Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
1.
FASEB J ; 38(7): e23565, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38558188

RESUMEN

Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.


Asunto(s)
Médula Ósea , Relojes Circadianos , Ratones , Animales , Médula Ósea/metabolismo , Fotoperiodo , Ritmo Circadiano/fisiología , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Relojes Circadianos/genética
2.
Microsyst Nanoeng ; 10: 52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646064

RESUMEN

E-beam lithography is a powerful tool for generating nanostructures and fabricating nanodevices with fine features approaching a few nanometers in size. However, alternative approaches to conventional spin coating and development processes are required to optimize the lithography procedure on irregular surfaces. In this review, we summarize the state of the art in nanofabrication on irregular substrates using e-beam lithography. To overcome these challenges, unconventional methods have been developed. For instance, polymeric and nonpolymeric materials can be sprayed or evaporated to form uniform layers of electron-sensitive materials on irregular substrates. Moreover, chemical bonds can be applied to help form polymer brushes or self-assembled monolayers on these surfaces. In addition, thermal oxides can serve as resists, as the etching rate in solution changes after e-beam exposure. Furthermore, e-beam lithography tools can be combined with cryostages, evaporation systems, and metal deposition chambers for sample development and lift-off while maintaining low temperatures. Metallic nanopyramids can be fabricated on an AFM tip by utilizing ice as a positive resistor. Additionally, Ti/Au caps can be patterned around a carbon nanotube. Moreover, 3D nanostructures can be formed on irregular surfaces by exposing layers of anisole on organic ice surfaces with a focused e-beam. These advances in e-beam lithography on irregular substrates, including uniform film coating, instrumentation improvement, and new pattern transferring method development, substantially extend its capabilities in the fabrication and application of nanoscale structures.

3.
Pestic Biochem Physiol ; 201: 105897, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685223

RESUMEN

Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization. Our formulation, consisting of 8% abamectin, 1% antioxidant BHT (2,6-di-tert-butyl-4-methylphenol), 12% complex surfactants, and 79% sodium benzoate, significantly increased the pseudo-solubility of abamectin by at least 3300 times and reduced its particle size to a mere 15 nm, much smaller than traditional emulsion in water (EW) and water-dispersible granule (WDG) forms. This reduction in particle size and increase in surface activity resulted in improved foliar adhesion and retention, enabling a more efficient application without the need for organic solvents. The inclusion of antioxidants also enhanced photostability compared to EW, and overall stability tests confirmed SND's resilience under various storage conditions. Bioactivity tests demonstrated a marked increase in toxicity against diamondback moths (Plutella xylostella L.) with abamectin SND, which exhibited 3.7 and 7.6 times greater efficacy compared to EW and WDG, respectively. These findings underscore the critical role of small particle size, high surface activity, and strong antioxidant properties in improving the performance and bioactivity of abamectin SND, highlighting its significance in the design and development of high-efficiency, eco-friendly nanopesticides and contributing valuably to sustainable agricultural practices.


Asunto(s)
Ivermectina , Ivermectina/análogos & derivados , Ivermectina/farmacología , Ivermectina/química , Animales , Insecticidas/farmacología , Insecticidas/química , Tamaño de la Partícula , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Mariposas Nocturnas/efectos de los fármacos , Tensoactivos/farmacología , Tensoactivos/química , Larva/efectos de los fármacos , Emulsiones
4.
ACS Appl Mater Interfaces ; 16(17): 22558-22570, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38637157

RESUMEN

The development of nanopesticides provides new avenues for pesticide reduction and efficiency improvement. However, the size effect of nanopesticides remains unclear, and its underlying mechanisms of influence have become a major obstacle in the design and application of pesticide nanoformulations. In this research, the noncarrier-coated emamectin benzoate (EB) solid dispersions (Micro-EB and Nano-EB) were produced under a constant surfactant-to-active ingredient ratio by a self-emulsifying-carrier solidification technique. The particle size of Micro-EB was 162 times that of spherical Nano-EB. The small size and large specific surface area of Nano-EB facilitated the adsorption of surfactants on the surface of the particles, thereby improving its dispersibility, suspensibility, and stability. The pinning effect of nanoparticles significantly suppressed droplet retraction and rebounding. Moreover, Nano-EB exhibited a 25% higher retention of the active ingredient on cabbage leaves and a 70% higher washing resistance than Micro-EB, and both were significantly different. The improvement of abilities in wetting, spreading, and retention of Nano-EB on crop leaves contributed to the increase in foliar utilization, which further resulted in a 1.6-fold enhancement of bioactivity against target Spodoptera exigua compared to Micro-EB. Especially, Nano-EB did not exacerbate the safety risk to the nontarget organism zebrafish with no significant difference. This study elaborates the size effect on the effectiveness and safety of pesticide formulations and lays a theoretical foundation for the development and rational utilization of efficient and environmentally friendly nanopesticides.


Asunto(s)
Ivermectina , Ivermectina/análogos & derivados , Nanopartículas , Tamaño de la Partícula , Spodoptera , Ivermectina/farmacología , Ivermectina/química , Animales , Spodoptera/efectos de los fármacos , Nanopartículas/química , Insecticidas/farmacología , Insecticidas/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Tensoactivos/química , Tensoactivos/farmacología , Brassica/efectos de los fármacos
5.
Food Chem ; 449: 139232, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581794

RESUMEN

To effectively inhibit the retrogradation of staple foods, the effects of maltotetraose-forming amylase(G4-amylase) on the short and long-term retrogradation of different staple starches such as rice starch (RS), wheat starch (WS), potato starch (PS) were studied. The results indicated that G4-amylase decreased the content of amylose. Amylose contents (21.09%) of WSG4 were higher than that (14.82%) of RSG4 and (13.13%) of PSG4. WS had the most obvious change in the chain length distribution of amylopectin. A chains decreased by 18.99% and the B1 chains decreased by 12.08% after G4-amylase treatment. Compared to RS (662 cP) and WS (693 cP), the setback viscosity of RSG4 (338 cP) and WSG4 (385 cP) decreased. Compared to RS (0.41), WS (0.45), and PS (0.51), the long-term retrogradation rate of RSG4 (0.33), WSG4 (0.31), and PSG4 (0.38) significantly reduced. It indicated that G4-amylase significantly inhibited the long-term retrogradation of WS, followed by RS and PS.


Asunto(s)
Amilasas , Maltosa/análogos & derivados , Oryza , Solanum tuberosum , Almidón , Triticum , Almidón/química , Amilasas/química , Amilasas/metabolismo , Triticum/química , Viscosidad , Solanum tuberosum/química , Oryza/química , Amilosa/química , Amilosa/análisis , Maltosa/química , Biocatálisis
6.
Int J Biol Macromol ; 267(Pt 2): 131460, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608991

RESUMEN

The hydrophilic and low mechanical properties limited the application of starch-based films. In this work, a hydrophobic starch-based nanofiber mat was first successfully prepared from aqueous solution at room temperature by using electrospinning and glutaraldehyde (GTA) vapor phase crosslinking techniques for active packaging applications. Catechin (CAT) was immobilized in the nanofibers by electrospinning, resulting in higher thermal stability (Tdmax = 315.23 °C), antioxidant (DPPH scavenging activity = 94.31 ± 2.70 %) and antimicrobial (inhibition zone diameter = 15.6 ± 0.3 mm) of the fibers, which further demonstrated hydrogen bonding and electrostatic interaction between CAT and fibers. Nanofibers after GTA vapor phase crosslinking exhibited enhanced hydrophobicity (water contact angle: 15.6 ± 1.5° â†’ 93.5 ± 2.3°) and mechanical properties (tensile strength: 1.82 ± 0.06 MPa â†’ 7.64 ± 0.24 MPa, elastic modulus: 19.35 ± 0.63 MPa â†’ 45.34 ± 0.51 MPa). The results demonstrated that preparation of starch-based electrospun nanofiber mats in aqueous system at room temperature overcame the challenges of organic solvent pollution and thermosensitive material encapsulation, while GTA vapor phase crosslinking technique improved the hydrophobicity and mechanical properties of nanofiber mats, which facilitated the application of starch-based materials in the field of packaging.


Asunto(s)
Catequina , Embalaje de Alimentos , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras , Almidón , Almidón/química , Nanofibras/química , Embalaje de Alimentos/métodos , Catequina/química , Antioxidantes/química , Antioxidantes/farmacología , Reactivos de Enlaces Cruzados/química , Tecnología Química Verde , Resistencia a la Tracción
7.
World J Gastroenterol ; 30(11): 1572-1587, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38617453

RESUMEN

BACKGROUND: Fecal microbiota transplantation (FMT) is a promising therapeutic approach for treating Crohn's disease (CD). The new method of FMT, based on the automatic washing process, was named as washed microbiota transplantation (WMT). Most existing studies have focused on observing the clinical phenomena. However, the mechanism of action of FMT for the effective management of CD-particularly in-depth multi-omics analysis involving the metagenome, metatranscriptome, and metabolome-has not yet been reported. AIM: To assess the efficacy of WMT for CD and explore alterations in the microbiome and metabolome in response to WMT. METHODS: We conducted a prospective, open-label, single-center clinical study. Eleven CD patients underwent WMT. Their clinical responses (defined as a decrease in their CD Activity Index score of > 100 points) and their microbiome (metagenome, metatranscriptome) and metabolome profiles were evaluated three months after the procedure. RESULTS: Seven of the 11 patients (63.6%) showed an optimal clinical response three months post-WMT. Gut microbiome diversity significantly increased after WMT, consistent with improved clinical symptoms. Comparison of the metagenome and metatranscriptome analyses revealed consistent alterations in certain strains, such as Faecalibacterium prausnitzii, Roseburia intestinalis, and Escherichia coli. In addition, metabolomics analyses demonstrated that CD patients had elevated levels of various amino acids before treatment compared to the donors. However, levels of vital amino acids that may be associated with disease progression (e.g., L-glutamic acid, gamma-glutamyl-leucine, and prolyl-glutamine) were reduced after WMT. CONCLUSION: WMT demonstrated therapeutic efficacy in CD treatment, likely due to the effective reconstruction of the patient's microbiome. Multi-omics techniques can effectively help decipher the potential mechanisms of WMT in treating CD.


Asunto(s)
Antifibrinolíticos , Enfermedad de Crohn , Microbiota , Humanos , Aminoácidos , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/terapia , Escherichia coli , Metagenoma , Estudios Prospectivos
8.
Heliyon ; 10(5): e26982, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38468975

RESUMEN

Context: Sanchi promotes wound healing by repressing fibroblast proliferation. Objective: This study examined the effect of Sanchi on keratinocytes (KCs) and microvascular endothelial cells (MECs) and rats with skin injury. Materials & methods: Hydrogels containing different concentrations of Sanchi extract were prepared to observe wound closure over 10 days. SD rats were divided into the control, Hydrogel, 5% Hydrogel, 10% Hydrogel, 10% Hydrogel + Ad5-NC, and 10% Hydrogel + Ad5-IL1B groups. KCs and MECs were induced with H2O2 for 24 h. Cell viability, apoptosis, and the levels of inflammation- and oxidative stress-related factors were examined. The effect of IL1B on wound healing was also evaluated. Results: Compared to the Control group (83% ± 7.4%) or Hydrogel without Sanchi extract (84% ± 8.5%), Hydrogel with 5% (95% closure ± 4.0%) or 10% Sanchi extract (98% ± 1.7%) accelerated wound healing in rats and attenuated inflammation and oxidative stress. Hydrogels containing Sanchi extract increased collagen deposition and CD31 expression in tissues. H2O2 (100 µM) induced injury in KCs and MECs, whereas Sanchi rescued the viability of KCs and MECs. Sanchi inhibited cell inflammation and oxidative stress and decreased apoptosis. As Sanchi blocked the NFκB pathway via IL1B, IL1B mitigated the therapeutic effect of Sanchi. Discussion and conclusion: Sanchi demonstrated therapeutic effects on wound healing in rats by promoting KCs and MECs activity. These findings provide valuable information for the clinical application of Sanchi, which needs to be validated in future clinical trials.

9.
Food Chem ; 446: 138878, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432138

RESUMEN

In this study, octenyl succinylated starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes were designed to enhance the physical and oxidative stability of α-linolenic acid emulsions. Formations of OSAS-SP-EGCG complexes were confirmed via particle size, ξ-potential, together with fourier transform infrared (FTIR). A mixing ratio of 1:2 for OSAS to SP-EGCG resulted in ternary complexes with the highest contact angle (59.69°), indicating the hydrophobicity. Furthermore, the characteristics of α-linolenic acid emulsions (oil phase volume fractions (φ) of 10% and 20%) stabilized by OSAS-SP-EGCG complexes were investigated, including particle size, ξ-potential, emulsion stability, oxidative stability, and microstructure. These results revealed exceptional physical stability together with enhanced oxidative stability for these emulsions. Particularly, emulsions utilizing complexes having a 1:2 OSAS to SP-EGCG ratio exhibited superior emulsion stability. These findings provide theoretical support to the development of emulsions containing high levels of α-linolenic acid and for the broader application of α-linolenic acid in food products.


Asunto(s)
Antioxidantes , Catequina/análogos & derivados , Apnea Obstructiva del Sueño , Humanos , Emulsiones/química , Antioxidantes/química , Ácido alfa-Linolénico , Almidón/química , Proteínas de Soja , Tamaño de la Partícula
10.
ACS Nano ; 18(13): 9500-9510, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38477715

RESUMEN

Morphing textiles, crafted using electrochemical artificial muscle yarns, boast features such as adaptive structural flexibility, programmable control, low operating voltage, and minimal thermal effect. However, the progression of these textiles is still impeded by the challenges in the continuous production of these yarn muscles and the necessity for proper structure designs that bypass operation in extensive electrolyte environments. Herein, a meters-long sheath-core structured carbon nanotube (CNT)/nylon composite yarn muscle is continuously prepared. The nylon core not only reduces the consumption of CNTs but also amplifies the surface area for interaction between the CNT yarn and the electrolyte, leading to an enhanced effective actuation volume. When driven electrochemically, the CNT@nylon yarn muscle demonstrates a maximum contractile stroke of 26.4%, a maximum contractile rate of 15.8% s-1, and a maximum power density of 0.37 W g-1, surpassing pure CNT yarn muscles by 1.59, 1.82, and 5.5 times, respectively. By knitting the electrochemical CNT@nylon artificial muscle yarns into a soft fabric that serves as both a soft scaffold and an electrolyte container, we achieved a morphing textile is achieved. This textile can perform programmable multiple motion modes in air such as contraction and sectional bending.

11.
Anal Chem ; 96(13): 5150-5159, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38502727

RESUMEN

Hexavalent chromium [Cr(VI)] is considered a serious environmental pollutant that possesses a hazardous effect on humans even at low concentrations. Thus, the development of a bifunctional material for ultratrace-selective detection and effective elimination of Cr(VI) from the environment remains highly desirable and scarcely reported. In this work, we explore an imidazolium-appended polyfluorene derivative PF-DBT-Im as a highly sensitive/selective optical probe and a smart adsorbent for Cr(VI) ions with an ultralow detection limit of 1.77 nM and removal efficiency up to 93.7%. In an aqueous medium, PF-DBT-Im displays obvious transformation in its emission color from blue to magenta on exclusively introducing Cr(VI), facilitating naked-eye colorimetric detection. Consequently, a portable sensory device integrated with a smartphone is fabricated for realizing real-time and on-site visual detection of Cr(VI). Besides, the imidazolium groups attached onto side chains of PF-DBT-Im are found to be highly beneficial for achieving selective and efficient elimination of Cr(VI) with capacity as high as 128.71 mg g-1. More interestingly, PF-DBT-Im could be easily regenerated following treatment with KBr and can be recycled at least five times in a row. The main factor behind ultrasensitive response and excellent removal efficiency is found to be anion-exchange-induced formation of a unique ground-state complex between PF-DBT-Im and Cr(VI), as evident by FT-IR, XPS, and simulation studies. Thus, taking advantage of the excellent signal amplification property and rich ion-exchange sites, a dual-functional-conjugated polymer PF-DBT-Im is presented for the concurrent recognition and elimination of Cr(VI) ions proficiently and promptly with great prospects in environmental monitoring and water decontamination.

12.
Carbohydr Polym ; 334: 122027, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553226

RESUMEN

To investigate the effect of oil additives on improving the water resistance of corn starch straws, corn oil (CO), soybean oil (SO), rapeseed oil (RO), peanut oil (PO), lard (LD) and coconut oil (CCO) were chosen and compared the structure and properties of starch straws with different oil additives. Corn starch straws (CS), and starch straws supplemented with CO, SO, RO, PO, LD and CCO were prepared by thermoplastic extrusion. The results showed that the incorporation of oils effectively enhanced the water resistance of starch straws such as water absorption, water solubility and water swelling performance. Meanwhile, the flexural strength of starch straws significantly increased. There was no significant linear relationship among starch chain length, oil unsaturation and straw performance. Among seven starch straws, S-SO had the strongest hydrogen bond interaction (3289 cm-1) and relaxation time (0.96 ms). The S-CO had the highest relative crystallinity (16.82 %) and degree of double helix (1.535), hence resulting in the lowest water absorption and solubility values, the highest flexural strength (23.43 MPa), the highest ΔT value (9.93 °C) and ΔH value (4.79 J/g). S-RO had the highest thermal transition temperatures.


Asunto(s)
Almidón , Zea mays , Almidón/química , Zea mays/química , Agua/química , Aceite de Soja , Fenómenos Químicos , Aceite de Brassica napus , Aceite de Maíz
13.
Food Chem ; 443: 138543, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301553

RESUMEN

In an effort to improve the application performance of apigenin, ß-cyclodextrin metal-organic frameworks (BCDMOFs) known as porous materials were used to encapsulate apigenin via an innovative pH-adjusted method. The embedment efficiency had a significant positive pH dependence, reaching a maximum of 79.2 % ± 1.2 % at pH12. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis demonstrated formation of apigenin/BCDMOFs composites, and exposure of BCDMOFs pores facilitated high embedment efficiency. Storage stability experiment and kinetic analysis showed degradation of apigenin/BCDMOFs composites was less than that of apigenin alone. Apigenin stability was increased by approximately 18 % after 7 days. BCDMOFs effectively encapsulated and controlled the release of apigenin, and the composites exhibited improved application performance in vitro.


Asunto(s)
Estructuras Metalorgánicas , beta-Ciclodextrinas , Estructuras Metalorgánicas/química , Apigenina , Cinética , beta-Ciclodextrinas/química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
14.
Food Chem ; 443: 138533, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320376

RESUMEN

Herein, a self-enhanced molecularly imprinted polymer luminescence (MIP-ECL) sensing platform based on gold-copper doped Tb-MOFs (Au@Cu:Tb-MOFs) was constructed for ultra-sensitive detection of chlorpyrifos (CPF). In this work, Au@Cu:Tb-MOFs as co-reaction promoters greatly improve the ECL emission signal, while Au@Cu:Tb-MOFs were used as cathode emitters. And chlorpyrifos and 4,7-bis(thiophene-2-yl)benzo [c][1,2,5] thiadiazole were electropolymerized on electrode surface to form MIP, where this films with thiophene derivatives could greatly improve ECL signal. Notably, the introduction of MIP as recognition elements enabled specific identification of target analytes, in which molecular docking technique validated target analyte and functional monomers are tightly bound through Pi-alkyl interaction. As the concentration of CPF increases, the ECL signal gradually decreases, showing a good linear relationship in the range of 0.1-106 pg/mL with a low detection limit (LOD) of 0.029 pg/mL. Moreover, actual sample testing experiment of this method displayed a special correlation in organophosphorus detection and development potential in actual sample analysis.


Asunto(s)
Técnicas Biosensibles , Cloropirifos , Elementos de la Serie de los Lantanoides , Impresión Molecular , Luminiscencia , Cobre , Oro , Impresión Molecular/métodos , Mediciones Luminiscentes/métodos , Simulación del Acoplamiento Molecular , Límite de Detección , Tiofenos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
15.
Toxics ; 12(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38251033

RESUMEN

Chlorantraniliprole is a broad-spectrum insecticide that has been widely used to control pests in rice fields. Limited by its low solubility in both water and organic solvents, the development of highly efficient and environmentally friendly chlorantraniliprole formulations remains challenging. In this study, a low-cost and scalable wet media milling technique was successfully employed to prepare a chlorantraniliprole nanosuspension. The average particle size of the extremely stable nanosuspension was 56 nm. Compared to a commercial suspension concentrate (SC), the nanosuspension exhibited superior dispersibility, as well as superior foliar wetting and retention performances, which further enhanced its bioavailability against Cnaphalocrocis medinalis. The nanosuspension dosage could be reduced by about 40% while maintaining a comparable efficacy to that of the SC. In addition, the chlorantraniliprole nanosuspension showed lower residual properties, a lower toxicity to non-target zebrafish, and a smaller effect on rice quality, which is conducive to improving food safety and the ecological safety of pesticide formulations. In this work, a novel pesticide-reduction strategy is proposed, and theoretical and data-based support is provided for the efficient and safe application of nanopesticides.

16.
Carbohydr Polym ; 329: 121733, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286534

RESUMEN

The influence of phase separation behavior on bio-based film properties has attracted more and more attention. This work investigated the effects of microstructure and compatibility of the type-A gelatin (GE)-dextran (DE) mixtures on GE-DE edible film properties. Three kinds of GE-DE edible films with different textures were prepared via modulating the microstructure and compatibility of film-forming mixtures using the method of gelation-drying, e.g., homogeneous films, microphase separated films with relatively homogeneous texture, and microphase separated films with uneven texture. The optical, mechanical, water barrier, and thermal properties of films were characterized. Results showed that microstructure and compatibility significantly affected the film properties. In general, films with DE-in-GE microstructure exhibited the best film properties, followed by films with water-in-water-in-water/bicontinuous microstructure, and then films with GE-in-DE microstructure. And homogeneous films showed the best film properties, followed by films with relatively homogeneous texture, and then films with uneven texture. The weight loss results suggested the potential of GE-DE edible films for application in cherry tomato preservation. This work provided interesting information for the design of film with fabricated microstructure and properties.

17.
Carbohydr Polym ; 328: 121701, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220338

RESUMEN

To illustrate the action mechanism of screw speed on the performance of starch-based straws during the extrusion process, starch-based straws at different screw speeds were prepared using a twin-screw extruder and the structures and characteristics were compared. The results indicated that as screw speeds improved from 3 Hz to 13 Hz, the A chain of amylopectin increased from 25.47 % to 28.87 %, and the B3 chain decreased from 6.34 % to 3.47 %. The absorption peak of hydroxyl group shifted from 3296 cm-1 to 3280 cm-1. The relative crystallinity reduced from 13.49 % to 9.89 % and the gelatinization enthalpy decreased from 3.5 J/g to 0.2 J/g. The performance of starch straws did not increase linearly with increasing screw speeds. The starch straw produced at screw speed of 7 Hz had the largest amylose content, the highest gelatinization temperature, the minimum bending strength, and the lowest water absorption rate in hot water (80 °C). Screw speed had a remarkable impact on the mechanical strength, toughness and hydrophobicity of starch-based straws. This study revealed the mechanism of screw speed on the mechanical strength and water resistance of starch straws in the thermoplastic extrusion process and created the theoretical basis for the industrial production of starch-based straws.


Asunto(s)
Amilopectina , Almidón , Almidón/química , Amilopectina/química , Calor , Amilosa/química , Agua/química
18.
Food Chem ; 441: 138299, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38176143

RESUMEN

The detection of Escherichia coli (E. coli) is of great significance for the environment and human health. Herein, a photoelectrochemical (PEC) detection strategy based on molecularly imprinted polymers (MIPs) was proposed for the sensitive detection of E. coli. 4,4',4″-Trinitrotriphenylamine (TPA-NO2) was prepared using a simple nitration reaction. Subsequently, MIP films were polymerized on the surface of TPA-NO2 using 1,3-dihydrothieno[3,2-d]pyrimidine-2,4-dione as the functional monomer with the dual functions of specific recognition and sensitization. The linear range was 10-108 CFU/mL and the limit of detection was 10 CFU/mL. It showed favorable recoveries in real sample tests of milk, orange juice and tomato. Additionally, the ability of functional monomers to bind excellently with E. coli was verified using molecular docking techniques. This research provided broader possibilities for constructing MIPs-PEC sensors and analyzing the interaction mechanism between E. coli and functional monomers.


Asunto(s)
Escherichia coli O157 , Polímeros , Tiofenos , Humanos , Animales , Dióxido de Nitrógeno , Simulación del Acoplamiento Molecular , Leche , Microbiología de Alimentos
19.
J Sci Food Agric ; 104(5): 2842-2850, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38012057

RESUMEN

BACKGROUND: Encapsulation is commonly used to protect probiotics against harsh stresses. Thus, the fabrication of microcapsules with special structure is critical. In this work, microcapsules with the structure of S/O/W (solid-in-oil-in-water) emulsion were prepared for probiotics, with butterfat containing probiotics as the inner core and with whey protein isolate fibrils (WPIF) and antioxidants (epigallocatechin gallate, EGCG; glutathione, GSH) as the outer shell. RESULTS: Based on the high viscosity and good emulsifying ability of WPIF, dry well-dispersed microcapsules were successfully prepared via the stabilization of the butterfat emulsion during freeze-drying with 30-50 g L-1 WPIF. WPIF, WPIF + EGCG, and WPIF + GSH microcapsules with 50 g L-1 WPIF protected probiotics very well against different stresses and exhibited similar inactivation results, indicating that EGCG and GSH exerted neither harm or protection on probiotics. This significantly reduced the harmful effects of antioxidants on probiotics. Almost all the probiotics survived after pasteurization, which was critical for the use of probiotics in other foods. The inactivation values of probiotics in microcapsules were around 1 log in simulated gastric juice (SGJ), about 0.5 log in simulated intestinal juice (SIJ), and around 1 log after 40 days of ambient storage. CONCLUSION: Dry S/O/W microcapsule, with butterfat containing probiotics as the inner core and WPIF as the outer shell, significantly increased the resistance of probiotics to harsh environments. This work proposed a preparation method of dry S/O/W microcapsule with core/shell structure, which could be used in the encapsulation of probiotics and other bioactive ingredients.


Asunto(s)
Probióticos , Cápsulas/química , Composición de Medicamentos/métodos , Emulsiones/química , Liofilización , Probióticos/química
20.
Int J Biol Macromol ; 256(Pt 1): 128384, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029905

RESUMEN

A starch-based nanofiber mat was prepared for real-time monitoring of food freshness for the first time. UV-vis results showed that roselle anthocyanins (RS) conferred a wide pH sensing range on the nanofiber mat. The prepared nanofiber mats demonstrated good color visibility (total color difference value (ΔE) increased to 56.4 ± 0.7) and a reversible response (within 120 s). Scanning electron microscopy and Fourier transform infrared spectroscopy results suggested that the nanofibers had smooth surfaces without beaded fibers and that RS was well embedded into the nanofibers. The introduction of RS improved the thermal stability of the nanofibers. Color stability tests revealed that the nanofibers exhibited excellent color stability (maximum change ΔE = 1.57 ± 0.03) after 14 days of storage. Pork and shrimp freshness tests verified that the nanofibers could effectively reflect the dynamic freshness of pork and shrimp. Nontoxic, degradable and responsive characteristics make the pH-sensitive nanofiber mat a smart food label with great application potential.


Asunto(s)
Antocianinas , Nanofibras , Antocianinas/química , Nanofibras/química , Almidón/química , Alimentos Marinos , Concentración de Iones de Hidrógeno , Embalaje de Alimentos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA