Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189188

RESUMEN

Aiming at a comprehensive understanding of support effects on Ni-based bimetallic catalyst for CO2 hydrogenation, spectroscopy (DRIFTS) with CO as a probe molecule and temperature-programmed techniques were used to investigate the impact of different supports (MgO, CeO2, ZrO2) on Ni- and Ni,Fe catalysts. Kinetic parameters revealed that the higher selectivity to methanation for Ni and Ni,Fe supported on the reducible oxides (CeO2, ZrO2) is due to the inhibition of reverse water-gas shift reaction (RWGS) by hydrogen. A promoting effect of Fe on Ni was only observed on MgO-supported catalysts. In situ DRIFTS with CO adsorption showed different electronic properties of Ni sites with partially reduced oxide (i.e. ZrO2 and CeO2). H2-TPR and CO2-TPD confirmed the significant role of metal-support interaction (MSI) in CeO2-supported catalysts for CO2 activation. The MSI between Ni/Ni,Fe and reducible supports are crucial for catalytic performance, ultimately leading to the higher activity and stability in CO2 hydrogenation.

2.
Sci Total Environ ; 949: 174642, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38992380

RESUMEN

Cognitive efficiency, characterized by the rapid and accurate processing of information, significantly enhances work and learning outcomes. This efficiency manifests in improved time management, decision-making, learning capabilities, and creativity. While the influence of thermal, acoustic, and lighting conditions on cognitive performance has been extensively studied, the role of olfactory stimuli remains underexplored. Olfactory perception, distinguished by its intensity, speed of perception, and the breadth of stimuli, plays a pivotal role in cognitive efficiency. This review investigates the mechanisms through which odor environments influence cognitive performance. We analyze how odor environments can affect cognitive efficiency through two different scenarios (work and sleep) and pathways (direct and indirect effects). Current research, which mainly focuses on the interplay between odors, emotional responses, and cognitive efficiency through both subjective and objective measures, is thoroughly analyzed. We highlight existing research gaps and suggest future directions for investigating the influence of odor environments on cognitive efficiency. This review aims to establish a theoretical basis for managing and leveraging odor environments in workplace settings.


Asunto(s)
Cognición , Odorantes , Humanos , Percepción Olfatoria/fisiología , Olfato/fisiología , Lugar de Trabajo
3.
Sci Total Environ ; 946: 174247, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936725

RESUMEN

Seaweeds consumption is one of main internal exposure sources of arsenic for human. However, the absence of representative bio-availabilities of arsenic species makes the accurate assessment of arsenic health risk originating from seaweeds consumption impossible. Herein, the arsenic species in various seaweeds collected from Fujian of China were investigated, and the bio-accessibilities/bio-availabilities of arsenic species existing in seaweeds were evaluated in vitro and in vivo. Results revealed that in vitro bio-availabilities of arsenic species presenting in seaweeds, which obtained with Caco-2 cells, were lower than those of pure arsenic standards, and varied with order of inorganic arsenic (iAs) > dimethylarsinic acid (DMA) ≈ arsenobetaine (AsB) > arsenosugars. During gastrointestinal digestion of mice, As5+ was partly methylated into monomethylarsonic acid (MMA) and DMA, which makes the in vivo bioavailability of iAs (⁓31.8 %) obtained with mouse metabolic experiment is much higher than its in vitro bio-availability (⁓10.3 %). The in vivo bio-availabilities of DMA and total arsenic (tAs) are similar to their in vitro bio-availabilities. As the dominant arsenic species in most seaweeds, arsenosugars have an ⁓0.0 % of in vivo bioavailability and only a ⁓3.7 % of in vitro bioavailability. The simulated calculation of target hazard quotient (THQ) and target cancer risk (TR) revealed that the arsenic risk originating from seaweeds was greatly degraded by taking into consideration of arsenic species and bio-availabilities, and all seaweeds collected from Fujian are safety for consumption. The simulated calculation also revealed that arsenic risk of seaweeds can be also more accurately assessed based on tAs together with bioavailability, which provides a simple but accurate and protective method for the risk assessment of arsenic originating from seaweeds. Our work provides the possible representative bio-availabilities of arsenic species presenting in seaweeds for accurately assessing arsenic risk of seaweeds, and novel insights into the bio-availabilities of arsenic in animal.


Asunto(s)
Arsénico , Arsenicales , Algas Marinas , Algas Marinas/química , Medición de Riesgo , Arsénico/análisis , Arsenicales/análisis , Ratones , Humanos , Animales , China , Disponibilidad Biológica , Contaminación de Alimentos/análisis , Ácido Cacodílico , Células CACO-2 , Algas Comestibles
4.
Front Nutr ; 11: 1346706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425482

RESUMEN

Introduction: Macrofungi, such as edible mushrooms, have been used as a valuable medical resource for millennia as a result of their antibacterial and immuno-modulatory components. Mushrooms contain dietary fibers known as ß-glucans, a class of polysaccharides previously linked to the induction of Trained Immunity. However, little is known about the ability of mushroom-derived ß-glucans to induce Trained Immunity. Methods & results: Using various powdered forms of the white button mushroom (Agaricus bisporus), we found that mouse macrophages pre-treated with whole mushroom powder (WMP) displayed enhanced responses to restimulation with TLR ligands, being particularly sensitive to Toll-like receptor (TLR)-2 stimulation using synthetic lipopeptides. This trained response was modest compared to training observed with yeast-derived ß-glucans and correlated with the amount of available ß-glucans in the WMP. Enriching for ß-glucans content using either a simulated in-vitro digestion or chemical fractionation retained and boosted the trained response with WMP, respectively. Importantly, both WMP and digested-WMP preparations retained ß-glucans as identified by nuclear magnetic resonance analysis and both displayed the capacity to train human monocytes and enhanced responses to restimulation. To determine if dietary incorporation of mushroom products can lead to Trained Immunity in myeloid cells in vivo, mice were given a regimen of WMP by oral gavage prior to sacrifice. Flow cytometric analysis of bone-marrow progenitors indicated alterations in hematopoietic stem and progenitor cells population dynamics, with shift toward myeloid-committed multi-potent progenitor cells. Mature bone marrow-derived macrophages derived from these mice displayed enhanced responses to restimulation, again particularly sensitive to TLR2. Discussion: Taken together, these data demonstrate that ß-glucans from common macrofungi can train innate immune cells and could point to novel ways of delivering bio-available ß-glucans for education of the innate immune system.

5.
Phytomedicine ; 128: 155501, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471318

RESUMEN

BACKGROUND: The discovering of an osteoclast (OC) coupling active agent, capable of suppressing OC-mediated bone resorption while concurrently stimulating osteoblast (OB)-mediated bone formation, presents a promising strategy to overcome limitations associated with existing antiresorptive agents. However, there is a lack of research on active OC coupling agents. PURPOSE: This study aims to investigate the potential of Jiangu Formula (JGF) in inhibiting OCs while maintaining the OCOB coupling function. METHODS: The anti-osteoporosis efficacy of JGF was evaluated in osteoporosis models induced by ovariectomy in C57BL/6 mouse and SD rats. The effect of JGF on OCs was evaluated by detecting its capacity to inhibit OC differentiation and bone resorption in an in vitro osteoclastogenesis model induced by RANKL. The OCOB coupling activity of JGF was evaluated by measuring the secretion levels of OC-derived coupling factors, OB differentiation activity of MC3T3-E1 interfered with conditioned medium, and the effect of JGF on OC inhibition and OB differentiation in a C3H10T1/2-RAW264.7 co-culture system. The mechanism of JGF was studied by network pharmacology and validated using western blot, immunofluorescence (IF), and ELISA. Following that, the active ingredients of JGF were explored through a chemotype-assembly approach, activity evaluation, and LC-MS/MS analysis. RESULTS: JGF inhibited bone resorption in murine osteoporosis without compromising the OCOB coupling effect on bone formation. In vitro assays showed that JGF preserved the coupling effect of OC on OB differentiation by maintaining the secretion of OC-derived coupling factors. Network analysis predicted STAT3 as a key regulation point for JGF to exert anti-osteoporosis effect. Further validation assays confirmed that JGF upregulated p-STAT3(Ser727) and its regulatory factors IL-2 in RANKL-induced RAW264.7 cells. Moreover, 23 components in JGF with anti-OC activity identified by chemotype-assembly approach and verification experiments. Notably, six compounds, including ophiopogonin D, ginsenoside Re, ginsenoside Rf, ginsenoside Rg3, ginsenoside Ro, and ononin were identified as OC-coupling compounds. CONCLUSION: This study first reported JGF as an agent that suppresses bone loss without affecting bone formation. The potential coupling mechanism of JGF involves the upregulation of STAT3 by its regulators IL-2. Additionally, the chemotype-assembly approach elucidated the activity compounds present in JGF, offering a novel strategy for developing an anti-resorption agent that preserves bone formation.


Asunto(s)
Resorción Ósea , Diferenciación Celular , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Osteoblastos , Osteoclastos , Osteoporosis , Ratas Sprague-Dawley , Animales , Osteoclastos/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Osteoporosis/tratamiento farmacológico , Osteoblastos/efectos de los fármacos , Femenino , Células RAW 264.7 , Diferenciación Celular/efectos de los fármacos , Resorción Ósea/tratamiento farmacológico , Ovariectomía , Ligando RANK , Ratas , Osteogénesis/efectos de los fármacos , Modelos Animales de Enfermedad , Factor de Transcripción STAT3/metabolismo
6.
ACS Catal ; 14(5): 2828-2841, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38449535

RESUMEN

Ammonia is currently being studied intensively as a hydrogen carrier in the context of the energy transition. The endothermic decomposition reaction requires the use of suitable catalysts. In this study, transition metal Ni on MgO as a support is investigated with respect to its catalytic properties. The synthesis method and the type of activation process contribute significantly to the catalytic properties. Both methods, coprecipitation (CP) and wet impregnation (WI), lead to the formation of Mg1-xNixO solid solutions as catalyst precursors. X-ray absorption studies reveal that CP leads to a more homogeneous distribution of Ni2+ cations in the solid solution, which is advantageous for a homogeneous distribution of active Ni catalysts on the MgO support. Activation in hydrogen at 900 °C reduces nickel, which migrates to the support surface and forms metal nanoparticles between 6 nm (CP) and 9 nm (WI), as shown by ex situ STEM. Due to the homogeneously distributed Ni2+ cations in the solid solution structure, CP samples are more difficult to activate and require harsher conditions to reduce the Ni. The combination of in situ X-ray diffraction (XRD) and operando total scattering experiments allows a structure-property investigation of the bulk down to the atomic level during the catalytic reaction. Activation in H2 at 900 °C for 2 h leads to the formation of large Ni particles (20-30 nm) for the samples synthesized by the WI method, whereas Ni stays significantly smaller for the CP samples (10-20 nm). Sintering has a negative influence on the catalytic conversion of the WI samples, which is significantly lower compared to the conversion observed for the CP samples. Interestingly, metallic Ni redisperses during cooling and becomes invisible for conventional XRD but can still be detected by total scattering methods. The conditions of activation in NH3 at 650 °C are not suitable to form enough reduced Ni nanoparticles from the solid solution and are, therefore, not a suitable activation procedure. The activity steadily increases in the samples activated at 650 °C in NH3 (Group 1) compared to the samples activated at 650 °C in H2 and then reaches the best activity in the samples activated at 900 °C in H2. Only the combination of complementary in situ and ex situ characterization methods provides enough information to identify important structure-property relationships among these promising ammonia decomposition catalysts.

7.
Ecol Evol ; 14(2): e11001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38352203

RESUMEN

Soil microorganisms play vital roles in regulating multiple ecosystem functions. Recent studies have revealed that the rare microbial taxa (with extremely low relative abundances, which are still largely ignored) are also crucial in maintaining the health and biodiversity of the soil and may respond differently to environmental pressure. However, little is known about the soil community structures of abundant and rare taxa and their assembly processes in different soil layers on the Qinghai-Tibet Plateau (QTP). The present study investigated the community structure and assembly processes of soil abundant and rare microbial taxa on the northeastern edge of the QTP. Soil microbial abundance was defined by abundant taxa, whereas rare taxa contributed to soil microbial diversity. The results of null model show that the stochastic process ruled the assembly processes of all sub-communities. Dispersal limitation contributed more to the assembly of abundant microbial taxa in the different soil layers. In contrast, drift played a more critical role in the assembly processes of the rare microbial taxa. In addition, in contrast to previous studies, the abundant taxa played more important roles in co-occurrence networks, most likely because of the heterogeneity of the soil, the sparsity of amplicon sequencing, the sampling strategy, and the limited samples in the present study. The results of this study improve our understanding of soil microbiome assemblies on the QTP and highlight the role of abundant taxa in sustaining the stability of microbial co-occurrence networks in different soil layers.

8.
Nat Commun ; 15(1): 871, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286982

RESUMEN

Ammonia is a storage molecule for hydrogen, which can be released by catalytic decomposition. Inexpensive iron catalysts suffer from a low activity due to a too strong iron-nitrogen binding energy compared to more active metals such as ruthenium. Here, we show that this limitation can be overcome by combining iron with cobalt resulting in a Fe-Co bimetallic catalyst. Theoretical calculations confirm a lower metal-nitrogen binding energy for the bimetallic catalyst resulting in higher activity. Operando spectroscopy reveals that the role of cobalt in the bimetallic catalyst is to suppress the bulk-nitridation of iron and to stabilize this active state. Such catalysts are obtained from Mg(Fe,Co)2O4 spinel pre-catalysts with variable Fe:Co ratios by facile co-precipitation, calcination and reduction. The resulting Fe-Co/MgO catalysts, characterized by an extraordinary high metal loading reaching 74 wt.%, combine the advantages of a ruthenium-like electronic structure with a bulk catalyst-like microstructure typical for base metal catalysts.

9.
Curr Pharm Biotechnol ; 25(3): 350-364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37078349

RESUMEN

BACKGROUND: Gouty arthritis (GA) is a common form of inflammatory arthritis caused by intra-articular deposition of monosodium urate (MSU) crystals; however, there is a tremendous lack of safe and effective therapy in the clinic. OBJECTIVE: The goal of this work was to investigate a novel leflunomide analogue, N-(2,4- dihydroxyphenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTLOH-4e), for its potential to prevent/ treat gouty arthritis. METHODS: In this study, the anti-inflammatory activity of UTLOH-4e was evaluated by MSUinduced GA model in vivo and in vitro, and the molecular docking test was applied to estimate the affinity of UTLOH-4e/UTL-5g/b for MAPKs, NF-κB, and NLRP3. RESULTS: In vitro, UTLOH-4e (1~100 µM) treatment inhibited the inflammatory reaction with no obvious cytotoxicity in PMA-induced THP-1 macrophages exposed to MSU crystals for 24 h, involving the prominent decreased production and gene expression of IL-1ß, TNF-α, and IL-6. Western blot analyses demonstrated that UTLOH-4e (1~100 µM) significantly suppressed the activation of NLRP3 inflammasomes, NF-κB, and MAPK pathways. Furthermore, the data from the experiment on gouty rats induced by intra-articular injection of MSU crystal confirmed that UTLOH-4e markedly ameliorated rat paw swelling, articular synovium inflammation and reduced the concentration of IL-1ß and TNF-α in serum through down-regulating NLRP3 protein expression. CONCLUSION: These results manifested that UTLOH-4e ameliorates GA induced by MSU crystals, which contributes to the modulation of NF-κB/ NLRP3 signaling pathway, suggesting that UTLOH- 4e is a promising and potent drug candidate for the prevention and treatment of gouty arthritis.


Asunto(s)
Artritis Gotosa , Ratas , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Ácido Úrico/efectos adversos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Leflunamida/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Simulación del Acoplamiento Molecular , Inflamación/metabolismo , Inflamasomas/metabolismo , Transducción de Señal
10.
J Virol Methods ; 324: 114857, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029971

RESUMEN

A multiplex polymerase chain reaction (PCR) method was developed to detect and distinguish goose parvovirus (GPV), waterfowl reovirus (WRV), and goose astrovirus (GAstV). Three pairs of primers were designed based on conserved regions in the genomic sequences of these enteric viruses and were used to specifically amplify targeted fragments of 493 bp from the viral protein 3 (VP3) gene of GPV, 300 bp from the sigma A-encoding gene of WRV, and 156 bp from the capsid protein-encoding gene of GAstV. The results showed that the primers can specifically amplify target fragments, without any cross-amplification with other viruses, indicating that the method had good specificity. A sensitivity test showed that the detection limit of the multiplex PCR method was 1 × 103 viral copies. A total of 102 field samples from Muscovy ducks with clinically suspected diseases were evaluated using the newly developed multiplex PCR method. The ratio of positive samples to total samples for GPV, WRV, and GAstV was 73.53% (75/102) for multiplex PCR and was 73.53% (75/102) for routine PCR. Seventy-five positive samples were detected by both methods, for a coincidence ratio of 100%. This multiplex PCR method can simultaneously detect GPV, WRV, and GAstV, which are associated with viral enteritis, thereby providing a specific, sensitive, efficient, and accurate new tool for clinical diagnosis and laboratory epidemiological investigations.


Asunto(s)
Infecciones por Parvoviridae , Parvovirus , Enfermedades de las Aves de Corral , Virus ARN , Reoviridae , Animales , Patos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Infecciones por Parvoviridae/diagnóstico , Infecciones por Parvoviridae/veterinaria , Enfermedades de las Aves de Corral/diagnóstico , Reoviridae/genética , Virus ARN/genética , Anticuerpos Antivirales , Gansos , Parvovirus/genética
11.
Math Biosci Eng ; 20(12): 20486-20509, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38124562

RESUMEN

A flexible manipulator is a versatile automated device with a wide range of applications, capable of performing various tasks. However, these manipulators are often vulnerable to external disturbances and face limitations in their ability to control actuators. These factors significantly impact the precision of tracking control in such systems. This study delves into the problem of attitude tracking control for a flexible manipulator under the constraints of control input limitations and the influence of external disturbances. To address these challenges effectively, we first introduce the backstepping method, aiming to achieve precise state tracking and tackle the issue of external disturbances. Additionally, recognizing the constraints posed by control input limitations in the flexible manipulator's actuator control system, we employ a design approach based on the Nussbaum function. This method is designed to overcome these limitations, allowing for more robust control. To validate the effectiveness and disturbance rejection capabilities of the proposed control strategy, we conduct comparative numerical simulations using MATLAB/Simulink. These simulations provide further evidence of the robustness and reliability of the control strategy, even in the presence of external disturbances and control input limitations.

12.
Ecol Evol ; 13(11): e10675, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928197

RESUMEN

Subsect. Hirculoideae Engl. & Irmsch., belonging to Saxifraga sect. Ciliatae Haw., has high species richness. It can be divided into S. diversifolia, S. pseudohirculus, and S. sinomontana complexes based on morphological characteristics. The species with prominent leaf veins on the posterior leaf edge were placed in the S. diversifolia complex, which is mainly distributed on the eastern and southern margins of the Qinghai-Tibetan Plateau. In this study, 53 samples, representing 15 of the 33 described species in the S. diversifolia complex, were sequenced using the Restriction-site Associated DNA Sequence (RAD-seq) technique. A total of 111,938 high-quality SNP loci were screened to investigate the phylogenetic relationships within the S. diversifolia complex. The result of the neighbor-joining (NJ) tree shows that the S. diversifolia complex is a paraphyletic group. Despite of some inconsistencies as revealed by genetic structural analysis, clustering results of representative species reconstructed by both NJ and principal component analysis analyses support previous biogeographic and morphological evidences. In addition, long-distance gene flow events for 11 taxa were detected in the S. diversifolia complex, respectively from S. implicans 1 to S. implicans 2, S. diversifolia and S. maxionggouensis, and from S. maxionggouensis to S. nigroglandulifera. These findings may improve our comprehension of the phylogeny, classification, and evolution of the S. diversifolia complex.

13.
Ann Bot ; 132(7): 1271-1288, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37963010

RESUMEN

BACKGROUND AND AIMS: Exploring how species diverge is vital for understanding the drivers of speciation. Factors such as geographical separation and ecological selection, hybridization, polyploidization and shifts in mating system are all major mechanisms of plant speciation, but their contributions to divergence are rarely well understood. Here we test these mechanisms in two plant species, Gentiana lhassica and G. hoae, with the goal of understanding recent allopatric species divergence on the Qinghai-Tibet Plateau (QTP). METHODS: We performed Bayesian clustering, phylogenetic analysis and estimates of hybridization using 561 302 nuclear genomic single nucleotide polymorphisms (SNPs). We performed redundancy analysis, and identified and annotated species-specific SNPs (ssSNPs) to explore the association between climatic preference and genetic divergence. We also estimated genome sizes using flow cytometry to test for overlooked polyploidy. KEY RESULTS: Genomic evidence confirms that G. lhassica and G. hoae are closely related but distinct species, while genome size estimates show divergence occurred without polyploidy. Gentiana hoae has significantly higher average FIS values than G. lhassica. Population clustering based on genomic SNPs shows no signature of recent hybridization, but each species is characterized by a distinct history of hybridization with congeners that has shaped genome-wide variation. Gentiana lhassica has captured the chloroplast and experienced introgression with a divergent gentian species, while G. hoae has experienced recurrent hybridization with related taxa. Species distribution modelling suggested range overlap in the Last Interglacial Period, while redundancy analysis showed that precipitation and temperature are the major climatic differences explaining the separation of the species. The species differ by 2993 ssSNPs, with genome annotation showing missense variants in genes involved in stress resistance. CONCLUSIONS: This study suggests that the distinctiveness of these species on the QTP is driven by a combination of hybridization, geographical isolation, mating system differences and evolution of divergent climatic preferences.


Asunto(s)
Gentiana , Tibet , Filogenia , Gentiana/genética , ADN de Cloroplastos/genética , Teorema de Bayes , Variación Genética , Plantas/genética , Poliploidía
14.
BMC Genomics ; 24(1): 602, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817095

RESUMEN

BACKGROUND: Ajania Poljakov, an Asteraceae family member, grows mostly in Asia's arid and semi-desert areas and is a significant commercial and decorative plant. Nevertheless, the genus' classification has been disputed, and the evolutionary connections within the genus have not been thoroughly defined. Hence, we sequenced and analyzed Ajania's plastid genomes and combined them with ETS data to assess their phylogenetic relationships. RESULTS: We obtained a total of six new Ajania plastid genomes and nine ETS sequences. The whole plastome lengths of the six species sampled ranged from 151,002 bp to 151,115 bp, showing conserved structures. Combined with publicly available data from GenBank, we constructed six datasets to reconstruct the phylogenetic relationships, detecting nucleoplasmic clashes. Our results reveal the affinities of Artemisia, Chrysanthemum and Stilpnolepis to Ajania and validate the early taxonomy reclassification. Some of the plastid genes with low phylogenetic information and gene trees with topological differences may have contributed to the ambiguous phylogenetic results of Ajania. There is extensive evolutionary rate heterogeneity in plastid genes. The psbH and ycf2 genes, which are involved in photosynthesis and ATP transport, are under selective pressure. Plastomes from Ajania species diverged, and structural aspects of plastomes may indicate some of the real evolutionary connections. We suggest the ycf1 gene as a viable plastid DNA barcode because it has significant nucleotide diversity and better reflects evolutionary connections. CONCLUSION: Our findings validate the early Ajania taxonomy reclassification and show evolutionary rate heterogeneity, genetic variety, and phylogenetic heterogeneity of plastid genes. This research might provide new insights into the taxonomy and evolution of Ajania, as well as provide useful information for germplasm innovation and genetic enhancement in horticultural species.


Asunto(s)
Asteraceae , Genoma de Plastidios , Filogenia , Evolución Molecular , Secuencia de Bases
15.
Chin J Integr Med ; 29(10): 895-904, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37542626

RESUMEN

OBJECTIVE: To examine the anti-inflammatory effects and potential mechanisms of polypeptide from Moschus (PPM) in lipopolysaccharide (LPS)-induced THP-1 macrophages and BALB/c mice. METHODS: The polypeptide was extracted from Moschus and analyzed by high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Subsequently, LPS was used to induce inflammation in THP-1 macrophages and BALB/c mice. In LPS-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and lactate dehydrogenase release assays; the proinflammatory cytokines and reactive oxygen species (ROS) were measured by enzyme-linked immunosorbent assay and flow cytometry, respectively; and protein and mRNA levels were measured by Western blot and real-time quantitative polymerase chain reaction (qRT-PCR), respectively. In LPS-induced BALB/c mice, the proinflammatory cytokines were measured, and lung histology and cytokines were observed by hematoxylin and eosin (HE) and immunohistochemical (IHC) staining, respectively. RESULTS: The SDS-PAGE results suggested that the molecular weight of purified PPM was in the range of 10-26 kD. In vitro, PPM reduced the production of interleukin 1ß (IL-1ß), IL-18, tumor necrosis factor α (TNF-α), IL-6 and ROS in LPS-induced THP-1 macrophages (P<0.01). Western blot analysis demonstrated that PPM inhibited LPS-induced nuclear factor κB (NF-κB) pathway and thioredoxin interacting protein (TXNIP)/nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome pathway by reducing protein expression of phospho-NF-κB p65, phospho-inhibitors of NF-κB (Iκ Bs) kinase α/ß (IKKα/ß), TXNIP, NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1 (P<0.05 or P<0.01). In addition, qRT-PCR revealed the inhibitory effects of PPM on the mRNA levels of TXNIP, NLRP3, ASC, and caspase-1 (P<0.05 or P<0.01). Furthermore, in LPS-induced BALB/c mice, PPM reduced TNF-α and IL-6 levels in serum (P<0.05 or P<0.01), decreased IL-1ß and IL-18 levels in the lungs (P<0.01) and alleviated pathological injury to the lungs. CONCLUSION: PPM could attenuate LPS-induced inflammation by inhibiting the NF-κB-ROS/NLRP3 pathway, and may be a novel potential candidate drug for treating inflammation and inflammation-related diseases.

16.
Front Pharmacol ; 14: 1213602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637422

RESUMEN

Wuwei Shexiang Pill (WSP) is a Tibetan traditional medicine, which has been demonstrated to exhibit potent anti-inflammatory and anti-gout effects. However, the specific pharmacological mechanism is not elucidated clearly. In the present study, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics was applied to investigate the alteration of serum metabolites induced by WSP treatment in MSU-induced gouty rats. Subsequently, bioinformatics was utilized to analyze the potential metabolic pathway of the anti-gout effect of WSP. The pharmacodynamic data discovered that WSP could ameliorate ankle swelling and inflammatory cell infiltration, as well as downregulate the protein expression of IL-1ß, p-NF-κB p65, and NLRP3 in the synovial membrane and surrounding tissues of gouty ankles. LC-MS-based metabolomics revealed that there were 30 differential metabolites in the serum between sham-operated rats and gouty ones, which were mainly involved in the metabolism of fructose and mannose, primary bile acid biosynthesis, and cholesterol metabolism. However, compared to the model group, WSP treatment upregulated 11 metabolic biomarkers and downregulated 31 biomarkers in the serum. KEGG enrichment analysis found that 27 metabolic pathways contributed to the therapeutic action of WSP, including linoleic acid metabolism, phenylalanine metabolism, and pantothenate and CoA biosynthesis. The comprehensive analysis-combined network pharmacology and metabolomics further revealed that the regulatory network of WSP against gout might be attributed to 11 metabolites, 7 metabolic pathways, 39 targets, and 49 active ingredients of WSP. In conclusion, WSP could ameliorate the inflammation of the ankle in MSU-induced gouty rats, and its anti-gout mechanism might be relevant to the modulation of multiple metabolic pathways, such as linoleic acid metabolism, phenylalanine metabolism, and pantothenate and CoA biosynthesis. This study provided data support for the secondary development of Chinese traditional patent medicine.

17.
Sci Bull (Beijing) ; 68(17): 1928-1937, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517987

RESUMEN

Structural information of grassland changes on the Tibetan Plateau is essential for understanding alterations in critical ecosystem functioning and their underlying drivers that may reflect environmental changes. However, such information at the regional scale is still lacking due to methodological limitations. Beyond remote sensing indicators only recognizing vegetation productivity, we utilized multivariate data fusion and deep learning to characterize formation-based plant community structure in alpine grasslands at the regional scale of the Tibetan Plateau for the first time and compared it with the earlier version of Vegetation Map of China for historical changes. Over the past 40 years, we revealed that (1) the proportion of alpine meadows in alpine grasslands increased from 50% to 69%, well-reflecting the warming and wetting trend; (2) dominances of Kobresia pygmaea and Stipa purpurea formations in alpine meadows and steppes were strengthened to 76% and 92%, respectively; (3) the climate factor mainly drove the distribution of Stipa purpurea formation, but not the recent distribution of Kobresia pygmaea formation that was likely shaped by human activities. Therefore, the underlying mechanisms of grassland changes over the past 40 years were considered to be formation dependent. Overall, the first exploration for structural information of plant community changes in this study not only provides a new perspective to understand drivers of grassland changes and their spatial heterogeneity at the regional scale of the Tibetan Plateau, but also innovates large-scale vegetation study paradigm.


Asunto(s)
Ecosistema , Pradera , Humanos , Tibet , Cambio Climático , China
18.
Biodivers Data J ; 11: e103289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234078

RESUMEN

Background: Qinghai-Tibetan Plateau is a global biodiversity hotspot due to the unique geographical environment. However, there are few reports on the list of national key protected plants and the distribution pattern of their diversity in this area. Based on the flora and online database, this paper summarised the species diversity and distribution patterns of national key protected wild plants on the Qinghai-Tibet Plateau. New information: The results showed that there were 350 species of national key protected wild plants on the Qinghai-Tibetan Plateau, belonging to 72 families and 130 genera. Amongst them, 22 species were under class I protection, 328 species were under class II protection and 168 species were endemic to China. Its endangered status involves EW 1 species, CR 17 species, EN 90 species, VU 90 species, NT 30 species, LC 60 species and DD 62 species. Species diversity declined gradually from the southeast to the northwest with hotspots located within Sanjiang Valley subregion (ⅢE14a). The list of national key protected wild plants and their diversity and distribution patterns in the Qinghai-Tibetan Plateau can provide basic data for the conservation of regional biodiversity and the formulation of conservation strategies.

19.
Genome ; 66(11): 281-294, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37159948

RESUMEN

The phylogeny of the species from Phrymaceae and Mazaceae has undergone many adjustments and changes in recent years. Moreover, there is little plastome information on the Phrymaceae. In this study, we compared the plastomes of six species from the Phrymaceae and 10 species from the Mazaceae. The gene order, contents, and orientation of the 16 plastomes were found to be highly similar. A total of 13 highly variable regions were identified among the 16 species. An accelerated rate of substitution was found in the protein-coding genes, particularly cemA and matK. The combination of effective number of codons, parity rule 2, and neutrality plots revealed that the codon usage bias is affected by mutation and selection. The phylogenetic analysis strongly supported {Mazaceae [(Phrymaceae + Wightiaceae) + (Paulowniaceae + Orobanchaceae)]} relationships in the Lamiales. Our findings can provide useful information to analyze the phylogeny and molecular evolution within the Phrymaceae and Mazaceae.


Asunto(s)
Lamiales , Magnoliopsida , Filogenia , Uso de Codones , Lamiales/genética , Magnoliopsida/genética , Codón , Evolución Molecular
20.
Angew Chem Int Ed Engl ; 62(30): e202301920, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37074965

RESUMEN

Elucidating the reaction mechanism in heterogeneous catalysis is critically important for catalyst development, yet remains challenging because of the often unclear nature of the active sites. Using a molecularly defined copper single-atom catalyst supported by a UiO-66 metal-organic framework (Cu/UiO-66) allows a detailed mechanistic elucidation of the CO oxidation reaction. Based on a combination of in situ/operando spectroscopies, kinetic measurements including kinetic isotope effects, and density-functional-theory-based calculations, we identified the active site, reaction intermediates, and transition states of the dominant reaction cycle as well as the changes in oxidation/spin state during reaction. The reaction involves the continuous reactive dissociation of adsorbed O2 , by reaction of O2,ad with COad , leading to the formation of an O atom connecting the Cu center with a neighboring Zr4+ ion as the rate limiting step. This is removed in a second activated step.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...