Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 381(6658): 686-693, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561870

RESUMEN

The use of bioelectronic devices relies on direct contact with soft biotissues. For transistor-type bioelectronic devices, the semiconductors that need to have direct interfacing with biotissues for effective signal transduction do not adhere well with wet tissues, thereby limiting the stability and conformability at the interface. We report a bioadhesive polymer semiconductor through a double-network structure formed by a bioadhesive brush polymer and a redox-active semiconducting polymer. The resulting semiconducting film can form rapid and strong adhesion with wet tissue surfaces together with high charge-carrier mobility of ~1 square centimeter per volt per second, high stretchability, and good biocompatibility. Further fabrication of a fully bioadhesive transistor sensor enabled us to produce high-quality and stable electrophysiological recordings on an isolated rat heart and in vivo rat muscles.


Asunto(s)
Polímeros , Semiconductores , Adhesivos Tisulares , Transistores Electrónicos , Animales , Ratas , Fenómenos Electrofisiológicos , Polímeros/química , Corazón/fisiología , Músculo Esquelético/fisiología
2.
Nat Commun ; 14(1): 4488, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495580

RESUMEN

Soft and stretchable electronics have emerged as highly promising tools for biomedical diagnosis and biological studies, as they interface intimately with the human body and other biological systems. Most stretchable electronic materials and devices, however, still have Young's moduli orders of magnitude higher than soft bio-tissues, which limit their conformability and long-term biocompatibility. Here, we present a design strategy of soft interlayer for allowing the use of existing stretchable materials of relatively high moduli to versatilely realize stretchable devices with ultralow tissue-level moduli. We have demonstrated stretchable transistor arrays and active-matrix circuits with moduli below 10 kPa-over two orders of magnitude lower than the current state of the art. Benefiting from the increased conformability to irregular and dynamic surfaces, the ultrasoft device created with the soft interlayer design realizes electrophysiological recording on an isolated heart with high adaptability, spatial stability, and minimal influence on ventricle pressure. In vivo biocompatibility tests also demonstrate the benefit of suppressing foreign-body responses for long-term implantation. With its general applicability to diverse materials and devices, this soft-interlayer design overcomes the material-level limitation for imparting tissue-level softness to a variety of bioelectronic devices.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Módulo de Elasticidad
4.
Nat Mater ; 22(6): 737-745, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37024592

RESUMEN

Stretchable light-emitting materials are the key components for realizing skin-like displays and optical biostimulation. All the stretchable emitters reported to date, to the best of our knowledge, have been based on electroluminescent polymers that only harness singlet excitons, limiting their theoretical quantum yield to 25%. Here we present a design concept for imparting stretchability onto electroluminescent polymers that can harness all the excitons through thermally activated delayed fluorescence, thereby reaching a near-unity theoretical quantum yield. We show that our design strategy of inserting flexible, linear units into a polymer backbone can substantially increase the mechanical stretchability without affecting the underlying electroluminescent processes. As a result, our synthesized polymer achieves a stretchability of 125%, with an external quantum efficiency of 10%. Furthermore, we demonstrate a fully stretchable organic light-emitting diode, confirming that the proposed stretchable thermally activated delayed fluorescence polymers provide a path towards simultaneously achieving desirable electroluminescent and mechanical characteristics, including high efficiency, brightness, switching speed and stretchability as well as low driving voltage.

5.
Adv Mater ; 34(23): e2201178, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35448913

RESUMEN

Organic electrochemical transistors (OECTs) represent an emerging device platform for next-generation bioelectronics owing to the uniquely high amplification and sensitivity to biological signals. For achieving seamless tissue-electronics interfaces for accurate signal acquisition, skin-like softness and stretchability are essential requirements, but they have not yet been imparted onto high-performance OECTs, largely due to the lack of stretchable redox-active semiconducting polymers. Here, a stretchable semiconductor is reported for OECT devices, namely poly(2-(3,3'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2'-bithiophen]-5)yl thiophene) (p(g2T-T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with OECT performance on par with the state-of-the-art. Validated by systematic characterizations and comparisons of different polymers, the key design features of this polymer that enable the combination of high stretchability and high OECT performance are a nonlinear backbone architecture, a moderate side-chain density, and a sufficiently high molecular weight. Using this highly stretchable polymer semiconductor, an intrinsically stretchable OECT is fabricated with high normalized transconductance (≈223 S cm-1 ) and biaxial stretchability up to 100% strain. Furthermore, on-skin electrocardiogram (ECG) recording is demonstrated, which combines built-in amplification and unprecedented skin conformability.


Asunto(s)
Polímeros , Transistores Electrónicos , Electrónica , Oxidación-Reducción , Polímeros/química , Piel
6.
Nat Commun ; 11(1): 5166, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33056999

RESUMEN

Many creatures have the ability to traverse challenging environments by using their active muscles with anisotropic structures as the motors in a highly coordinated fashion. However, most artificial robots require multiple independently activated actuators to achieve similar purposes. Here we report a hydrogel-based, biomimetic soft robot capable of multimodal locomotion fueled and steered by light irradiation. A muscle-like poly(N-isopropylacrylamide) nanocomposite hydrogel is prepared by electrical orientation of nanosheets and subsequent gelation. Patterned anisotropic hydrogels are fabricated by multi-step electrical orientation and photolithographic polymerization, affording programmed deformations. Under light irradiation, the gold-nanoparticle-incorporated hydrogels undergo concurrent fast isochoric deformation and rapid increase in friction against a hydrophobic substrate. Versatile motion gaits including crawling, walking, and turning with controllable directions are realized in the soft robots by dynamic synergy of localized shape-changing and friction manipulation under spatiotemporal light stimuli. The principle and strategy should merit designing of continuum soft robots with biomimetic mechanisms.


Asunto(s)
Biomimética/métodos , Locomoción , Nanogeles/química , Robótica/métodos , Fricción , Músculo Esquelético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...