RESUMEN
BACKGROUND: Bracts are important for ornamental plants, and their developmental regulation process is complex; however, relatively little research has been conducted on bracts. In this study, physiological, biochemical and morphological changes in Bougainvillea glabra leaves, leaf buds and bracts during seven developmental periods were systematically investigated. Moreover, transcriptomic data of B. glabra bracts were obtained using PacBio and Illumina sequencing technologies, and key genes regulating their development were screened. RESULTS: Scanning electron microscopy revealed that the bracts develop via a process involving regression of hairs and a color change from green to white. Transcriptome sequencing revealed 79,130,973 bp of transcript sequences and 45,788 transcripts. Differential gene expression analysis revealed 50 expression patterns across seven developmental periods, with significant variability in transcription factors such as BgAP1, BgFULL, BgCMB1, BgSPL16, BgSPL8, BgDEFA, BgEIL1, and BgBH305. KEGG and GO analyses of growth and development showed the involvement of chlorophyll metabolism and hormone-related metabolic pathways. The chlorophyll metabolism genes included BgPORA, BgSGR, BgPPH, BgPAO and BgRCCR. The growth hormone and abscisic acid signaling pathways involved 44 and 23 homologous genes, and coexpression network analyses revealed that the screened genes BgAPRR5 and BgEXLA1 are involved in the regulation of bract development. CONCLUSIONS: These findings improve the understanding of the molecular mechanism of plant bract development and provide important guidance for the molecular regulation and genetic improvement of the growth and development of ornamental plants, mainly ornamental bracts.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Nyctaginaceae , Nyctaginaceae/genética , Nyctaginaceae/metabolismo , Transcriptoma , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrolloRESUMEN
Seed abortion is a common phenomenon in woody plants, especially in rare and endangered species. Serious seed abortion occurs in the dove tree and largely restricts its natural reproduction. A number of differentially expressed genes (DEGs) between normal and aborted seeds of the dove tree have been previously identified through transcriptome profiling. Among these, most DEGs encoding laccase showed significant upregulation in the aborted seeds. In this study, the laccase gene with the highest expression level in aborted seeds, DiLAC17, was cloned from the dove tree genome and further verified. Overexpression of the DiLAC17 gene in Arabidopsis resulted in retarded growth, deformed siliques, and severe seed abortion. Most Arabidopsis genes involved in seed development, such as AtLEC2, AtANT1, and AtRGE1, were suppressed in the transgenic lines. Laccase activity and lignin content were significantly improved in transgenic lines under ectopic overexpression of the DiLAC17 gene. Excessive lignin accumulation in the early developmental stage was assumed to be a key cause of restricting silique growth and seed expansion, which ultimately led to seed abortion. These results indicate a laccase-mediated pathway for seed abortion, which might be a strategy adopted by this rare and endangered species to reduce the reproductive load.
Asunto(s)
Arabidopsis , Nyssaceae , Embarazo , Femenino , Humanos , Arabidopsis/metabolismo , Lacasa/genética , Lacasa/metabolismo , Lignina/metabolismo , Semillas/metabolismo , Perfilación de la Expresión Génica , Nyssaceae/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
Amino acid is the main transport form of reduced nitrogen in plants. To investigate the uptake and source-sink translocation process of plants to help understand their physiological roles and transport mechanisms, we designed and synthesized three fluorescent-dye-labeled amino acids as tools to visualize amino acid transportation in Arabidopsis thaliana; these amino acids consist of amino acids linked to the fluorophore nitrobenzoxadiazole (NBD) with excellent optical properties. Furthermore, we incubated Arabidopsis thaliana with these NBD fluorescent-dye-labeled amino acids for real-time imaging along with fluorescence enhancement for 24 h. The results showed that Arabidopsis thaliana could absorb them directly from the roots to the leaves. Therefore, our fluorescent-dye-labeled amino acids provide a de novo tool and strategy for visualizing amino acid absorption and transportation in plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Colorantes Fluorescentes/química , Transporte BiológicoRESUMEN
BACKGROUND: Loropetalum chinense var. rubrum (L. chinense var. rubrum) is a precious, coloured-leaf native ornamental plant in the Hunan Province. We found an L. chinense var. rubrum tree with three different leaf colours: GL (green leaf), ML (mosaic leaf), and PL (purple leaf). The mechanism of leaf coloration in this plant is still unclear. Therefore, this study aimed to identify the metabolites and genes involved in determining the colour composition of L. chinense var. rubrum leaves, using phenotypic/anatomic observations, pigment content detection, and comparative metabolomics and transcriptomics. RESULTS: We observed that the mesophyll cells in PL were purple, while those in GL were green and those in ML were a mix of purple-green. The contents of chlorophyll a, b, carotenoids, and total chlorophyll in PL and ML were significantly lower than those in GL. While the anthocyanin content in PL and ML was significantly higher than that in GL. The metabolomics results showed the differences in the content of cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin, and petunidin 3,5-diglucoside in ML, GL, and PL were significant. Considering that the change trend of anthocyanin content change was consistent with the leaf colour difference, we speculated that these compounds might influence the colour of L. chinense var. rubrum leaves. Using transcriptomics, we finally identified nine differentially expressed structural genes (one ANR (ANR1217); four CYP75As (CYP75A1815, CYP75A2846, CYP75A2909, and CYP75A1716); four UFGTs (UFGT1876, UFGT1649, UFGT1839, and UFGT3273) and nine transcription factors (two MYBs (MYB1057 and MYB1211), one MADS-box (MADS1235), two AP2-likes (AP2-like1779 and AP2-like2234), one bZIP (bZIP3720), two WD40s (WD2173 and WD1867) and one bHLH (bHLH1631) that might be related to flavonoid biosynthesis and then impacted the appearance of colour in L. chinense var. rubrum leaves. CONCLUSION: This study revealed potential molecular mechanisms associated with leaf coloration in L. chinense var. rubrum by analyzing differential metabolites and genes related to the anthocyanin biosynthesis pathway. It also provided a reference for research on leaf colour variation in other ornamental plants.
Asunto(s)
Antocianinas , Transcriptoma , Clorofila A , Metaboloma , MetabolómicaRESUMEN
Low seed fertility seriously limits the survival and adaption of rare plant species. Here, we identified a seed-specific gene, DiZF-C3H1, from the dove tree and verified its function. Overexpression of DiZF-C3H1 caused retarded root development, delayed anthesis, abnormal floral organs, and deformed siliques in transgenic Arabidopsis lines. No offspring were obtained in transgenic Arabidopsis lines due to serious seed abortion. Therefore, we performed further verification in tobacco. Similarly, overexpression of DiZF-C3H1 retarded root development and reduced berry size and seed yield in transgenic tobacco lines. Moreover, although transgenic tobacco offspring were obtained, the viability of transgenic seeds was reduced and their germination was delayed. In addition, faded flowers were observed in transgenic tobacco lines. Taken together, DiZF-C3H1 was verified to play a negative role in root growth, floral organ development, and especially seed development in Arabidopsis and tobacco. This appears to be a deleterious gene for these model plants with high seed fertility. However, this function might be of special significance for Davidia, whose seed dormancy period is extremely long; DiZF-C3H1 might play a critical role in the distinctive reproduction strategy adopted by this rare and endangered species.
Asunto(s)
Arabidopsis , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Semillas/genética , Nicotiana/genética , Factores de Transcripción/genética , Árboles , Dedos de ZincRESUMEN
Lilium × formolongi is an important cut flower species that is able to flower within a year following seed propagation, with flower induction that is very sensitive to the photoperiod. Cryptochromes are blue/UV-A light receptors that regulate many important plant growth and development processes, including photoperiodic flowering. In this study, we isolated the cryptochrome 1 (CRY1) gene from L. × formolongi and analyzed its function in transgenic Arabidopsis. The predicted LfCRY1 protein was strongly homologous to other CRY1 proteins. The transcription of LfCRY1 was induced by blue light, with LfCRY1 exhibiting its highest expression and diurnal expression patterns during the flowering-induction stage under both long-day (LD) and short-day (SD) photoperiods. Overexpression of LfCRY1 in Arabidopsis promoted flowering under LDs but not SDs and inhibited hypocotyl elongation under blue light. The LfCRY1 protein was located in both the nucleus and cytoplasm. LfCRY1 interacted with the important flowering activator LfCOL9 in both yeast and onion cells. These results provide functional evidence for the role of LfCRY1 in controlling photoperiodic flowering under LDs and indicate that LfCRY1 may be a counterpart of AtCRY1. Understanding the role of LfCRY1 in photoperiodic flowering is beneficial for the molecular breeding of lilies with shorter vegetative stages.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lilium , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clonación Molecular , Criptocromos/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Lilium/genética , FotoperiodoRESUMEN
Hydrangea macrophylla has a large inflorescence and rich colors, which has made it one of the most popular ornamental flowers worldwide. Thus far, the molecular mechanism of flower color formation in H. macrophylla flowers is unknown. By comparing the pigment content and transcriptome data of the bud period (FSF1), discoloration period (FSF2) and full-bloom stage (FSF3) of infertile blue flowers of H. macrophylla cv. "Forever Summer," we found that genes associated with anthocyanin production were most associated with the formation of blue infertile flowers throughout development. The anthocyanin biosynthesis pathway is the main metabolic pathway associated with flower color formation, and the carotenoid biosynthesis pathway appeared to have almost no contribution to flower color. There was no competition between the flavonoid and flavonol and anthocyanin biosynthesis pathways for their substrate. At FSF1, the key genes CHS and CHI in the flavonoid biosynthesis pathway were up-regulated, underlying the accumulation of a substrate for anthocyanin synthesis. By FSF3, the downstream genes F3H, C3'5'H, CYP75B1, DFR, and ANS in the anthocyanin biosynthesis pathway were almost all up-regulated, likely promoting the synthesis and accumulation of anthocyanins and inducing the color change of infertile flowers. By analyzing protein-protein interaction networks and co-expression of transcription factors as well as differentially expressed structural genes related to anthocyanin synthesis, we identified negatively regulated transcription factors such as WER-like, MYB114, and WDR68. Their site of action may be the key gene DFR in the anthocyanin biosynthesis pathway. The potential regulatory mechanism of flower color formation may be that WER-like, MYB114, and WDR68 inhibit or promote the synthesis of anthocyanins by negatively regulating the expression of DFR. These results provide an important basis for studying the infertile flower color formation mechanism in H. macrophylla and the development of new cultivars with other colors.
RESUMEN
Serious seed abortion of dove tree (Davidia involucrate Baill.) is one of the critical factors leading to the low fecundity of this species. Seed abortion is a complicated process and various factors have been verified to synergistically determine the fate of seeds. To reveal the mechanism of seed abortion in D. involucrata, we performed transcriptome analysis in normal and abortive seeds of D. involucrata. According to the transcriptome data, we noticed that most of the genes encoding a MYB transcription factor were predominantly expressed in abortive seeds. Among these, a gene named DiMYB1 was selected and its function was validated in this study. Overexpression of DiMYB1 resulted in obviously reduced viability of transgenic seeds and seedlings, and caused a significantly higher seed abortion rate. The vegetative growth of transgenic plants was hindered, resulting in an earlier flowering time. In addition, colour changes occurred in transgenic plants. Some transgenic sprouts, stems and pods appeared purple instead of green in colour. Our finding demonstrated that DiMYB1 participates in multiple plant developmental processes, especially in seed development in Arabidopsis thaliana (L.) Heynh., which indicated the similar role of this gene in D. involucrata.
Asunto(s)
Aborto Inducido , Arabidopsis , Animales , Arabidopsis/genética , Expresión Génica Ectópica , Femenino , Regulación de la Expresión Génica de las Plantas , Embarazo , Semillas/genética , Factores de Transcripción/genética , Árboles/metabolismoRESUMEN
Penicillin acylase is commonly used to produce the medical intermediates of 6-Aminopenicillanic acid (6-APA) and 7-Aminodesacetoxycephalosporanic acid (7-ADCA) in industrial process. Nowadays, Penicillin G acylase (PGA) has been widely applied for making pharmaceutical intermediates, while penicillin V acylase (PVA) has been less used for that due to its low activity and poor conversion. In this study, a PVA from Bacillus sphaericus (BspPVA) was employed for directed evolution study with hoping to increase its catalytic efficiency. Finally, a triple mutant BspPVA-3 (T63S/N198Y/S110C) was obtained with 12.4-fold specific activity and 11.3-fold catalytic efficiency higher than BspPVA-wt (wild type of BspPVA). Moreover, the conversion yields of 6-APA catalyzed by BspPVA-3 reached 98% with 20% (w/v) penicillin V as substrate, which was significantly higher than that of the BspPVA-wt (85%). Based on the analysis of modeling, the enhancement of specific activity of mutant BspPVA-3 was probably attributed to the changes in the number of hydrogen bonds within the molecules. The triple mutant PVA developed in this study has a potential for large-scale industrial application for 6-APA production.
Asunto(s)
Bacillus/enzimología , Mutación , Ácido Penicilánico/análogos & derivados , Penicilina Amidasa/metabolismo , Catálisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Ácido Penicilánico/metabolismo , Penicilina Amidasa/química , Penicilina Amidasa/genética , Conformación Proteica , Especificidad por SustratoRESUMEN
BACKGROUND: Dove tree (Davidia involucrata Baill.) is a rare and endangered species. Natural reproduction of dove tree is extremely difficult due to its low fecundity. Serious seed abortion is one of the key factors restraining its sexual reproduction. Understanding the inducements of seed abortion is critical for addressing the issue of offspring production and the survivability of such an endangered species. However, studies on the molecular mechanism of seed abortion in woody plants are lacking, and the dearth of genomic resources for dove tree restricts further research. RESULTS: In this study, using the Illumina platform, we performed de novo transcriptome sequencing of the fruit and seed in dove tree. A total of 149,099 transcripts were isolated and then assembled into 72,885 unigenes. Subsequently, differentially expressed genes (DEGs) between normal and abortive seeds were screened. Genes involved in response to stress, hormone signal transduction, programmed cell death, lignin biosynthesis, and secondary cell wall biogenesis showed significant different expression levels between normal and abortive seeds. CONCLUSION: Combined results indicated that the abortive seeds were under the adversity stress, which should be controlled by the maternal plant. Maternally controlled development of integument is assumed to be a critical process for abortion regulation. MYB and WRKY transcription factors, receptor kinase and laccase are considered to be important regulators in seed abortion. Moreover, mass sequence data facilitated further molecular research on this unique species.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Nyssaceae/genética , Semillas/genética , Transcriptoma , Apoptosis/genética , Proliferación Celular/genética , Análisis por Conglomerados , Replicación del ADN/efectos de los fármacos , Especies en Peligro de Extinción , Ácidos Grasos/metabolismo , Fertilidad/genética , Frutas/genética , Ontología de Genes , Nyssaceae/citología , Nyssaceae/metabolismo , Infertilidad Vegetal/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/citología , Semillas/metabolismo , Análisis de Secuencia de ARN/métodos , Almidón/metabolismo , Sacarosa/metabolismoRESUMEN
A simple aggregation-induced emission-based fluorescence probe (1) for Mg(2+) was synthesized by condensation of benzene-1, 2-diamine with 5-bromo-2-hydroxybenzaldehyde, This compound shows favourable character of the AIE-active molecules. More importantly, after addition of Mg(2+) to probe (1) in acetonitrile, the solution changed from colorless to yellow colour solution under ultraviolet (UV) radiation obtained from hand-held UV lamp, this finding suggested that probe (1) can be used to detect Mg(2+) by colorimetric detection. Detection limit can reach 2.31 × 10(-5) M(-1). The practical value of the selective and sensitive fluorescence indicators was confirmed by its application to detection of magnesium ion in acetonitrile.