Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 119(24): 6283-95, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26020582

RESUMEN

Controlling photoinduced intramolecular charge transfer at the molecular scale is key to the development of molecular devices for nanooptoelectronics. Here, we describe the design, synthesis, electronic characterization, and photophysical properties of two electron donor-acceptor molecular systems that consist of tolane and BF2-containing curcuminoid chromophoric subunits connected in a T-shaped arrangement. The two π-conjugated segments intersect at the electron acceptor dioxaborine core. From steady-state electronic absorption and fluorescence emission, we find that the photophysics of the dialkylamino-substituted analogue is governed by the occurrence of two closely lying excited states. From DFT calculations, we show that excitation in either of these two states results in a distinct shift of the electron density, whether it occurs along the curcuminoid or tolane moiety. Femtosecond transient absorption spectroscopy confirmed these findings. As a consequence, the nature of the emitting state and the photophysical properties are strongly dependent on solvent polarity. Moreover, these characteristics can also be switched by protonation or complexation at the nitrogen atom of the amino group. These features set new approaches toward the construction of a three-terminal molecular system in which the lateral branch would transduce a change of electronic state and ultimately control charge transport in a molecular-scale device.

2.
Chem Commun (Camb) ; 50(96): 15140-3, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25348258

RESUMEN

Stepwise synthesis of linear nickel complex oligomer tapes with no need for solid-phase support has been achieved. The control of the length in flat arrays allows a fine-tuning of the absorption properties from the UV to the NIR region.


Asunto(s)
Complejos de Coordinación/química , Níquel/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Conformación Molecular , Espectroscopía Infrarroja Corta
3.
Chemistry ; 20(40): 12843-57, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25145709

RESUMEN

The synthesis, structural, and photophysical properties of a new series of original dyes based on 2-(2'-hydroxybenzofuran)benzoxazole (HBBO) is reported. Upon photoexcitation, these dyes exhibit intense dual fluorescence with contribution from the enol (E*) and the keto (K*) emission, with K* being formed through excited-state intramolecular proton transfer (ESIPT). We show that the ratio of emission intensity E*/K* can be fine-tuned by judiciously decorating the molecular core with electron-donating or -attracting substituents. Push-pull dyes 9 and 10 functionalized by a strong donor (nNBu2 ) and a strong acceptor group (CF3 and CN, respectively) exhibit intense dual emission, particularly in apolar solvents such as cyclohexane in which the maximum wavelength of the two bands is the more strongly separated. Moreover, all dyes exhibit strong solid-state dual emission in a KBr matrix and polymer films with enhanced quantum yields reaching up to 54 %. A wise selection of substituents led to white emission both in solution and in the solid state. Finally, these experimental results were analyzed by time-dependent density functional theory (TD-DFT) calculations, which confirm that, on the one hand, only E* and K* emission are present (no rotamer) and, on the other hand, the relative free energies of the two tautomers in the excited state guide the ratio of the E*/K* emission intensities.

4.
Inorg Chem ; 53(13): 7055-69, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24921971

RESUMEN

We present a detailed photophysical study and theoretical analysis of 2,5-bis(arylethynyl)rhodacyclopenta-2,4-dienes (1a­c and 2a­c) and a 2,5-bis(arylethynyl)iridacyclopenta-2,4-diene (3). Despite the presence of heavy atoms, these systems display unusually intense fluorescence from the S1 excited state and no phosphorescence from T1. The S1 → T1 intersystem crossing (ISC) is remarkably slow with a rate constant of 108 s­1 (i.e., on the nanosecond time scale). Traditionally, for organometallic systems bearing 4d or 5d metals, ISC is 2­3 orders of magnitude faster. Emission lifetime measurements suggest that the title compounds undergo S1 → T1 interconversion mainly via a thermally activated ISC channel above 233 K. The associated experimental activation energy is found to be ΔHISC = 28 kJ mol­1 (2340 cm­1) for 1a, which is supported by density functional theory (DFT) and time-dependent DFT calculations [ΔHISC(calc.) = 11 kJ mol­1 (920 cm­1) for 1a-H]. However, below 233 K a second, temperature-independent ISC process via spin­orbit coupling occurs. The calculated lifetime for this S1 → T1 ISC process is 1.1 s, indicating that although this is the main path for triplet state formation upon photoexcitation in common organometallic luminophores, it plays a minor role in our Rh compounds. Thus, the organic π-chromophore ligand seems to neglect the presence of the heavy rhodium or iridium atom, winning control over the excited-state photophysical behavior. This is attributed to a large energy separation of the ligand-centered highest occupied molecular orbital (HOMO) and lowest unoccupied MO (LUMO) from the metal-centered orbitals. The lowest excited states S1 and T1 arise exclusively from a HOMO-to-LUMO transition. The weak metal participation and the cumulenic distortion of the T1 state associated with a large S1­T1 energy separation favor an "organic-like" photophysical behavior.

5.
Chem Commun (Camb) ; 50(58): 7900-3, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24912979

RESUMEN

Heating 4-methoxy-1-naphthol with a 1,1-diarylprop-2-yn-1-ol gave the 2,2-diaryl-6-methoxy-2H-naphtho[1,2-b]pyran together with the novel merocyanine, (E)-2-[3',3'-bis(aryl)allylidene]-4-methoxynaphthalen-1(2H)-one. Brief UV-irradiation of the pyran favoured the formation of the (Z)-merocyanine with longer irradiation and/or acidic conditions favouring the (E)-isomer.

6.
J Phys Chem A ; 118(23): 4038-47, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24835334

RESUMEN

Although it has been reported in a few instances that the spectroscopic properties of cyanine dyes were strongly dependent on the nature of the chemical substitution of their central carbon atom, there has not been to date any systematic study specifically aimed at rationalizing this behavior. In this article, such a systematic study is carried out on an extended family of 17 polymethine dyes carrying different substituents on their central carbon, some of those being specifically synthesized for this study, some of those similar to previously reported compounds, for the sake of comparison. Their absorption properties, which spread over the whole visible to near-infrared spectral range, are seen to be dramatically dependent on the electron-donating character of this central substituent. By correlating this behavior to NMR spectroscopy and (vibronic) TD-DFT calculations, we show that it results from a profound modification of the ground state electronic configuration, namely, a progressive localization of the cationic charge on the central carbon as the electron-donating nature of the central substituent is increased.

7.
J Org Chem ; 79(5): 2038-48, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24517585

RESUMEN

A series of perylene derivatives are prepared as triplet energy acceptors for triplet-triplet annihilation (TTA) assisted upconversion. The aim is to optimize the energy levels of the T1 and S1 states of the triplet acceptors, so that the prerequisite for TTA (2E(T1) > E(S1)) can be better satisfied, and eventually to increase the upconversion efficiency. Tuning of the energy levels of the excited states of the triplet acceptors is realized either by attaching aryl groups to perylene (via single or triple carbon-carbon bonds), or by assembling a perylene-BODIPY dyad, in which the components present complementary S1 and T1 state energy levels. The S1 state energy levels of the perylene derivatives are generally decreased compared to perylene. The anti-Stokes shift, TTA, and upconversion efficiencies of the new triplet acceptors are improved with respect to the perylene hallmark. For the perylene-BODIPY dyads, the fluorescence emission was substantially quenched in polar solvents. Moreover, we found that extension of the π-conjugation of BODIPY energy donor significantly reduces the energy level of the S1 state. Low S1 state energy level and high T1 state energy level are beneficial for triplet photosensitizers.

8.
J Chem Theory Comput ; 10(2): 805-15, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26580054

RESUMEN

Dioxaborines dyes, based on the OBO atomic sequence, constitute one promising series of molecules for both organic electronics and bioimaging applications. Using Time-Dependent Density Functional Theory, we have simulated the optical signatures of these fluoroborates. In particular, we have computed the 0-0 energies and shapes of both the absorption and the emission bands. To assess the importance of solvent effects three polarization schemes have been applied within the Polarizable Continuum Model: the linear-response (LR), the corrected linear-response (cLR), and the state-specific (SS). We show that the SS approach is unable to yield consistent chemical trends for these challenging compounds that combine charge-transfer and cyanine characters. On the contrary, LR and cLR are more effective in reproducing chemical trends in OBO dyes. We have applied our computational protocol not only to analyze the signatures of existing dyes but also to design structures with red-shifted absorption and emission bands.

9.
J Chem Theory Comput ; 10(10): 4599-608, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26588153

RESUMEN

Using a set of 20 organic molecules, we assess the accuracy of both the absorption and emission band shapes obtained by two optimally tuned range-separated hybrid functionals possessing 0% (LC-PBE*) and 25% (LC-PBE0*) of short-range exact exchange as well as by four other hybrid functionals including or not dispersion and long-range corrections (APF-D, PBE0-1/3, SOGGA11-X, and ωB97X-D). The band topologies are compared to experimental data and to previous time-dependent density functional theory calculations. It turns out that both optimally tuned functionals vastly improve the vibronic band shapes obtained with the non-tuned LC-PBE approach but, statistically, do not yield more accurate topologies than standard hybrid functionals. In other words, optimal tuning allows to obtain more accurate excited-state energies without degrading the description of band shapes. In addition, the LC-PBE0* 0-0 energies have been determined for a set of 40 compounds, and it is shown that the results are, on average, less accurate than those obtained by LC-PBE* for the same panel of molecules. The correlation between the optimal range-separation parameters determined for LC-PBE* and LC-PBE0* is discussed as well.

10.
Phys Chem Chem Phys ; 16(4): 1319-21, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24309560

RESUMEN

The potential energy surfaces of dyes displaying strong excited-state intramolecular proton transfer (ESIPT) are investigated with the help of ab initio tools. It allows us to rationalize the interplay between the excited-state transition free energies and the observed optical signatures.

11.
Phys Chem Chem Phys ; 15(20): 7534-40, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23584386

RESUMEN

The optical properties of a series of recently synthesized [Chem. Eur. J., 2013, DOI: 10.1002/chem.201203625] fluorescent borate complexes based on the 2-(2'-hydroxyphenyl)benzoxazole (HBO) core have been modeled using Time-Dependent Density Functional Theory. The computations use a range-separated hybrid functional (ωB97X-D) and include vertical, adiabatic and vibronic simulations, as well as analysis of the charge-transfer characteristics of each state. This work allows us to interpret the major experimental features, including unexpected evolution of the λmax, band shapes and protonation effects. Two dyads, one including a BODIPY core, have also been tackled.


Asunto(s)
Benzoxazoles/química , Luminiscencia , Teoría Cuántica , Estructura Molecular , Factores de Tiempo
12.
J Chem Theory Comput ; 9(6): 2749-60, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26583866

RESUMEN

The band shapes corresponding to both the absorption and emission spectra of a set of 20 representative conjugated molecules, including recently synthesized structures, have been simulated with a Time-Dependent Density Functional Theory model including diffuse atomic orbitals and accounting for bulk solvent effects. Six hybrid functionals, including two range-separated hybrids (B3LYP, PBE0, M06, M06-2X, CAM-B3LYP, and LC-PBE) have been assessed in light of the experimental band shapes obtained for these conjugated compounds. Basis set and integration grid effects have also been evaluated. It turned out that all tested functionals but LC-PBE reproduce the main experimental features for both absorption and fluorescence, though the average errors are significantly larger for the latter phenomena. No single functional stands out as the most accurate for all aspects, but B3LYP yields the smallest mean absolute deviation. On the other hand, M06-2X could be a valuable compromise for excited-states as it reproduces the 0-0 energies and also gives reasonable band shapes. The typical mean absolute deviations between the relative positions of the experimental and theoretical peaks in the vibrationally resolved spectra are ca. 100 cm(-1) for absorption and 250 cm(-1) for emission. In the same time, the relative intensities of the different maxima are reproduced by TD-DFT with a ca. 10-15% accuracy.

13.
J Chem Theory Comput ; 9(7): 3127-35, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26583992

RESUMEN

The simulations of excited-state properties, that is, the 0-0 energies and vibronic shapes, of a large panel of fluorophores presenting a NBO atomic sequence have been achieved with a Time-Dependent Density Functional Theory (TD-DFT) approach. We have combined eight hybrid exchange-correlation functionals (B3LYP, PBE0, M06, BMK, M06-2X, CAM-B3LYP, ωB97X-D, and ωB97) to the linear-response (LR) and the state specific (SS) Polarizable Continuum Model (PCM) methods in both their equilibrium (eq) and nonequilibrium (neq) limits. We show that the combination of the SS-PCM scheme to a functional incorporating a low amount of exact exchange can yield unphysical values for molecules presenting large increase of their dipole moments upon excitation. We therefore apply a functional possessing a large exact exchange ratio to simulate the properties of NBO dyes, including large dyads.

14.
J Chem Theory Comput ; 8(9): 3303-13, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26605737

RESUMEN

We have simulated the optical properties of Aza-Boron-dipyrromethene (Aza-BODIPY) dyes and, more precisely, the 0-0 energies as well as the shape of both absorption and fluorescence bands, thanks to the computation of vibronic couplings. To this end, time-dependent density functional theory (TD-DFT) calculations have been carried out with a systematic account of both vibrational and solvent effects. In a first step, we assessed different atomic basis sets, a panel of global and range-separated hybrid functionals as well as different solvent models (linear-response, corrected linear-response, and state-specific). In this way, we have defined an accurate yet efficient protocol for these dyes. In a second stage, several simulations have been carried out to investigate acidochromic and complexation effects, as well as the impact of side groups on the topology of the optical bands. In each case, theory is able to accurately reproduce experimental results and the proposed protocol is consequently useful to design new dyes featuring improved properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA