medical conditions. Methods: Protein mass spectrometry and western blot were applied to verify the existence of PLA2R antigen in the urine exosome. We then evaluated the efficacy of urinary exosomal PLA2R antigen alone or combined with serum aPLA2Rab level to diagnose PLA2R-MN. Results: The urinary exosomes contained a high abundance of PLA2R antigen as evidenced by protein mass spectrometry and western blot in 85 PLA2R-MN patients vs the disease controls (14 secondary MN patients, 22 non-MN patients and 4 PLA2R-negative MN patients) and 20 healthy controls. Of note, urinary exosomal PLA2R antigen abundance also had a good consistency with the PLA2R antigen level in the renal specimens of PLA2R-MN patients. The sensitivity of urinary exosomal PLA2R for diagnosing PLA2R-MN reached 95.4%, whereas the specificity was 63.3%. Combining detection of the urinary exosomal PLA2R and serum aPLA2Rab could develop a more sensitive diagnostic method for PLA2R-MN, especially for patients with serum aPLA2Rab ranging from 2 to 20 RU/mL. Conclusions: Measurement of urinary exosomal PLA2R could be a sensitive method for the diagnosis of PLA2R-MN.

20.
Sci Rep ; 14(1): 741, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185674

RESUMEN

The shear yield stress is an important parameter for the industrial application of magnetorheological (MR) fluids. A test equipment was designed and built to perform investigations on the behaviours of compression and shear after squeeze of MR fluids. Mathematical expression of magnetic flux density was further established. Furthermore, the magnetic field distribution of the test device based on two-coil mode and single-coil mode was simulated and compared using finite element analysis(ANSYS/Multiphysics). An experimental test system was fabricated and modified based on the final conditions and simulation results. The compression and shear after squeeze performances of MR fluids were tested. The results showed that a smaller initial gap distance or a larger compressive strain corresponds to a larger compressive stress under the same external magnetic field strength. The shear yield stress after the squeeze of MR fluids increases quickly with the increasing compression stress and the increasing magnetic flux density. This test equipment was thought to be suitable for studying the compression and shear after squeeze performances of MR fluids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA