Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Dev Biol ; 60(4-6): 77-84, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27389980

RESUMEN

We examine the evolution of sensory organ patterning in the lateral line system of fish. Based on recent studies of how this system develops in zebrafish, and on comparative analyses between zebrafish and tuna, we argue that the evolution of lateral line patterns is mostly determined by variations in the underlying developmental processes, independent of any selective pressure. Yet the development of major developmental innovations is so directly linked to their exploitation that it is hard not to think of them as selected for, i.e., adaptive. We propose that adaptation resides mostly in how the nervous system adjusts to new morphologies to make them functional, i.e., that species are neurally adapted to whatever morphology is provided to them by their own developmental program. We show that recent data on behavioral differences between cave forms (blind) and surface forms (eyed) of the mexican fish Astyanax fasciatus support this view, and we propose that this species might provide a unique opportunity to assess the nature of adaptation and of selection in animal evolution.


Asunto(s)
Evolución Biológica , Sistema de la Línea Lateral/embriología , Plasticidad Neuronal/fisiología , Organogénesis/fisiología , Animales , Peces
2.
Proc Natl Acad Sci U S A ; 111(4): 1610-5, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24474787

RESUMEN

Axonal regeneration is a major issue in the maintenance of adult nervous systems, both after nerve injuries and in neurodegenerative diseases. However, studying this process in vivo is difficult or even impossible in most vertebrates. Here we show that the posterior lateral line (PLL) of zebrafish is a suitable system to study axonal regeneration in vivo because of both the superficial location and reproducible spatial arrangement of neurons and targets, and the possibility of following reinnervation in live fish on a daily basis. Axonal regeneration after nerve cut has been demonstrated in this system during the first few days of life, leading to complete regeneration within 24 h. However, the potential for PLL nerve regeneration has not been tested yet beyond the early larval stage. We explore the regeneration potential and dynamics of the PLL nerve in adult zebrafish and report that regeneration occurs throughout adulthood. We observed that irregularities in the original branching pattern are faithfully reproduced after regeneration, suggesting that regenerating axons follow the path laid down by the original nerve branches. We quantified the extent of target reinnervation after a nerve cut and found that the latency before the nerve regenerates increases with age. This latency is reduced after a second nerve cut at all ages, suggesting that a regeneration-promoting factor induced by the first cut facilitates regeneration on a second cut. We provide evidence that this factor remains present at the site of the first lesion for several days and is intrinsic to the neurons.


Asunto(s)
Envejecimiento/fisiología , Axones , Regeneración Nerviosa , Pez Cebra/fisiología , Animales , Células de Schwann/citología
3.
Proc Natl Acad Sci U S A ; 110(14): 5659-64, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23509277

RESUMEN

Superficial mechanosensory organs (neuromasts) distributed over the head and body of fishes and amphibians form the "lateral line" system. During zebrafish adulthood, each neuromast of the body (posterior lateral line system, or PLL) produces "accessory" neuromasts that remain tightly clustered, thereby increasing the total number of PLL neuromasts by a factor of more than 10. This expansion is achieved by a budding process and is accompanied by branches of the afferent nerve that innervates the founder neuromast. Here we show that innervation is essential for the budding process, in complete contrast with the development of the embryonic PLL, where innervation is entirely dispensable. To obtain insight into the molecular mechanisms that underlie the budding process, we focused on the terminal system that develops at the posterior tip of the body and on the caudal fin. In this subset of PLL neuromasts, bud neuromasts form in a reproducible sequence over a few days, much faster than for other PLL neuromasts. We show that wingless/int (Wnt) signaling takes place during, and is required for, the budding process. We also show that the Wnt activator R-spondin is expressed by the axons that innervate budding neuromasts. We propose that the axon triggers Wnt signaling, which itself is involved in the proliferative phase that leads to bud formation. Finally, we show that innervation is required not only for budding, but also for long-term maintenance of all PLL neuromasts.


Asunto(s)
Sistema de la Línea Lateral/crecimiento & desarrollo , Sistema de la Línea Lateral/inervación , Vía de Señalización Wnt/fisiología , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Secuencia de Bases , Proliferación Celular , Cartilla de ADN/genética , ADN Complementario/genética , Hibridación in Situ , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Trombospondinas , Atún , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Evol Dev ; 14(2): 204-11, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23189756

RESUMEN

The posterior lateral line system (PLL) of teleost fish comprises a number of mechanosensory organs arranged in defined patterns on the body surface. Embryonic patterns are largely conserved among teleosts, yet adult patterns are highly diverse. Although changes in pattern modify the perceptual abilities of the system, their developmental origin remains unknown. Here we compare the processes that underlie the formation of the juvenile PLL pattern in Thunnus thynnus, the bluefin tuna, to the processes that were elucidated in Danio rerio, the zebrafish. In both cases, the embryonic PLL comprises five neuromasts regularly spaced along the horizontal myoseptum, but the juvenile PLL comprises four roughly parallel anteroposterior lines in zebrafish, whereas it is a simple dorsally arched line in tuna fish. We examined whether this difference involves evolutionary novelties, and show that the same mechanisms mediate the transition from embryonic to juvenile patterns in both species. We conclude that the marked difference in juveniles depends on a single change (dorsal vs. ventral migration of neuromasts) in the first days of larval life.


Asunto(s)
Sistema de la Línea Lateral/crecimiento & desarrollo , Atún/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo , Animales , Evolución Biológica , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Sistema de la Línea Lateral/anatomía & histología , Atún/anatomía & histología , Pez Cebra/anatomía & histología
5.
Int J Dev Biol ; 54(10): S1-S14, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21136381

RESUMEN

We report presentations and discussions at a meeting held in May 2010 in the small village of Minerve, in the south of France. The meeting was devoted mostly but not exclusively to patterning in the nervous system, with an emphasis on two model organisms, Drosophila Melanogaster and Danio rerio. Among the major issues presented were fear and its neuroanatomy, life in darkness, patterning of sensory systems, as well as fundamental issues of neural connectivity, including the role of lineage in neural development. Talks on large-scale patterning and re-patterning, and on the mouse as a third model system, concluded the meeting.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo , Neurogénesis , Animales , Ansiedad , Ceguera , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Miedo , Ratones , Modelos Biológicos , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
6.
Proc Natl Acad Sci U S A ; 107(45): 19531-6, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20974953

RESUMEN

How the peripheral axons of sensory neurons are guided to distant target organs is not well understood. Here we examine this question in the case of the posterior lateral line (PLL) system of zebrafish, where sensory organs are deposited by a migrating primordium. Sensory neurites accompany this primordium during its migration and are thereby guided to their prospective target organs. We show that the inactivation of glial cell line-derived neurotrophic factor (GDNF) signaling leads to defects of innervation and that these defects are due to the inability of sensory axons to track the migrating primordium. GDNF signaling is also used as a guidance cue during axonal regeneration following nerve cut. We conclude that GDNF is a major determinant of directed neuritic growth and of target finding in this system, and we propose that GDNF acts by promoting local neurite outgrowth.


Asunto(s)
Axones/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Sistema de la Línea Lateral/fisiología , Regeneración Nerviosa/fisiología , Animales , Neuritas , Células Receptoras Sensoriales , Transducción de Señal/fisiología , Transmisión Sináptica , Pez Cebra
7.
Dev Dyn ; 239(12): 3163-71, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20981829

RESUMEN

The embryonic development of the posterior lateral line of zebrafish involves the migration from head to tail of a primordium comprising approximately 100 cells, and the deposition at regular intervals of presumptive mechanosensory organs (neuromasts). Migration depends on the presence of chemokine SDF1 along the pathway, and on the asymmetrical distribution of chemokine receptors CXCR4 and CXCR7 in the primordium. Primordium polarization depends on Wnt signaling in the leading region. Here, we examine the role of a major effector of Wnt signaling, lef1, in this system. We show that, although its inactivation has no overt effect on the expression of cxcr4b and cxcr7b, lef1 contributes to their control. We also show that cell proliferation, which ensures constant primordium size despite successive rounds of cell deposition, is reduced upon lef1 inactivation. Because of this defect, the primordium runs short of cells and vanishes before the line has been completed. We conclude that lef1-mediated Wnt signaling is involved in various aspects of primordium migration, although part of this implication is masked by a high level of developmental redundancy.


Asunto(s)
Tipificación del Cuerpo/fisiología , Sistema de la Línea Lateral/embriología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo/genética , Proliferación Celular , Hibridación in Situ , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Receptores CXCR/genética , Receptores CXCR4/genética , Factores de Transcripción/genética , Pez Cebra , Proteínas de Pez Cebra/genética
8.
J Neurosci ; 30(24): 8234-44, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20554875

RESUMEN

The lateral line system of teleosts has recently become a model system to study patterning and morphogenesis. However, its embryonic origins are still not well understood. In zebrafish, the posterior lateral line (PLL) system is formed in two waves, one that generates the embryonic line of seven to eight neuromasts and 20 afferent neurons and a second one that generates three additional lines during larval development. The embryonic line originates from a postotic placode that produces both a migrating sensory primordium and afferent neurons. Nothing is known about the origin and innervation of the larval lines. Here we show that a "secondary" placode can be detected at 24 h postfertilization (hpf), shortly after the primary placode has given rise to the embryonic primordium and ganglion. The secondary placode generates two additional sensory primordia, primD and primII, as well as afferent neurons. The primary and secondary placodes require retinoic acid signaling at the same stage of late gastrulation, suggesting that they share a common origin. Neither primary nor secondary neurons show intrinsic specificity for neuromasts derived from their own placode, but the sequence of neuromast deposition ensures that neuromasts are primarily innervated by neurons derived from the cognate placode. The delayed formation of secondary afferent neurons accounts for the capability of the fish to form a new PLL ganglion after ablation of the embryonic ganglion at 24 hpf.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Sistema de la Línea Lateral/citología , Sistema de la Línea Lateral/embriología , Neuronas/fisiología , Pez Cebra/fisiología , Técnicas de Ablación/métodos , Aminoácidos/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/fisiología , Diferenciación Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Embrión no Mamífero , Ganglios Sensoriales/citología , Ganglios Sensoriales/embriología , Proteínas Fluorescentes Verdes/genética , Larva/crecimiento & desarrollo , Neuronas/clasificación , Transducción de Señal/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , p-Aminoazobenceno/análogos & derivados , p-Aminoazobenceno/farmacología
9.
Proc Natl Acad Sci U S A ; 107(14): 6358-63, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20308561

RESUMEN

The primordium that generates the embryonic posterior lateral line of zebrafish migrates from the head to the tip of the tail along a trail of SDF1-producing cells. This migration critically depends on the presence of the SDF1 receptor CXCR4 in the leading region of the primordium and on the presence of a second SDF1 receptor, CXCR7, in the trailing region of the primordium. Here we show that inactivation of the estrogen receptor ESR1 results in ectopic expression of cxcr4b throughout the primordium, whereas ESR1 overexpression results in a reciprocal reduction in the domain of cxcr4b expression, suggesting that ESR1 acts as a repressor of cxcr4b. This finding could explain why estrogens significantly decrease the metastatic ability of ESR-positive breast cancer cells. ESR1 inactivation also leads to extinction of cxcr7b expression in the trailing cells of the migrating primordium; this effect is indirect, however, and due to the down-regulation of cxcr7b by ectopic SDF1/CXCR4 signaling in the trailing region. Both ESR1 inactivation and overexpression result in aborted migration, confirming the importance of this receptor in the control of SDF1-dependent migration.


Asunto(s)
Movimiento Celular , Receptor alfa de Estrógeno/metabolismo , Sistema de la Línea Lateral/embriología , Sistema de la Línea Lateral/metabolismo , Receptores CXCR4/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Receptor alfa de Estrógeno/genética , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Evol Dev ; 11(4): 391-404, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19601973

RESUMEN

The posterior lateral line (PLL) of zebrafish comprises seven to eight sense organs at the end of embryogenesis, arranged in a single antero-posterior line that extends along the horizontal myoseptum from the ear to the tip of the tail. At the end of larval life, four antero-posterior lines extend on the trunk and tail, comprising together around 60 sense organs. The embryonic pattern is largely conserved among teleosts, although adult patterns are very diverse. Here we describe the transition from embryonic to juvenile pattern in the zebrafish, to provide a framework for understanding how the diversity of adult patterns comes about. We show that the four lines that extend over the adult body originate from latent precursors laid down by migrating primordia that arise during embryogenesis. We conclude that, in zebrafish, the entire development of the PLL system up to adulthood can be traced back to events that took place during the first 2 days of life. We also show that the transition from embryonic to adult pattern involves few distinct operations, suggesting that the diversity of patterns among adult teleosts may be due to differential control of these few operations acting upon common embryonic precursors.


Asunto(s)
Tipificación del Cuerpo , Sistema de la Línea Lateral/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo , Animales , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Pez Cebra/anatomía & histología , Pez Cebra/genética , Pez Cebra/fisiología
11.
Dev Dyn ; 238(5): 1042-51, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19334282

RESUMEN

The sense organs of the posterior lateral line system (neuromasts) are formed by a migrating primordium. In zebrafish, the primordium comprises approximately 100 cells at the onset of migration, and has deposited approximately 300 cells by the end of the process. Here, we report localized phases of mitotic activity and of mitotic quiescence within the migrating primordium. Quiescence in the leading region seems associated to the formation of a new prospective neuromast, whereas quiescence in the trailing region follows a wave of mitoses that synchronize trailing cells in G0/G1 phase, anticipating neuromast differentiation. Manipulating the size of the primordium does not lead to changes in the rate of cell proliferation. We also show that two mitoses often take place nearly synchronously in adjacent cells, suggestive of a determinate lineage. We conclude that proliferation in the migrating primordium follows a stereotyped pattern that closely anticipates the normal development of the system.


Asunto(s)
Tipificación del Cuerpo , Movimiento Celular , Sistema de la Línea Lateral/citología , Sistema de la Línea Lateral/embriología , Mitosis , Pez Cebra/embriología , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Pez Cebra/fisiología
12.
Genes Dev ; 21(17): 2118-30, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17785522

RESUMEN

The lateral-line system is a simple sensory system comprising a number of discrete sense organs, the neuromasts, distributed over the body of fish and amphibians in species-specific patterns. Its development involves fundamental biological processes such as long-range cell migration, planar cell polarity, regeneration, and post-embryonic remodeling. These aspects have been extensively studied in amphibians by experimental embryologists, but it is only recently that the genetic bases of this development have been explored in zebrafish. This review discusses progress made over the past few years in this field.


Asunto(s)
Desarrollo Embrionario/genética , Sistema de la Línea Lateral/embriología , Pez Cebra/embriología , Anfibios , Animales , Tipificación del Cuerpo/genética , Movimiento Celular , Polaridad Celular , Peces , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/embriología , Sistema de la Línea Lateral/crecimiento & desarrollo , Sistema de la Línea Lateral/fisiología , Modelos Biológicos , Neuroglía/fisiología
13.
Neural Dev ; 2: 15, 2007 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-17686145

RESUMEN

The meeting 'From sensory perception to motor output: genetic bases of behavior in the zebrafish embryo' was held at Minerve (South of France) on March 16-18, 2007. The meeting site was beautifully situated in the heart of the Minervois wine country, and its remoteness promoted conversations and interaction over the course of the program. The meeting covered neurogenesis and eye development on day 1, ear and lateral line development on day 2, and brain connectivity and behavior on day 3. Underlying all sessions, however, ran the growing importance of live imaging, an approach that takes full advantage of the transparency of fish embryos and early larvae, as illustrated by several movies and links in this report.


Asunto(s)
Tipificación del Cuerpo/fisiología , Encéfalo/embriología , Microscopía por Video/métodos , Sistema Nervioso/embriología , Pez Cebra/embriología , Animales , Encéfalo/fisiología , Microscopía por Video/instrumentación , Modelos Animales , Vías Nerviosas/embriología , Vías Nerviosas/fisiología , Órganos de los Sentidos/embriología , Órganos de los Sentidos/fisiología , Pez Cebra/fisiología
14.
BMC Dev Biol ; 7: 23, 2007 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-17394634

RESUMEN

BACKGROUND: The formation of the posterior lateral line of teleosts depends on the migration of a primordium that originates near the otic vesicle and moves to the tip of the tail. Groups of cells at the trailing edge of the primordium slow down at regular intervals and eventually settle to differentiate as sense organs. The migration of the primordium is driven by the chemokine SDF1 and by its receptor CXCR4, encoded respectively by the genes sdf1a and cxcr4b. cxcr4b is expressed in the migrating cells and is down-regulated in the trailing cells of the primordium. sdf1a is expressed along the path of migration. There is no evidence for a gradient of sdf1a expression, however, and the origin of the directionality of migration is not known. RESULTS: Here we document the expression of a second chemokine receptor gene, cxcr7, in the migrating primordium. We show that cxcr7 is highly expressed in the trailing cells of the primordium but not at all in the leading cells, a pattern that is complementary to that of cxcr4b. Even though cxcr7 is not expressed in the cells that lead primordium migration, its inactivation results in impaired migration. The phenotypes of cxcr4b, cxcr7 double morphant embryos suggest, however, that CXCR7 does not contribute to the migratory capabilities of primordium cells. We also show that, in the absence of cxcr4b, expression of cxcr7 becomes ubiquitous in the stalled primordium. CONCLUSION: Our observations suggest that CXCR7 is required to provide directionality to the migration. We propose that directionality is imposed on the primordium as soon as it comes in contact with the stripe of SDF1, and is maintained throughout migration by a negative interaction between the two receptors.


Asunto(s)
Movimiento Celular/genética , Sistema de la Línea Lateral/embriología , Receptores CXCR4/fisiología , Receptores de Quimiocina/fisiología , Proteínas de Pez Cebra/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Quimiocina CXCL12 , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Datos de Secuencia Molecular , Interferencia de ARN , Receptores CXCR , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Quimiocina/antagonistas & inhibidores , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Homología de Secuencia de Aminoácido , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Dev Dyn ; 235(6): 1578-88, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16552761

RESUMEN

The sensory organs of the zebrafish lateral-line system (neuromasts) originate from migrating primordia that move along precise pathways. The posterior primordium, which deposits the neuromasts on the body and tail of the embryo, migrates along the horizontal myoseptum from the otic region to the tip of the tail. This migration is controlled by the chemokine SDF1, which is expressed along the prospective pathway, and by its receptor CXCR4, which is expressed by the migrating cells. In this report, we describe another zebrafish gene that is heterogeneously expressed in the migrating cells, tacstd. This gene codes for a membrane protein that is homologous to the TACSTD1/2 mammalian proteins. Inactivation of the zebrafish tacstd gene results in a decrease in proneuromast deposition, suggesting that tacstd is required for the deposition process.


Asunto(s)
Señalización del Calcio/genética , Movimiento Celular/genética , Glicoproteínas de Membrana/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Antígenos de Neoplasias/genética , Señalización del Calcio/fisiología , Moléculas de Adhesión Celular/genética , Movimiento Celular/fisiología , Molécula de Adhesión Celular Epitelial , Humanos , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
16.
Bioessays ; 27(5): 488-94, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15832385

RESUMEN

The lateral line system of fish and amphibians is closely related to the inner ear in terms of evolution, morphology and physiology. Several recent papers have shed new light on the postembryonic development of this system, and have revealed an unexpected triangular relationship where migrating sensory precursors guide axons, axons guide glia and glia, in turn, control the formation of sensory organs. They have also revealed the crucial importance of controlled cell migration not only for patterning the system, but also for determining polarity (and therefore directional sensitivity) of the mechanosensory hair cells. The remarkable accessibility of the lateral line system may allow a detailed analysis of cell migration and polarization, and may help us better understand the complex interactions between sensory precursor cells, neurons and glia during development.


Asunto(s)
Axones/fisiología , Neuroglía/citología , Neuroglía/fisiología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo , Polaridad Celular
17.
Dev Dyn ; 233(2): 466-72, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15779042

RESUMEN

The sensory organs of the embryonic lateral line system are deposited by migrating primordia that originate in the otic region. Here, we examine the pattern of cell proliferation in the posterior lateral line system. We conclude that three phases of cell proliferation are involved in the generation of this system, separated by two phases of mitotic quiescence. The first phase corresponds to generalized proliferation during gastrulation, followed by a first period of quiescence that may be related to the determination of the lateral line precursor cells. A second phase of proliferation takes place in the placode and migrating primordium. This region is organized in annuli that correspond to the expression of proneural/neurogenic genes. A second period of quiescence follows, corresponding to deposition and differentiation of the sensory organs. The third period of proliferation corresponds to continued renewal of hair cells by division of support cells within each sensory organ.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Pez Cebra/embriología , Animales , Bromodesoxiuridina , Movimiento Celular , Proliferación Celular , Lateralidad Funcional
18.
Genes Cells ; 10(2): 119-25, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15676023

RESUMEN

We identified the gene smooth (sm) in a screen for genes that are specifically expressed within the lineage that forms the adult chemosensory bristles. sm is expressed in most or all differentiating neurones during embryogenesis, but is specifically expressed in the neurones of the adult chemosensory organs on the wings and legs during metamorphosis. The inactivation of sm results in axonal defects in the chemosensory neurones, in the inability of mutant flies to feed and in their precocious death. As sm belongs to a family of heterogeneous nuclear ribonucleoprotein (hnRNP), we propose that the control of axonal navigation and connectivity is partly achieved at the level of mRNA splicing or exporting.


Asunto(s)
Axones/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Neuronas Aferentes/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Drosophila/embriología , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Extremidades/embriología , Extremidades/crecimiento & desarrollo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Metamorfosis Biológica , Mutación , Neuronas Aferentes/citología , Empalme del ARN , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Órganos de los Sentidos/embriología , Órganos de los Sentidos/crecimiento & desarrollo , Órganos de los Sentidos/metabolismo , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
19.
Proc Natl Acad Sci U S A ; 102(5): 1714-8, 2005 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-15659553

RESUMEN

Most sensory systems are innervated by efferent neurons as well as by afferent neurons. The efferent innervation modulates the sensitivity of the receptor cells or of the sensory terminals. In the posterior lateral line system of the zebrafish, two efferent nuclei have been described in the hindbrain. Here we examine the development of the efferent neurons. We show that their axons are guided toward the target organ along the lateral line nerve while their cell bodies migrate posteriorward across rhombomeres to achieve their final position in rhombomeres 6/7. This migration depends on the SDF1 chemokine. We show that the migration of motor neurons of the facial nucleus from rhombomere 4 to 6 is also affected in sdf1a morphants (embryos injected with morpholine-conjugated antisense oligonucleotides). We propose that SDF1/CXCR4-mediated cell migration is preferentially associated with movement along the anteroposterior axis of the animal.


Asunto(s)
Vías Aferentes/fisiología , Quimiocinas CXC/fisiología , Nervio Facial/fisiología , Neuronas Motoras/fisiología , Vías Aferentes/embriología , Animales , Movimiento Celular , Quimiocina CXCL12 , Embrión no Mamífero/fisiología , Nervio Facial/embriología , Pez Cebra/embriología , Proteínas de Pez Cebra/fisiología
20.
J Soc Biol ; 198(2): 153-5, 2004.
Artículo en Francés | MEDLINE | ID: mdl-15368966

RESUMEN

The lateral line system of the zebrafish offers the qualities of simplicity, accessibility and reproducibility which are most appropriate for the analysis of neural development and pattern formation in vertebrates. Furthermore, the transparency of the fish embryos allows the application of a variety of optical and molecular methods in the living animal, which is essential for a more complete analysis of the system.


Asunto(s)
Pez Cebra , Animales , Embrión no Mamífero , Modelos Animales , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...