Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(25): 256401, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38996240

RESUMEN

The prominence of density functional theory in the field of electronic structure computation stems from its ability to usefully balance accuracy and computational effort. At the base of this ability is a functional of the electron density: the exchange-correlation energy. This functional satisfies known exact conditions that guide the derivation of approximations. The strongly constrained and appropriately normed (SCAN) approximation stands out as a successful, modern, example. In this Letter, we demonstrate how the SU(2) gauge invariance of the exchange-correlation functional in spin current density functional theory allows us to add an explicit dependence on spin currents in the SCAN functional (here called JSCAN)-and similar meta-generalized-gradient functional approximations-solely invoking first principles. In passing, a spin-current dependent generalization of the electron localization function (here called JELF) is also derived. The extended forms are implemented in a developer's version of the crystal23 program. Applications on molecules and materials confirm the practical relevance of the extensions.

2.
J Phys Chem Lett ; 15(28): 7161-7167, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38967545

RESUMEN

To use transition metal ions for spin-based applications, it is essential to understand fundamental contributions to electron spin relaxation in different ligand environments. For example, to serve as building blocks for a device, transition metal ion-based molecular qubits must be organized on surfaces and preserve long electron spin relaxation times, up to room temperature. Here we propose monovalent group 12 ions (Zn+ and Cd+) as potential electronic metal qubits with an ns1 ground state. The relaxation properties of Zn+ and Cd+, stabilized at the interface of porous aluminosilicates, are investigated and benchmarked against vanadium (3d1) and copper (3d9) ions. The spin-phonon coupling has been evaluated through DFT modeling and found to be negligible for the ns1 states, explaining the long coherence time, up to 2 µs, at room temperature. These so far unexplored metal qubits may represent viable candidates for room temperature quantum operations and sensing.

3.
RSC Adv ; 14(9): 6398-6409, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38380234

RESUMEN

The energetic transition towards renewable resources is one of the biggest challenges of this century. In this context, the role of H2 is of paramount importance as a key source of energy that could substitute traditional fossil fuels. This technology, even if available in several manufactures, still needs to be optimized at all levels (production, storage and distribution) to be integrated on a larger scale. Among materials suitable to store H2, Mg(BH4)2 is particularly interesting due to its high content of H2 in terms of gravimetric density. Nanosizing effects and role of additives in the decomposition of Mg(BH4)2 were studied by density functional theory (DFT) modelling. Both effects were analyzed because of their contribution in promoting the decomposition of the material. In particular, to have a quantitative idea of nanosizing effects, we used thin film 2D models corresponding to different crystallographic surfaces and referred to the following reaction: Mg(BH4)2 → MgB2 + 4H2. When moving from bulk to nanoscale (2D models), a remarkable decrease in the decomposition energy (10-20 kJ mol-1) was predicted depending on the surface and the thin film thickness considered. As regards the role of additives (Ni and Cu), we based our analysis on their effect in perturbing neighboring borohydride groups. We found a clear elongation of some B-H bonds, in particular with the NiF2 additive (about 0.1 Å). We interpreted this behavior as an indicator of the propensity of borohydride towards dissociation. On the basis of this evidence, we also explored a possible reaction pathway of NiF2 and CuF2 on Mg(BH4)2 up to H2 release and pointed out the major catalytic effect of Ni compared to Cu.

4.
Adv Sci (Weinh) ; 11(4): e2305070, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032122

RESUMEN

Despite exhaled human breath having enabled noninvasive diabetes diagnosis, selective acetone vapor detection by fluorescence approach in the diabetic range (1.8-3.5 ppm) remains a long-standing challenge. A set of water-resistant luminescent metal-organic framework (MOF)-based composites have been reported for detecting acetone vapor in the diabetic range with a limit of detection of 200 ppb. The luminescent materials possess the ability to selectively detect acetone vapor from a mixture comprising nitrogen, oxygen, carbon dioxide, water vapor, and alcohol vapor, which are prevalent in exhaled breath. It is noteworthy that this is the first luminescent MOF material capable of selectively detecting acetone vapor in the diabetic range via a turn-on mechanism. The material can be reused within a matter of minutes under ambient conditions. Industrially pertinent electrospun luminescent fibers are likewise fabricated alongside various luminescent films for selective detection of ultratrace quantities of acetone vapor present in the air. Ab initio theoretical calculations combined with in situ synchrotron-based dosing studies uncovered the material's remarkable hypersensitivity toward acetone vapor. Finally, a freshly designed prototype fluorescence-based portable optical sensor is utilized as a proof-of-concept for the rapid detection of acetone vapor within the diabetic range.

5.
Inorg Chem ; 62(13): 5176-5185, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36960951

RESUMEN

The use of the V-shaped linker molecules 4,4'-oxydibenzoic acid (H2ODB) and 4,4'-carbonyldibenzoic acid (H2CDB) led to the discovery of two isoreticular Ce(IV)-based metal-organic frameworks (MOFs) of composition [CeO(H2O)(L)], L = ODB2-, CDB2-, denoted CAU-58 (CAU = Christian-Albrechts-University). The recently developed Ce-MOF synthesis approach in acetonitrile as the solvent proved effective in accessing Ce(IV)-MOF structures with infinite rod-shaped inorganic building units (IBUs) and circumventing the formation of the predominantly observed hexanuclear [Ce6O8] cluster. For the structure determination of the isoreticular MOFs, three-dimensional electron diffraction (3D ED) and powder X-ray diffraction (PXRD) data were used in combination with density functional theory (DFT) calculations. [CeO(H2O)(CDB)] shows reversible H2O adsorption by stirring in water and thermal treatment at 190 °C, which leads to a unit cell volume change of 11%. The MOFs feature high thermal stabilities (T > 290 °C), which exceed those of most Ce(IV)-MOFs and can be attributed to the infinite rod-shaped IBU. Surface and bulk oxidation states of the cerium ions were analyzed via X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES). While Ce(III) ions are observed by the highly surface-sensitive XPS method, the bulk material contains predominantly Ce(IV) ions according to XANES. Application of the MOFs as catalysts for the catalytic degradation of methyl orange in aqueous solutions was also studied. While degradation activity for both MOFs was observed, only CAU-58-ODB revealed enhanced photocatalytic activity under ultraviolet (UV) light. The photocatalytic mechanism likely involves a ligand-to-metal charge transfer (LMCT) from the linkers to the Ce(IV) centers. Analyses by XANES and inductively coupled plasma-optical emission spectroscopy (ICP-OES) demonstrate that leaching of Cerium ions as well as partial reduction of Ce(IV) to Ce(III) takes place during catalysis. At the same time, PXRD data confirm the structural stability of the remaining MOF catalysts.

6.
J Chem Theory Comput ; 19(20): 6891-6932, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36502394

RESUMEN

The Crystal program for quantum-mechanical simulations of materials has been bridging the realm of molecular quantum chemistry to the realm of solid state physics for many years, since its first public version released back in 1988. This peculiarity stems from the use of atom-centered basis functions within a linear combination of atomic orbitals (LCAO) approach and from the corresponding efficiency in the evaluation of the exact Fock exchange series. In particular, this has led to the implementation of a rich variety of hybrid density functional approximations since 1998. Nowadays, it is acknowledged by a broad community of solid state chemists and physicists that the inclusion of a fraction of Fock exchange in the exchange-correlation potential of the density functional theory is key to a better description of many properties of materials (electronic, magnetic, mechanical, spintronic, lattice-dynamical, etc.). Here, the main developments made to the program in the last five years (i.e., since the previous release, Crystal17) are presented and some of their most noteworthy applications reviewed.

7.
ACS Appl Mater Interfaces ; 14(45): 50803-50814, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36321950

RESUMEN

Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials with very high structural tunability. They possess a very low dielectric permittivity εr due to their porosity and hence are favorable for piezoelectric energy harvesting. Even though they have huge potential as piezoelectric materials, a detailed analysis and structure-property relationship of the piezoelectric properties in MOFs are lacking so far. This work focuses on a class of cubic non-centrosymmetric MOFs, namely, zeolitic imidazolate frameworks (ZIFs) to rationalize how the variation of different building blocks of the structure, that is, metal node and linker substituents affect the piezoelectric constants. The piezoelectric tensor for the ZIFs is computed from ab initio theoretical methods. From the calculations, we analyze the different contributions to the final piezoelectric constant d14, namely, the clamped ion (e140) and the internal strain (e14int) contributions and the mechanical properties. For the studied ZIFs, even though e14 (e140 + e14int) is similar for all ZIFs, the resultant piezoelectric coefficient d14 calculated from piezoelectric constant e14 and elastic compliance constant s44 varies significantly among the different structures. It is the largest for CdIF-1 (Cd2+ and -CH3 linker substituent). This is mainly due to the higher elasticity or flexibility of the framework. Interestingly, the magnitude of d14 for CdIF-1 is higher than II-VI inorganic piezoelectrics and of a similar magnitude as the quintessential piezoelectric polymer polyvinylidene fluoride.

8.
J Am Chem Soc ; 144(29): 13079-13083, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35819401

RESUMEN

Using EPR and HYSCORE spectroscopies in conjunction with ab initio calculations, we assess the structure of framework-bound monomeric hydroxo-CuII in copper-loaded chabazite (CHA). The species is an interfacial distorted square-planar [CuIIOH(O-8MRs)3] complex located at eight-membered-ring windows, displaying three coordinating bonds with zeolite lattice oxygens and the hydroxo ligand hydrogen-bonded to the cage. The complex has a distinctive EPR signature with g = [2.072 2.072 2.290], CuA= [30 30 410] MHz, and HA = [-13.0 -4.5 +11.5] MHz, distinctively different from other CuII species in CHA.


Asunto(s)
Zeolitas , Cobre/química , Cristalografía por Rayos X , Ligandos
9.
ACS Appl Nano Mater ; 5(5): 6398-6409, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35655928

RESUMEN

The growth process of metal-organic framework (MOF) nanocrystals defines their properties and functions. However, defects may be prevalent during the crystallization of even seemingly perfect MOFs, such as zeolitic imidazolate framework-8 (ZIF-8), and yet direct probing of such structural defects has been challenging because of the lack of nanoscale techniques to locally examine individual nanocrystals. Here, we directly study local defects, such as missing linkers or metal vacancies, in ZIF-8 nano- and microcrystals with near-field IR nanospectroscopy combined with density functional theory calculations. We track the chemical changes during crystallization and show that structural defects like zinc cations that are bound to molecules of the reactant gradually disappear with ripening of the crystals, while dangling and missing linker defects prevail. The resulting defect-terminating groups or open-metal sites produce mechanical anisotropy and reduce the Young's modulus, as measured via tip force microscopy with nanoscale resolution and supported by theoretical modeling. However, these structural defects also open the door for defect engineering to tune the performance of ZIF-8 by offering additional adsorption sites for targeted catalytic reactions, chemical sensing, or gas capture.

10.
J Chem Phys ; 156(9): 094706, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35259908

RESUMEN

The chemical versatility and modular nature of Metal-Organic Frameworks (MOFs) make them unique hybrid inorganic-organic materials for several important applications. From a computational point of view, ab initio modeling of MOFs is a challenging and demanding task, in particular, when the system reaches the size of gigantic MOFs as MIL-100 and MIL-101 (where MIL stands for Materials Institute Lavoisier) with several thousand atoms in the unit cell. Here, we show how such complex systems can be successfully tackled by a recently proposed class of composite electronic structure methods revised for solid-state calculations. These methods rely on HF/density functional theory hybrid functionals (i.e., PBEsol0 and HSEsol) combined with a double-zeta quality basis set. They are augmented with semi-classical corrections to take into account dispersive interactions (D3 scheme) and the basis set superposition error (gCP). The resulting methodologies, dubbed "sol-3c," are cost-effective yet reach the hybrid functional accuracy. Here, sol-3c methods are effectively applied to predict the structural, vibrational, electronic, and adsorption properties of some of the most common MOFs. Calculations are feasible even on very large MOFs containing more than 2500 atoms in the unit cell as MIL-100 and MIL-101 with reasonable computing resources. We propose to use our composite methods for the routine in silico screening of MOFs targeting properties beyond plain structural features.

11.
Phys Rev Lett ; 128(9): 099702, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35302818
12.
Nat Commun ; 12(1): 4638, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330914

RESUMEN

The bonding of copper ions to lattice oxygens dictates the activity and selectivity of copper exchanged zeolites. By 17O isotopic labelling of the zeolite framework, in conjunction with advanced EPR methodologies and DFT modelling, we determine the local structure of single site CuII species, we quantify the covalency of the metal-framework bond and we assess how this scenario is modified by the presence of solvating H216O or H217O molecules. This enables to follow the migration of CuII species as a function of hydration conditions, providing evidence for a reversible transfer pathway within the zeolite cage as a function of the water pressure. The results presented in this paper establish 17O EPR as a versatile tool for characterizing metal-oxide interactions in open-shell systems.

13.
Phys Rev Lett ; 126(19): 196404, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34047588

RESUMEN

We study pressure-induced isostructural electronic phase transitions in the prototypical mixed valence and strongly correlated material EuO using the global-hybrid density functional theory. The simultaneous presence in the valence of highly localized d- and f-type bands and itinerant s- and p-type states, as well as the half-filled f-type orbital shell with seven unpaired electrons on each Eu atom, have made the description of the electronic features of this system a challenge. The electronic band structure, density of states, and atomic oxidation states of EuO are analyzed in the 0-50 GPa pressure range. An insulator-to-metal transition at about 12 GPa of pressure was identified. The second isostructural transition at approximately 30-35 GPa, previously believed to be driven by an oxidation from Eu(II) to Eu(III), is shown instead to be associated with a change in the occupation of the Eu d orbitals, as can be determined from the analysis of the corresponding atomic orbital populations. The Eu d band is confined by the surrounding oxygens and split by the crystal field, which results in orbitals of e_{g} symmetry (i.e., d_{x^{2}-y^{2}} and d_{2z^{2}-x^{2}-y^{2}}, pointing along the Eu-O direction) being abruptly depopulated at the transition as a means to alleviate electron-electron repulsion in the highly compressed structures.

15.
J Phys Chem A ; 124(42): 8668-8678, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-32972131

RESUMEN

Study of structure and optical properties of magnesium ammonium phosphate hexahydrate crystal known as struvite is presented. Experimentally determined infrared (IR) and ultraviolet-visible (UV-vis) spectra are compared with the theoretical predictions of density functional methods. Examination of the interatomic bond lengths, Mulliken atomic charges, and binding energies of water in the magnesium hexahydrate cation, together with the analysis of the hydrogen bond pattern have allowed us to explain a special feature of the IR spectrum of struvite, a blueshift of the band corresponding to the O-H stretching mode. This mode has been assigned to a "dangling" hydroxyl group in one of the water molecules in magnesium hexahydrate. Using experimentally obtained UV-vis spectrum and performing Tauc plots analysis, optical bandgap of struvite has been narrowed to a range from 5.92 to 6.06 eV.

16.
J Chem Phys ; 152(20): 204111, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486670

RESUMEN

CRYSTAL is a periodic ab initio code that uses a Gaussian-type basis set to express crystalline orbitals (i.e., Bloch functions). The use of atom-centered basis functions allows treating 3D (crystals), 2D (slabs), 1D (polymers), and 0D (molecules) systems on the same grounds. In turn, all-electron calculations are inherently permitted along with pseudopotential strategies. A variety of density functionals are implemented, including global and range-separated hybrids of various natures and, as an extreme case, Hartree-Fock (HF). The cost for HF or hybrids is only about 3-5 times higher than when using the local density approximation or the generalized gradient approximation. Symmetry is fully exploited at all steps of the calculation. Many tools are available to modify the structure as given in input and simplify the construction of complicated objects, such as slabs, nanotubes, molecules, and clusters. Many tensorial properties can be evaluated by using a single input keyword: elastic, piezoelectric, photoelastic, dielectric, first and second hyperpolarizabilities, etc. The calculation of infrared and Raman spectra is available, and the intensities are computed analytically. Automated tools are available for the generation of the relevant configurations of solid solutions and/or disordered systems. Three versions of the code exist: serial, parallel, and massive-parallel. In the second one, the most relevant matrices are duplicated on each core, whereas in the third one, the Fock matrix is distributed for diagonalization. All the relevant vectors are dynamically allocated and deallocated after use, making the code very agile. CRYSTAL can be used efficiently on high performance computing machines up to thousands of cores.

17.
J Comput Chem ; 41(15): 1464-1479, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32212337

RESUMEN

In this article, we explore an alternative to the analytical Gauss-Bonnet approach for computing the solvent-accessible surface area (SASA) and its nuclear gradients. These two key quantities are required to evaluate the nonelectrostatic contribution to the solvation energy and its nuclear gradients in implicit solvation models. We extend a previously proposed analytical approach for finite systems based on the stereographic projection technique to infinite periodic systems such as polymers, nanotubes, helices, or surfaces and detail its implementation in the Crystal code. We provide the full derivation of the SASA nuclear gradients, and introduce an iterative perturbation scheme of the atomic coordinates to stabilize the gradients calculation for certain difficult symmetric systems. An excellent agreement of computed SASA with reference analytical values is found for finite systems, while the SASA size-extensivity is verified for infinite periodic systems. In addition, correctness of the analytical gradients is confirmed by the excellent agreement obtained with numerical gradients and by the translational invariance achieved, both for finite and infinite periodic systems. Overall therefore, the stereographic projection approach appears as a general, simple, and efficient technique to compute the key quantities required for the calculation of the nonelectrostatic contribution to the solvation energy and its nuclear gradients in implicit solvation models applicable to both finite and infinite periodic systems.

18.
J Chem Theory Comput ; 16(4): 2192-2201, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32212698

RESUMEN

It is customary in molecular quantum chemistry to adopt basis set libraries in which the basis sets are classified according to either their size (triple-ζ, quadruple-ζ, ...) and the method/property they are optimal for (correlation-consistent, linear-response, ...) but not according to the chemistry of the system to be studied. In fact the vast majority of molecules is quite homogeneous in terms of density (i.e., atomic distances) and types of bond involved (covalent or dispersive). The situation is not the same for solids, in which the same chemical element can be found having metallic, ionic, covalent, or dispersively bound character in different crystalline forms or compounds, with different packings. This situation calls for a different approach to the choice of basis sets, namely a system-specific optimization of the basis set that requires a practical algorithm that could be used on a routine basis. In this work we develop a basis set optimization method based on an algorithm-similar to the direct inversion in the iterative subspace-that we name BDIIS. The total energy of the system is minimized together with the condition number of the overlap matrix as proposed by VandeVondele et al. [VandeVondele et al. J. Chem. Phys. 2007, 227, 114105]. The details of the method are here presented, and its performance in optimizing valence orbitals is shown. As demonstrative systems we consider simple prototypical solids such as diamond, graphene sodium chloride, and LiH, and we show how basis set optimizations have certain advantages also toward the use of large (quadruple-ζ) basis sets in solids, both at the DFT and Hartree-Fock level.

19.
ACS Appl Mater Interfaces ; 12(4): 5147-5156, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31904920

RESUMEN

Nanocomposites comprising metal-organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein, we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.


Asunto(s)
Antineoplásicos/química , Sistemas de Liberación de Medicamentos/instrumentación , Fluorouracilo/química , Estructuras Metalorgánicas/química , Nanocompuestos/química , Portadores de Fármacos/química , Liberación de Fármacos , Análisis Espectral
20.
ACS Omega ; 4(1): 1838-1846, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459438

RESUMEN

Several computational techniques for solid-state applications have recently been proposed to enlarge the scope of computer simulations of large molecular systems. In this contribution, we focused on two of these, namely, HF-3c and PBEh-3c. They were recently proposed by the Grimme's group, as "low-cost" ab initio-based techniques for electronic structure calculation of large systems and were proved to be effective essentially for organic molecules. HF-3c is based on a Hartree-Fock Hamiltonian with a minimal Gaussian quality basis set, whereas PBEh-3c is a density functional theory (DFT) based method with a hybrid functional and a medium-quality basis set. Both HF-3c and PBEh-3c account for dispersion (London) interactions and are free from the basis set superposition error due to limited basis set size, through several pairwise semiempirical corrections. To the best of our knowledge, despite the promising results on the cost-accuracy side of molecular simulations of organic molecules, these methods have been used only in few cases for solid-state applications. In this contribution, we studied the performance of HF-3c and PBEh-3c for predicting the properties of inorganic crystals to enlarge the applicability of these cheap and fast methodologies. As a testing ground, we have chosen a well-known class of material, e.g., microporous all-silica zeolites. We benchmarked geometries, formation energies, vibrational features, and mechanical properties by comparing the results with literature data from both experiment and computer simulation. For structures, HF-3c is extremely accurate in predicting the zeolites cell volume, albeit we do not include any vibrational contribution, neither zero point nor thermal, on the computed volumes, which may introduce small variations in the predicted values. For the energetic, the relative stability of the zeolites using the DFT//HF-3c approach allows predictions within the experimental error for most of the cases taken into consideration when the experimental enthalpies were corrected back to electronic energies by using the HF-3c thermodynamic contributions computed in the harmonic approximation. This strategy is particularly convenient, as the slow step (geometry optimization) is carried out with the cheapest HF-3c method, whereas the fast step (single point energy evaluation) is carried out with costly DFT methods. In this sense, the use of the DFT//HF-3c approach results to be a promising one to predict the stability and structure of microporous materials. Finally, the HF-3c method predicts the mechanical properties of the zeolite set in reasonable agreement with respect to those computed with the state-of-the-art DFT simulations, indicating the HF-3c method as a possible technique for the mechanical stability screenings of microporous materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...