Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1131-1142, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048153

RESUMEN

Upon absorption of a blue-light photon, fatty-acid photodecarboxylase catalyzes the decarboxylation of free fatty acids to form hydrocarbons (for example alkanes or alkenes). The major components of the catalytic mechanism have recently been elucidated by combining static and time-resolved serial femtosecond crystallography (TR-SFX), time-resolved vibrational and electronic spectroscopies, quantum-chemical calculations and site-directed mutagenesis [Sorigué et al. (2021), Science, 372, eabd5687]. The TR-SFX experiments, which were carried out at four different picosecond to microsecond pump-probe delays, yielded input for the calculation of Fourier difference maps that demonstrated light-induced decarboxylation. Here, some of the difficulties encountered during the experiment as well as during data processing are highlighted, in particular regarding space-group assignment, a pump-laser power titration is described and data analysis is extended by structure-factor extrapolation of the TR-SFX data. Structure refinement against extrapolated structure factors reveals a reorientation of the generated hydrocarbon and the formation of a photoproduct close to Cys432 and Arg451. Identification of its chemical nature, CO2 or bicarbonate, was not possible because of the limited data quality, which was assigned to specificities of the crystalline system. Further TR-SFX experiments on a different crystal form are required to identify the photoproducts and their movements during the catalytic cycle.


Asunto(s)
Ácidos Grasos , Rayos Láser , Cristalografía , Cristalografía por Rayos X , Luz , Análisis Espectral
2.
Chem Sci ; 13(34): 10057-10065, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36128223

RESUMEN

Pyridoxal 5'-phosphate (PLP)-dependent enzymes have been extensively studied for their ability to fine-tune PLP cofactor electronics to promote a wide array of chemistries. Neutron crystallography offers a straightforward approach to studying the electronic states of PLP and the electrostatics of enzyme active sites, responsible for the reaction specificities, by enabling direct visualization of hydrogen atom positions. Here we report a room-temperature joint X-ray/neutron structure of aspartate aminotransferase (AAT) with pyridoxamine 5'-phosphate (PMP), the cofactor product of the first half reaction catalyzed by the enzyme. Between PMP NSB and catalytic Lys258 Nζ amino groups an equally shared deuterium is observed in an apparent low-barrier hydrogen bond (LBHB). Density functional theory calculations were performed to provide further evidence of this LBHB interaction. The structural arrangement and the juxtaposition of PMP and Lys258, facilitated by the LBHB, suggests active site preorganization for the incoming ketoacid substrate that initiates the second half-reaction.

3.
Chemphyschem ; 23(19): e202200192, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35959919

RESUMEN

Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.


Asunto(s)
Escherichia coli , Microscopía , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/química
4.
Nat Commun ; 13(1): 4376, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902572

RESUMEN

Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.


Asunto(s)
Bacillus thuringiensis , Nanopartículas , Animales , Proteínas Bacterianas/toxicidad , Endotoxinas , Proteínas Hemolisinas/toxicidad , Larva , Control de Mosquitos
5.
Commun Biol ; 5(1): 640, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768542

RESUMEN

Unstable states studied in kinetic, time-resolved and ligand-based crystallography are often characterized by a low occupancy, which hinders structure determination by conventional methods. To automatically extract structural information pertaining to these states, we developed Xtrapol8, a program which (i) applies various flavors of Bayesian-statistics weighting to generate the most informative Fourier difference maps; (ii) determines the occupancy of the intermediate states by use of methods hitherto not available; (iii) calculates extrapolated structure factors using the various proposed formalisms while handling the issue of negative structure factor amplitudes, and (iv) refines the corresponding structures in real and reciprocal-space. The use of Xtrapol8 could accelerate data processing in kinetic and time-resolved crystallographic studies, and as well foster the identification of drug-targetable states in ligand-based crystallography.


Asunto(s)
Cristalografía , Teorema de Bayes , Cristalografía/métodos , Cinética , Ligandos
6.
J Struct Biol ; 213(3): 107769, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34229075

RESUMEN

In this work, we combined biochemical and structural investigations with molecular dynamics (MD) simulations to analyze the very different thermal-dependent allosteric behavior of two lactate dehydrogenases (LDH) from thermophilic bacteria. We found that the enzyme from Petrotoga mobilis (P. mob) necessitates an absolute requirement of the allosteric effector (fructose 1, 6-bisphosphate) to ensure functionality. In contrast, even without allosteric effector, the LDH from Thermus thermophilus (T. the) is functional when the temperature is raised. We report the crystal structure of P. mob LDH in the Apo state solved at 1.9 Å resolution. We used this structure and the one from T. the, obtained previously, as a starting point for MD simulations at various temperatures. We found clear differences between the thermal dynamics, which accounts for the behavior of the two enzymes. Our work demonstrates that, within an allosteric enzyme, some areas act as local gatekeepers of signal transmission, allowing the enzyme to populate either the T-inactive or the R-active states with different degrees of stringency.


Asunto(s)
Extremófilos , Lactato Deshidrogenasas , Regulación Alostérica , Extremófilos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Thermus thermophilus
7.
IUCrJ ; 8(Pt 4): 633-643, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34258011

RESUMEN

Triosephosphate isomerase (TIM) is a key enzyme in glycolysis that catalyses the interconversion of glyceraldehyde 3-phosphate and dihydroxy-acetone phosphate. This simple reaction involves the shuttling of protons mediated by protolysable side chains. The catalytic power of TIM is thought to stem from its ability to facilitate the deprotonation of a carbon next to a carbonyl group to generate an enediolate intermediate. The enediolate intermediate is believed to be mimicked by the inhibitor 2-phosphoglycolate (PGA) and the subsequent enediol intermediate by phosphoglycolohydroxamate (PGH). Here, neutron structures of Leishmania mexicana TIM have been determined with both inhibitors, and joint neutron/X-ray refinement followed by quantum refinement has been performed. The structures show that in the PGA complex the postulated general base Glu167 is protonated, while in the PGH complex it remains deprotonated. The deuteron is clearly localized on Glu167 in the PGA-TIM structure, suggesting an asymmetric hydrogen bond instead of a low-barrier hydrogen bond. The full picture of the active-site protonation states allowed an investigation of the reaction mechanism using density-functional theory calculations.

8.
IUCrJ ; 8(Pt 1): 46-59, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33520242

RESUMEN

Cofactor-independent urate oxidase (UOX) is an ∼137 kDa tetrameric enzyme essential for uric acid (UA) catabolism in many organisms. UA is first oxidized by O2 to de-hydro-isourate (DHU) via a peroxo intermediate. DHU then undergoes hydration to 5-hy-droxy-isourate (5HIU). At different stages of the reaction both catalytic O2 and water occupy the 'peroxo hole' above the organic substrate. Here, high-resolution neutron/X-ray crystallographic analysis at room temperature has been integrated with molecular dynamics simulations to investigate the hydration step of the reaction. The joint neutron/X-ray structure of perdeuterated Aspergillus flavus UOX in complex with its 8-azaxanthine (8AZA) inhibitor shows that the catalytic water molecule (W1) is present in the peroxo hole as neutral H2O, oriented at 45° with respect to the ligand. It is stabilized by Thr57 and Asn254 on different UOX protomers as well as by an O-H⋯π interaction with 8AZA. The active site Lys10-Thr57 dyad features a charged Lys10-NH3 + side chain engaged in a strong hydrogen bond with Thr57OG1, while the Thr57OG1-HG1 bond is rotationally dynamic and oriented toward the π system of the ligand, on average. Our analysis offers support for a mechanism in which W1 performs a nucleophilic attack on DHUC5 with Thr57HG1 central to a Lys10-assisted proton-relay system. Room-temperature crystallography and simulations also reveal conformational heterogeneity for Asn254 that modulates W1 stability in the peroxo hole. This is proposed to be an active mechanism to facilitate W1/O2 exchange during catalysis.

9.
J Med Chem ; 64(1): 812-839, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33356266

RESUMEN

The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aß42/Aß40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antioxidantes/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad , Distribución Tisular
10.
Nat Commun ; 11(1): 1153, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123169

RESUMEN

Cyt1Aa is the one of four crystalline protoxins produced by mosquitocidal bacterium Bacillus thuringiensis israelensis (Bti) that has been shown to delay the evolution of insect resistance in the field. Limiting our understanding of Bti efficacy and the path to improved toxicity and spectrum has been ignorance of how Cyt1Aa crystallizes in vivo and of its mechanism of toxicity. Here, we use serial femtosecond crystallography to determine the Cyt1Aa protoxin structure from sub-micron-sized crystals produced in Bti. Structures determined under various pH/redox conditions illuminate the role played by previously uncharacterized disulfide-bridge and domain-swapped interfaces from crystal formation in Bti to dissolution in the larval mosquito midgut. Biochemical, toxicological and biophysical methods enable the deconvolution of key steps in the Cyt1Aa bioactivation cascade. We additionally show that the size, shape, production yield, pH sensitivity and toxicity of Cyt1Aa crystals grown in Bti can be controlled by single atom substitution.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endotoxinas/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Membrana Celular/efectos de los fármacos , Cristalografía por Rayos X , Disulfuros/química , Endotoxinas/genética , Endotoxinas/farmacología , Células HEK293 , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Humanos , Concentración de Iones de Hidrógeno , Insecticidas/química , Insecticidas/metabolismo , Insecticidas/farmacología , Ratones , Microscopía de Fuerza Atómica , Células 3T3 NIH , Conformación Proteica , Células Sf9
11.
Nat Commun ; 11(1): 741, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029745

RESUMEN

Reversibly switchable fluorescent proteins (RSFPs) serve as markers in advanced fluorescence imaging. Photoswitching from a non-fluorescent off-state to a fluorescent on-state involves trans-to-cis chromophore isomerization and proton transfer. Whereas excited-state events on the ps timescale have been structurally characterized, conformational changes on slower timescales remain elusive. Here we describe the off-to-on photoswitching mechanism in the RSFP rsEGFP2 by using a combination of time-resolved serial crystallography at an X-ray free-electron laser and ns-resolved pump-probe UV-visible spectroscopy. Ten ns after photoexcitation, the crystal structure features a chromophore that isomerized from trans to cis but the surrounding pocket features conformational differences compared to the final on-state. Spectroscopy identifies the chromophore in this ground-state photo-intermediate as being protonated. Deprotonation then occurs on the µs timescale and correlates with a conformational change of the conserved neighbouring histidine. Together with a previous excited-state study, our data allow establishing a detailed mechanism of off-to-on photoswitching in rsEGFP2.

12.
Proc Natl Acad Sci U S A ; 117(8): 4142-4151, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047034

RESUMEN

Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (D1/2) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å.


Asunto(s)
Cristalografía por Rayos X/métodos , Muramidasa/química , Sincrotrones , Temperatura , Cristalización
13.
J Enzyme Inhib Med Chem ; 35(1): 498-505, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31914836

RESUMEN

Brain butyrylcholinesterase (BChE) is an attractive target for drugs designed for the treatment of Alzheimer's disease (AD) in its advanced stages. It also potentially represents a biomarker for progression of this disease. Based on the crystal structure of previously described highly potent, reversible, and selective BChE inhibitors, we have developed the fluorescent probes that are selective towards human BChE. The most promising probes also maintain their inhibition of BChE in the low nanomolar range with high selectivity over acetylcholinesterase. Kinetic studies of probes reveal a reversible mixed inhibition mechanism, with binding of these fluorescent probes to both the free and acylated enzyme. Probes show environment-sensitive emission, and additionally, one of them also shows significant enhancement of fluorescence intensity upon binding to the active site of BChE. Finally, the crystal structures of probes in complex with human BChE are reported, which offer an excellent base for further development of this library of compounds.


Asunto(s)
Amidas/farmacología , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Colorantes Fluorescentes/farmacología , Amidas/síntesis química , Amidas/química , Animales , Butirilcolinesterasa/aislamiento & purificación , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Cristalografía por Rayos X , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Humanos , Ratones , Modelos Moleculares , Estructura Molecular
14.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 260-269, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30950827

RESUMEN

Triose-phosphate isomerase (TIM) catalyses the interconversion of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Two catalytic mechanisms have been proposed based on two reaction-intermediate analogues, 2-phosphoglycolate (2PG) and phosphoglycolohydroxamate (PGH), that have been used as mimics of the cis-enediol(ate) intermediate in several studies of TIM. The protonation states that are critical for the mechanistic interpretation of these structures are generally not visible in the X-ray structures. To resolve these questions, it is necessary to determine the hydrogen positions using neutron crystallography. Neutron crystallography requires large crystals and benefits from replacing all hydrogens with deuterium. Leishmania mexicana triose-phosphate isomerase was therefore perdeuterated and large crystals with 2PG and PGH were produced. Neutron diffraction data collected from two crystals with different volumes highlighted the importance of crystal volume, as smaller crystals required longer exposures and resulted in overall worse statistics.


Asunto(s)
Deuterio/química , Leishmania mexicana/enzimología , Proteínas Mutantes/química , Difracción de Neutrones , Triosa-Fosfato Isomerasa/química , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida
15.
Eur J Med Chem ; 168: 58-77, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30798053

RESUMEN

Both cholinesterases (AChE and BChE) and kinases, such as GSK-3α/ß, are associated with the pathology of Alzheimer's disease. Two scaffolds, targeting AChE (tacrine) and GSK-3α/ß (valmerin) simultaneously, were assembled, using copper(I)-catalysed azide alkyne cycloaddition (CuAAC), to generate a new series of multifunctional ligands. A series of eight multi-target directed ligands (MTDLs) was synthesized and evaluated in vitro and in cell cultures. Molecular docking studies, together with the crystal structures of three MTDL/TcAChE complexes, with three tacrine-valmerin hybrids allowed designing an appropriate linker containing a 1,2,3-triazole moiety whose incorporation preserved, and even increased, the original inhibitory potencies of the two selected pharmacophores toward the two targets. Most of the new derivatives exhibited nanomolar affinity for both targets, and the most potent compound of the series displayed inhibitory potencies of 9.5 nM for human acetylcholinesterase (hAChE) and 7 nM for GSK-3α/ß. These novel dual MTDLs may serve as suitable leads for further development, since, in the micromolar range, they exhibited low cytotoxicity on a panel of representative human cell lines including the human neuroblastoma cell line SH-SY5Y. Moreover, these tacrine-valmerin hybrids displayed a good ability to penetrate the blood-brain barrier (BBB) without interacting with efflux pumps such as P-gp.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Triazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cristalografía por Rayos X , Perros , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
16.
Eur J Med Chem ; 156: 598-617, 2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-30031971

RESUMEN

The limited clinical efficacy of current symptomatic treatment and minute effect on progression of Alzheimer's disease has shifted the research focus from single targets towards multi-target-directed ligands. Here, a potent selective inhibitor of human butyrylcholinesterase was used as the starting point to develop a new series of multifunctional ligands. A focused library of derivatives was designed and synthesised that showed both butyrylcholinesterase inhibition and good antioxidant activity as determined by the DPPH assay. The crystal structure of compound 11 in complex with butyrylcholinesterase revealed the molecular basis for its low nanomolar inhibition of butyrylcholinesterase (Ki = 1.09 ±â€¯0.12 nM). In addition, compounds 8 and 11 show metal-chelating properties, and reduce the redox activity of chelated Cu2+ ions in a Cu-ascorbate redox system. Compounds 8 and 11 decrease intracellular levels of reactive oxygen species, and are not substrates of the active efflux transport system, as determined in Caco2 cells. Compound 11 also protects neuroblastoma SH-SY5Y cells from toxic Aß1-42 species. These data indicate that compounds 8 and 11 are promising multifunctional lead ligands for treatment of Alzheimer's disease.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Células CACO-2 , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Ligandos , Modelos Moleculares , Piperidinas/química , Piperidinas/farmacología
17.
Molecules ; 23(3)2018 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-29534488

RESUMEN

Symptomatic treatment of myasthenia gravis is based on the use of peripherally-acting acetylcholinesterase (AChE) inhibitors that, in some cases, must be discontinued due to the occurrence of a number of side-effects. Thus, new AChE inhibitors are being developed and investigated for their potential use against this disease. Here, we have explored two alternative approaches to get access to peripherally-acting AChE inhibitors as new agents against myasthenia gravis, by structural modification of the brain permeable anti-Alzheimer AChE inhibitors tacrine, 6-chlorotacrine, and huprine Y. Both quaternization upon methylation of the quinoline nitrogen atom, and tethering of a triazole ring, with, in some cases, the additional incorporation of a polyphenol-like moiety, result in more polar compounds with higher inhibitory activity against human AChE (up to 190-fold) and butyrylcholinesterase (up to 40-fold) than pyridostigmine, the standard drug for symptomatic treatment of myasthenia gravis. The novel compounds are furthermore devoid of brain permeability, thereby emerging as interesting leads against myasthenia gravis.


Asunto(s)
Acetilcolinesterasa/metabolismo , Aminoacridinas/síntesis química , Aminoquinolinas/síntesis química , Inhibidores de la Colinesterasa/síntesis química , Acetilcolinesterasa/química , Aminoacridinas/química , Aminoacridinas/farmacología , Aminoquinolinas/química , Aminoquinolinas/farmacología , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Regulación hacia Abajo , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Modelos Moleculares , Estructura Molecular , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/enzimología , Relación Estructura-Actividad , Tacrina/química
18.
Nat Chem ; 10(1): 31-37, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29256511

RESUMEN

Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.

19.
J Med Chem ; 61(1): 119-139, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29227101

RESUMEN

The enzymatic activity of butyrylcholinesterase (BChE) in the brain increases with the progression of Alzheimer's disease, thus classifying BChE as a promising drug target in advanced Alzheimer's disease. We used structure-based drug discovery approaches to develop potent, selective, and reversible human BChE inhibitors. The most potent, compound 3, had a picomolar inhibition constant versus BChE due to strong cation-π interactions, as revealed by the solved crystal structure of its complex with human BChE. Additionally, compound 3 inhibits BChE ex vivo and is noncytotoxic. In vitro pharmacokinetic experiments show that compound 3 is highly protein bound, highly permeable, and metabolically stable. Finally, compound 3 crosses the blood-brain barrier, and it improves memory, cognitive functions, and learning abilities of mice in a scopolamine model of dementia. Compound 3 is thus a promising advanced lead compound for the development of drugs for alleviating symptoms of cholinergic hypofunction in patients with advanced Alzheimer's disease.


Asunto(s)
Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Animales , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacocinética , Cristalografía por Rayos X , Femenino , Humanos , Cinética , Masculino , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ratas , Seguridad , Termodinámica , Distribución Tisular
20.
Nat Commun ; 8(1): 145, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28747759

RESUMEN

Proteins perform their functions in solution but their structures are most frequently studied inside crystals. Here we probe how the crystal packing alters microsecond dynamics, using solid-state NMR measurements and multi-microsecond MD simulations of different crystal forms of ubiquitin. In particular, near-rotary-resonance relaxation dispersion (NERRD) experiments probe angular backbone motion, while Bloch-McConnell relaxation dispersion data report on fluctuations of the local electronic environment. These experiments and simulations reveal that the packing of the protein can significantly alter the thermodynamics and kinetics of local conformational exchange. Moreover, we report small-amplitude reorientational motion of protein molecules in the crystal lattice with an ~3-5° amplitude on a tens-of-microseconds time scale in one of the crystals, but not in others. An intriguing possibility arises that overall motion is to some extent coupled to local dynamics. Our study highlights the importance of considering the packing when analyzing dynamics of crystalline proteins.X-ray crystallography is the main method for protein structure determination. Here the authors combine solid-state NMR measurements and molecular dynamics simulations and show that crystal packing alters the thermodynamics and kinetics of local conformational exchange as well as overall rocking motion of protein molecules in the crystal lattice.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Conformación Proteica , Ubiquitina/química , Algoritmos , Cristalografía por Rayos X , Humanos , Cinética , Movimiento (Física) , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...