Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
eNeuro ; 11(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39288997

RESUMEN

There is experimental evidence of varying correlation among the elements of the neuromuscular system over the course of the reach-and-grasp task. The aim of this study was to investigate if modifications in correlations and clustering can be detected in the local field potential (LFP) recordings of the motor cortex during the task. To this end, we analyzed the LFP recordings from a previously published study on monkeys that performed a reach-and-grasp task for targets with a vertical or horizontal orientation. LFP signals were recorded from the motor and premotor cortex of macaque monkeys as they performed the task. We found very robust changes in the correlations of the multielectrode LFP recordings that corresponded to task epochs. Mean LFP correlation increased significantly during reach and then decreased during grasp. This pattern was very robust for both left and right arm reaches irrespective of target orientation. A hierarchical cluster analysis also demonstrated similar changes. In focusing on correlations, our study has contributed new insights to the understanding of LFP signals and their relationship to movement. A sliding window computation of the number of clusters was performed to probe the capacities of the LFP clusters for detecting upcoming task events. For a very high percentage of trials (97.89%), there was a downturn in cluster number following the Pellet Drop (GO signal) that reached a minimum preceding the Start of grasp, hence indicating that cluster analyses of LFPs could contribute to signaling an increased probability of the Start of grasp.


Asunto(s)
Fuerza de la Mano , Corteza Motora , Animales , Corteza Motora/fisiología , Fuerza de la Mano/fisiología , Análisis por Conglomerados , Masculino , Macaca mulatta , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Potenciales de Acción/fisiología
2.
Sensors (Basel) ; 24(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38793822

RESUMEN

PURPOSE: Our aim was to use intracortical recording to enable the tracking of ischemic infarct development over the first few critical hours of ischemia with a high time resolution in pigs. We employed electrophysiological measurements to obtain quick feedback on neural function, which might be useful for screening, e.g., for the optimal dosage and timing of agents prior to further pre-clinical evaluation. METHODS: Micro-electrode arrays containing 16 (animal 1) or 32 electrodes (animal 2-7) were implanted in the primary somatosensory cortex of seven female pigs, and continuous electrical stimulation was applied at 0.2 Hz to a cuff electrode implanted on the ulnar nerve. Ischemic stroke was induced after 30 min of baseline recording by injection of endothelin-1 onto the cortex adjacent to the micro-electrode array. Evoked responses were extracted over a moving window of 180 s and averaged across channels as a measure of cortical excitability. RESULTS: Across the animals, the cortical excitability was significantly reduced in all seven 30 min segments following endothelin-1 injection, as compared to the 30 min preceding this intervention. This difference was not explained by changes in the anesthesia, ventilation, end-tidal CO2, mean blood pressure, heart rate, blood oxygenation, or core temperature, which all remained stable throughout the experiment. CONCLUSIONS: The animal model may assist in maturing neuroprotective approaches by testing them in an accessible model of resemblance to human neural and cardiovascular physiology and body size. This would constitute an intermediate step for translating positive results from rodent studies into human application, by more efficiently enabling effective optimization prior to chronic pre-clinical studies in large animals.


Asunto(s)
Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Animales , Porcinos , Femenino , Accidente Cerebrovascular Isquémico/fisiopatología , Endotelina-1/metabolismo , Endotelina-1/farmacología , Estimulación Eléctrica , Corteza Somatosensorial/fisiopatología , Corteza Somatosensorial/fisiología , Isquemia Encefálica/fisiopatología , Monitoreo Fisiológico/métodos
3.
J Neurosci ; 44(21)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38589229

RESUMEN

Hand movements are associated with modulations of neuronal activity across several interconnected cortical areas, including the primary motor cortex (M1) and the dorsal and ventral premotor cortices (PMd and PMv). Local field potentials (LFPs) provide a link between neuronal discharges and synaptic inputs. Our current understanding of how LFPs vary in M1, PMd, and PMv during contralateral and ipsilateral movements is incomplete. To help reveal unique features in the pattern of modulations, we simultaneously recorded LFPs in these areas in two macaque monkeys performing reach and grasp movements with either the right or left hand. The greatest effector-dependent differences were seen in M1, at low (≤13 Hz) and γ frequencies. In premotor areas, differences related to hand use were only present in low frequencies. PMv exhibited the greatest increase in low frequencies during instruction cues and the smallest effector-dependent modulation during movement execution. In PMd, δ oscillations were greater during contralateral reach and grasp, and ß activity increased during contralateral grasp. In contrast, ß oscillations decreased in M1 and PMv. These results suggest that while M1 primarily exhibits effector-specific LFP activity, premotor areas compute more effector-independent aspects of the task requirements, particularly during movement preparation for PMv and production for PMd. The generation of precise hand movements likely relies on the combination of complementary information contained in the unique pattern of neural modulations contained in each cortical area. Accordingly, integrating LFPs from premotor areas and M1 could enhance the performance and robustness of brain-machine interfaces.


Asunto(s)
Lateralidad Funcional , Fuerza de la Mano , Macaca mulatta , Corteza Motora , Desempeño Psicomotor , Animales , Corteza Motora/fisiología , Fuerza de la Mano/fisiología , Masculino , Desempeño Psicomotor/fisiología , Lateralidad Funcional/fisiología , Movimiento/fisiología , Mano/fisiología
4.
STAR Protoc ; 5(1): 102885, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358881

RESUMEN

Effective neural stimulation requires adequate parametrization. Gaussian-process (GP)-based Bayesian optimization (BO) offers a framework to discover optimal stimulation parameters in real time. Here, we first provide a general protocol to deploy this framework in neurostimulation interventions and follow by exemplifying its use in detail. Specifically, we describe the steps to implant rats with multi-channel electrode arrays in the hindlimb motor cortex. We then detail how to utilize the GP-BO algorithm to maximize evoked target movements, measured as electromyographic responses. For complete details on the use and execution of this protocol, please refer to Bonizzato and colleagues (2023).1.


Asunto(s)
Algoritmos , Animales , Ratas , Teorema de Bayes
5.
Int J Stroke ; 19(2): 145-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37824726

RESUMEN

BACKGROUND AND AIMS: The purpose of this Third Stroke Recovery and Rehabilitation Roundtable (SRRR3) was to develop consensus recommendations to address outstanding barriers for the translation of preclinical and clinical research using the non-invasive brain stimulation (NIBS) techniques Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS) and provide a roadmap for the integration of these techniques into clinical practice. METHODS: International NIBS and stroke recovery experts (N = 18) contributed to the consensus process. Using a nominal group technique, recommendations were reached via a five-stage process, involving a thematic survey, two priority ranking surveys, a literature review and an in-person meeting. RESULTS AND CONCLUSIONS: Results of our consensus process yielded five key evidence-based and feasibility barriers for the translation of preclinical and clinical NIBS research, which were formulated into five core consensus recommendations. Recommendations highlight an urgent need for (1) increased understanding of NIBS mechanisms, (2) improved methodological rigor in both preclinical and clinical NIBS studies, (3) standardization of outcome measures, (4) increased clinical relevance in preclinical animal models, and (5) greater optimization and individualization of NIBS protocols. To facilitate the implementation of these recommendations, the expert panel developed a new SRRR3 Unified NIBS Research Checklist. These recommendations represent a translational pathway for the use of NIBS in stroke rehabilitation research and practice.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Animales , Humanos , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/fisiología , Consenso , Estimulación Magnética Transcraneal/métodos , Fenómenos Magnéticos
6.
Neurorehabil Neural Repair ; 38(1): 19-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37837350

RESUMEN

BACKGROUND AND AIMS: The purpose of this Third Stroke Recovery and Rehabilitation Roundtable (SRRR3) was to develop consensus recommendations to address outstanding barriers for the translation of preclinical and clinical research using the non-invasive brain stimulation (NIBS) techniques Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS) and provide a roadmap for the integration of these techniques into clinical practice. METHODS: International NIBS and stroke recovery experts (N = 18) contributed to the consensus process. Using a nominal group technique, recommendations were reached via a five-stage process, involving a thematic survey, two priority ranking surveys, a literature review and an in-person meeting. RESULTS AND CONCLUSIONS: Results of our consensus process yielded five key evidence-based and feasibility barriers for the translation of preclinical and clinical NIBS research, which were formulated into five core consensus recommendations. Recommendations highlight an urgent need for (1) increased understanding of NIBS mechanisms, (2) improved methodological rigor in both preclinical and clinical NIBS studies, (3) standardization of outcome measures, (4) increased clinical relevance in preclinical animal models, and (5) greater optimization and individualization of NIBS protocols. To facilitate the implementation of these recommendations, the expert panel developed a new SRRR3 Unified NIBS Research Checklist. These recommendations represent a translational pathway for the use of NIBS in stroke rehabilitation research and practice.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Animales , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/fisiología , Consenso , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal/métodos , Fenómenos Magnéticos
7.
Stroke ; 54(8): 2156-2166, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37439205

RESUMEN

BACKGROUND: Stroke results in loss of upper motor neuron control over voluntary movements and emergence of abnormal synergies. Presently, it is unclear to what extent poststroke recovery reflects true recovery (restitution), compensation, or some combination of these processes. Here, we investigated this question using behavioral and kinematic analyses of skilled reaching in rats subjected to severe stroke that affected both the forelimb motor cortex and dorsolateral striatum. METHODS: After stroke, male rats either spontaneously recovered or received enriched rehabilitation. We assessed forelimb motor recovery using behavioral and kinematic outcome measures. To provide insights into the mechanisms underlying the effects of rehabilitation on behavior, we used intracortical microstimulation and FosB (protein fosB) immunostaining techniques. RESULTS: Enriched rehabilitation significantly improved food pellet retrieval in the staircase-reaching task. Rehabilitation resulted in several poststroke flexion synergies returning to prestroke patterns, and across subjects, these changes correlated with the intensity of rehabilitation. Enriched rehabilitation increased the proportion of distal movement representation in the perilesional cortex and increased use-dependent activation in the ipsilesional red nucleus. CONCLUSIONS: These results provide evidence that enriched rehabilitation enhances recovery, at least in part, by restitution of forelimb function following severe stroke. Furthermore, the restitution of function is associated with changes in multiple motor-related structures at different levels of the central nervous system. A better understanding of the processes that underlie improved motor performance, along with the identification of midbrain circuits activated by rehabilitation, represent new insights and potential targets for optimizing poststroke recovery.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Ratas , Masculino , Animales , Humanos , Recuperación de la Función/fisiología , Miembro Anterior , Extremidad Superior , Movimiento/fisiología , Modelos Animales de Enfermedad
8.
Neurosci Biobehav Rev ; 152: 105273, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315659

RESUMEN

Transcranial magnetic stimulation (TMS) is widely employed as a tool to investigate and treat brain diseases. However, little is known about the direct effects of TMS on the brain. Non-human primates (NHPs) are a valuable translational model to investigate how TMS affects brain circuits given their neurophysiological similarity with humans and their capacity to perform complex tasks that approach human behavior. This systematic review aimed to identify studies using TMS in NHPs as well as to assess their methodological quality through a modified reference checklist. The results show high heterogeneity and superficiality in the studies regarding the report of the TMS parameters, which have not improved over the years. This checklist can be used for future TMS studies with NHPs to ensure transparency and critical appraisal. The use of the checklist would improve methodological soundness and interpretation of the studies, facilitating the translation of the findings to humans. The review also discusses how advancements in the field can elucidate the effects of TMS in the brain.


Asunto(s)
Primates , Estimulación Magnética Transcraneal , Animales , Potenciales Evocados Motores , Primates/fisiología , Haplorrinos/fisiología , Encéfalo/fisiología
9.
Cell Rep Med ; 4(4): 101008, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37044093

RESUMEN

Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve "prior" expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness.


Asunto(s)
Corteza Motora , Traumatismos de la Médula Espinal , Ratas , Animales , Traumatismos de la Médula Espinal/terapia , Haplorrinos , Teorema de Bayes
11.
J Neurosci ; 43(11): 2021-2032, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36788028

RESUMEN

Recovery of motor function after stroke is accompanied by reorganization of movement representations in spared cortical motor regions. It is widely assumed that map reorganization parallels recovery, suggesting a causal relationship. We examined this assumption by measuring changes in motor representations in eight male and six female squirrel monkeys in the first few weeks after injury, a time when motor recovery is most rapid. Maps of movement representations were derived using intracortical microstimulation techniques in primary motor cortex (M1), ventral premotor cortex (PMv), and dorsal premotor cortex (PMd) in 14 adult squirrel monkeys before and after a focal infarct in the M1 distal forelimb area. Maps were derived at baseline and at either 2 (n = 7) or 3 weeks (n = 7) postinfarct. In PMv the forelimb maps remained unchanged at 2 weeks but contracted significantly (-42.4%) at 3 weeks. In PMd the forelimb maps expanded significantly (+110.6%) at 2 weeks but contracted significantly (-57.4%) at 3 weeks. Motor deficits were equivalent at both time points. These results highlight two features of plasticity after M1 lesions. First, significant contraction of distal forelimb motor maps in both PMv and PMd is evident by 3 weeks. Second, an unpredictable nonlinear pattern of reorganization occurs in the distal forelimb representation in PMd, first expanding at 2 weeks, and then contracting at 3 weeks postinjury. Together with previous results demonstrating reliable map expansions in PMv several weeks to months after M1 injury, the subacute time period may represent a critical window for the timing of therapeutic interventions.SIGNIFICANCE STATEMENT The relationship between motor recovery and motor map reorganization after cortical injury has rarely been examined in acute/subacute periods. In nonhuman primates, premotor maps were examined at 2 and 3 weeks after injury to primary motor cortex. Although maps are known to expand late after injury, the present study demonstrates early map expansion at 2 weeks (dorsal premotor cortex) followed by contraction at 3 weeks (dorsal and ventral premotor cortex). This nonlinear map reorganization during a time of gradual behavioral recovery suggests that the relationship between map plasticity and motor recovery is much more complex than previously thought. It also suggests that rehabilitative motor training may have its most potent effects during this early dynamic phase of map reorganization.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Animales , Femenino , Masculino , Corteza Motora/fisiología , Saimiri , Accidente Cerebrovascular/patología , Movimiento/fisiología , Infarto/patología
12.
Front Rehabil Sci ; 3: 795335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188894

RESUMEN

Background: Rehabilitation is critical for reducing stroke-related disability and improving quality-of-life post-stroke. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique used as stand-alone or adjunct treatment to physiotherapy, may be of benefit for motor recovery in subgroups of stroke patients. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) seeks to advance the use of these techniques to improve post-stroke recovery through clinical trials and pre-clinical studies using standardized research protocols. Here, we review existing clinical trials for demographic, clinical, and neurobiological factors which may predict treatment response to identify knowledge gaps which need to be addressed before implementing these parameters for patient stratification in clinical trial protocols. Objective: To provide a review of clinical rTMS trials of stroke recovery identifying factors associated with rTMS response in stroke patients with motor deficits and develop research perspectives for pre-clinical and clinical studies. Methods: A literature search was performed in PubMed, using the Boolean search terms stroke AND repetitive transcranial magnetic stimulation OR rTMS AND motor for studies investigating the use of rTMS for motor recovery in stroke patients at any recovery phase. A total of 1,676 articles were screened by two blinded raters, with 26 papers identified for inclusion in this review. Results: Multiple possible factors associated with rTMS response were identified, including stroke location, cortical thickness, brain-derived neurotrophic factor (BDNF) genotype, initial stroke severity, and several imaging and clinical factors associated with a relatively preserved functional motor network of the ipsilesional hemisphere. Age, sex, and time post-stroke were generally not related to rTMS response. Factors associated with greater response were identified in studies of both excitatory ipsilesional and inhibitory contralesional rTMS. Heterogeneous study designs and contradictory data exemplify the need for greater protocol standardization and high-quality controlled trials. Conclusion: Clinical, brain structural and neurobiological factors have been identified as potential predictors for rTMS response in stroke patients with motor impairment. These factors can inform the design of future clinical trials, before being considered for optimization of individual rehabilitation therapy for stroke patients. Pre-clinical models for stroke recovery, specifically developed in a clinical context, may accelerate this process.

13.
Front Rehabil Sci ; 3: 789479, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188924

RESUMEN

Reduced hand dexterity is a common component of sensorimotor impairments for individuals after stroke. To improve hand function, innovative rehabilitation interventions are constantly developed and tested. In this context, technology-based interventions for hand rehabilitation have been emerging rapidly. This paper offers an overview of basic knowledge on post lesion plasticity and sensorimotor integration processes in the context of augmented feedback and new rehabilitation technologies, in particular virtual reality and soft robotic gloves. We also discuss some factors to consider related to the incorporation of augmented feedback in the development of technology-based interventions in rehabilitation. This includes factors related to feedback delivery parameter design, task complexity and heterogeneity of sensory deficits in individuals affected by a stroke. In spite of the current limitations in our understanding of the mechanisms involved when using new rehabilitation technologies, the multimodal augmented feedback approach appears promising and may provide meaningful ways to optimize recovery after stroke. Moving forward, we argue that comparative studies allowing stratification of the augmented feedback delivery parameters based upon different biomarkers, lesion characteristics or impairments should be advocated (e.g., injured hemisphere, lesion location, lesion volume, sensorimotor impairments). Ultimately, we envision that treatment design should combine augmented feedback of multiple modalities, carefully adapted to the specific condition of the individuals affected by a stroke and that evolves along with recovery. This would better align with the new trend in stroke rehabilitation which challenges the popular idea of the existence of an ultimate good-for-all intervention.

14.
J Neurophysiol ; 127(5): 1348-1362, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35171745

RESUMEN

Nonhuman primate (NHP) movement kinematics have been decoded from spikes and local field potentials (LFPs) recorded during motor tasks. However, the potential of LFPs to provide network-like characterizations of neural dynamics during planning and execution of sequential movements requires further exploration. Is the aggregate nature of LFPs suitable to construct informative brain state descriptors of movement preparation and execution? To investigate this, we developed a framework to process LFPs based on machine-learning classifiers and analyzed LFP from a primate, implanted with several microelectrode arrays covering the premotor cortex in both hemispheres and the primary motor cortex on one side. The monkey performed a reach-to-grasp task, consisting of five consecutive states, starting from rest until a rewarding target (food) was attained. We use this five-state task to characterize neural activity within eight frequency bands, using spectral amplitude and pairwise correlations across electrodes as features. Our results show that we could best distinguish all five movement-related states using the highest frequency band (200-500 Hz), yielding an 87% accuracy with spectral amplitude, and 60% with pairwise electrode correlation. Further analyses characterized each movement-related state, showing differential neuronal population activity at above-γ frequencies during the various stages of movement. Furthermore, the topological distribution for the high-frequency LFPs allowed for a highly significant set of pairwise correlations, strongly suggesting a concerted distribution of movement planning and execution function is distributed across premotor and primary motor cortices in a specific fashion, and is most significant in the low ripple (100-150 Hz), high ripple (150-200 Hz), and multiunit frequency bands. In summary, our results show that the concerted use of novel machine-learning techniques with coarse grained queue broad signals such as LFPs may be successfully used to track and decode fine movement aspects involving preparation, reach, grasp, and reward retrieval across several brain regions.NEW & NOTEWORTHY Local field potentials (LFPs), despite lower spatial resolution compared to single-neuron recordings, can be used with machine learning classifiers to decode sequential movements involving motor preparation, execution, and reward retrieval. Our results revealed heterogeneity of neural activity on small spatial scales, further evidencing the utility of micro-electrode array recordings for complex movement decoding. With further advancement, high-dimensional LFPs may become the gold standard for brain-computer interfaces such as neural prostheses in the near future.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Motora , Animales , Aprendizaje Automático , Microelectrodos , Corteza Motora/fisiología , Movimiento/fisiología
15.
Motor Control ; 26(1): 76-91, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920415

RESUMEN

We tested the hypothesis that the ipsilateral corticospinal system, like the contralateral corticospinal system, controls the threshold muscle length at which wrist muscles and the stretch reflex begin to act during holding tasks. Transcranial magnetic stimulation was applied over the right primary motor cortex in 21 healthy subjects holding a smooth or coarse block between the hands. Regardless of the lifting force, motor evoked potentials in right wrist flexors were larger for the smooth block. This result was explained based on experimental evidence that motor actions are controlled by shifting spatial stretch reflex thresholds. Thus, the ipsilateral corticospinal system is involved in threshold position control by modulating facilitatory influences of hand skin afferents on motoneurons of wrist muscles during bimanual object manipulation.


Asunto(s)
Corteza Motora , Músculo Esquelético , Electromiografía , Potenciales Evocados Motores/fisiología , Humanos , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal
16.
J Neurosci ; 41(44): 9112-9128, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34556488

RESUMEN

Brain injuries cause hemodynamic changes in several distant, spared areas from the lesion. Our objective was to better understand the neuronal correlates of this reorganization in awake, behaving female monkeys. We used reversible inactivation techniques to "injure" the primary motor cortex, while continuously recording neuronal activity of the ventral premotor cortex in the two hemispheres, before and after the onset of behavioral impairments. Inactivation rapidly induced profound alterations of neuronal discharges that were heterogeneous within each and across the two hemispheres, occurred during movements of either the affected or nonaffected arm, and varied during different phases of grasping. Our results support that extensive, and much more complex than expected, neuronal reorganization takes place in spared areas of the bihemispheric cortical network involved in the control of hand movements. This broad pattern of reorganization offers potential targets that should be considered for the development of neuromodulation protocols applied early after brain injury.SIGNIFICANCE STATEMENT It is well known that brain injuries cause changes in several distant, spared areas of the network, often in the premotor cortex. This reorganization is greater early after the injury and the magnitude of early changes correlates with impairments. However, studies to date have used noninvasive brain imaging approaches or have been conducted in sedated animals. Therefore, we do not know how brain injuries specifically affect the activity of neurons during the generation of movements. Our study clearly shows how a lesion rapidly impacts neurons in the premotor cortex of both hemispheres. A better understanding of these complex changes can help formulate hypotheses for the development of new treatments that specifically target neuronal reorganization induced by lesions in the brain.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Fuerza de la Mano , Corteza Motora/fisiopatología , Neuronas/fisiología , Potenciales de Acción , Animales , Femenino , Lateralidad Funcional , Macaca mulatta , Corteza Motora/citología , Plasticidad Neuronal , Recuperación de la Función
17.
Stroke ; 52(2): 761-769, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33430635

RESUMEN

Dose articulation is a universal issue of intervention development and testing. In stroke recovery, dose of a nonpharmaceutical intervention appears to influence outcome but is often poorly reported. The challenges of articulating dose in nonpharmacological stroke recovery research include: (1) the absence of specific internationally agreed dose reporting guidelines; (2) inadequate conceptualization of dose, which is multidimensional; and (3) unclear and inconsistent terminology that incorporates the multiple dose dimensions. To address these challenges, we need a well-conceptualized and consistent approach to dose articulation that can be applied across stroke recovery domains to stimulate critical thinking about dose during intervention development, as well as promote reporting of planned intervention dose versus actually delivered dose. We followed the Design Research Paradigm to develop a framework that guides how to articulate dose, conceptualizes the multidimensional nature and systemic linkages between dose dimensions, and provides reference terminology for the field. Our framework recognizes that dose is multidimensional and comprised of a duration of days that contain individual sessions and episodes that can be active (time on task) or inactive (time off task), and each individual episode can be made up of information about length, intensity, and difficulty. Clinical utility of this framework was demonstrated via hypothetical application to preclinical and clinical domains of stroke recovery. The suitability of the framework to address dose articulation challenges was confirmed with an international expert advisory group. This novel framework provides a pathway for better articulation of nonpharmacological dose that will enable transparent and accurate description, implementation, monitoring, and reporting, in stroke recovery research.


Asunto(s)
Recuperación de la Función , Rehabilitación de Accidente Cerebrovascular/normas , Accidente Cerebrovascular/terapia , Humanos , Educación del Paciente como Asunto , Accidente Cerebrovascular/complicaciones
18.
J Chem Neuroanat ; 111: 101881, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33160048

RESUMEN

Serotonin (5-HT) is a common neurotransmitter in mammals, playing a central role in the regulation of various processes such as sleep, perception, cognitive and autonomic functions in the nervous system. Previous studies have demonstrated that 5-HT type 3 (5-HT3) receptors are expressed in either or both the substantia nigra (SN) and the dorsal raphe nucleus (DRN) in humans, marmosets, rats and Syrian hamsters. Here, we quantify the distribution of 5-HT3 receptors across these regions in the adult rat. Fluorescent immunohistochemistry was performed on sections of rat brain covering the entire rostro-caudal extent of the SN and DRN with antibodies specific to the 5-HT3A receptor subunit, as well as others targeting the monoaminergic markers tyrosine hydroxylase (TH) and the 5-HT transporter (SERT). The number of 5-HT3A receptor-positive, TH-positive (n = 28,428 ±â€¯888, Gundersen's m = 1 coefficient of error [CE] = 0.05) and SERT-positive (n = 12,852 ±â€¯462, CE = 0.06) cells were estimated in both the SN and the DRN using stereology. We found that 5-HT3A receptor-positive cells are present in the SNr (n = 1250 ±â€¯64, CE = 0.24), but they did not co-localise with TH-positive cells, nor were they present in the SNc. In contrast, no 5-HT3A receptor-positive cells were found in the DRN. These results support the presence of 5-HT3 receptors in the SN, but not in the DRN, and do not support their expression on monoaminergic cells within these two brain areas.


Asunto(s)
Núcleo Dorsal del Rafe/metabolismo , Neuronas/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Sustancia Negra/metabolismo , Animales , Femenino , Masculino , Ratas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
19.
J Neurosci ; 40(31): 6082-6097, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32605940

RESUMEN

Lesion size and location affect the magnitude of impairment and recovery following stroke, but the precise relationship between these variables and functional outcome is unknown. Herein, we systematically varied the size of strokes in motor cortex and surrounding regions to assess effects on impairment and recovery of function. Female Sprague Dawley rats (N = 64) were evaluated for skilled reaching, spontaneous limb use, and limb placement over a 7 week period after stroke. Exploration and reaching were also tested in a free ranging, more naturalistic, environment. MRI voxel-based analysis of injury volume and its likelihood of including the caudal forelimb area (CFA), rostral forelimb area (RFA), hindlimb (HL) cortex (based on intracranial microstimulation), or their bordering regions were related to both impairment and recovery. Severity of impairment on each task was best predicted by injury in unique regions: impaired reaching, by damage in voxels encompassing CFA/RFA; hindlimb placement, by damage in HL; and spontaneous forelimb use, by damage in CFA. An entirely different set of voxels predicted recovery of function: damage lateral to RFA reduced recovery of reaching, damage medial to HL reduced recovery of hindlimb placing, and damage lateral to CFA reduced recovery of spontaneous limb use. Precise lesion location is an important, but heretofore relatively neglected, prognostic factor in both preclinical and clinical stroke studies, especially those using region-specific therapies, such as transcranial magnetic stimulation.SIGNIFICANCE STATEMENT By estimating lesion location relative to cortical motor representations, we established the relationship between individualized lesion location, and functional impairment and recovery in reaching/grasping, spontaneous limb use, and hindlimb placement during walking. We confirmed that stroke results in impairments to specific motor domains linked to the damaged cortical subregion and that damage encroaching on adjacent regions reduces the ability to recover from initial lesion-induced impairments. Each motor domain encompasses unique brain regions that are most associated with recovery and likely represent targets where beneficial reorganization is taking place. Future clinical trials should use individualized therapies (e.g., transcranial magnetic stimulation, intracerebral stem/progenitor cells) that consider precise lesion location and the specific functional impairments of each subject since these variables can markedly affect therapeutic efficacy.


Asunto(s)
Accidente Cerebrovascular/fisiopatología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Mapeo Encefálico , Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/fisiopatología , Femenino , Miembro Anterior/inervación , Miembro Posterior/inervación , Imagen por Resonancia Magnética , Valor Predictivo de las Pruebas , Pronóstico , Desempeño Psicomotor , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Estimulación Magnética Transcraneal
20.
IEEE Trans Neural Syst Rehabil Eng ; 28(6): 1452-1460, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32286996

RESUMEN

The development of neurostimulation techniques to evoke motor patterns is an active area of research. It serves as a crucial experimental tool to probe computation in neural circuits, and has applications in neuroprostheses used to aid recovery of motor function after stroke or injury to the nervous system. There are two important challenges when designing algorithms to unveil and control neurostimulation-to-motor correspondences, thereby linking spatiotemporal patterns of neural stimulation to muscle activation: (1) the exploration of motor maps needs to be fast and efficient (exhaustive search is to be avoided for clinical and experimental reasons) (2) online learning needs to be flexible enough to deal with noise and occasional spurious responses. We propose a stimulation search algorithm to address these issues, and demonstrate its efficacy with experiments in the motor cortex (M1) of a non-human primate model. Our solution is a novel iterative process using Bayesian Optimization via Gaussian Processes on a hierarchy of increasingly complex signal spaces. We show that our algorithm can successfully and rapidly learn correspondences between complex stimulation patterns and evoked muscle activation patterns, where standard approaches fail. Importantly, we uncover nonlinear circuit-level computations in M1 that would have been difficult to identify using conventional mapping techniques.


Asunto(s)
Corteza Motora , Algoritmos , Animales , Teorema de Bayes , Aprendizaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...