RESUMEN
As immunological selection for escape mutants continues to give rise to future SARS-CoV-2 variants, novel universal therapeutic strategies against ACE2-dependent viruses are needed. Here we present an IgM-based decavalent ACE2 decoy that has variant-agnostic efficacy. In immuno-, pseudovirus, and live virus assays, IgM ACE2 decoy had potency comparable or superior to leading SARS-CoV-2 IgG-based mAb therapeutics evaluated in the clinic, which were variant-sensitive in their potency. We found that increased ACE2 valency translated into increased apparent affinity for spike protein and superior potency in biological assays when decavalent IgM ACE2 was compared to tetravalent, bivalent, and monovalent ACE2 decoys. Furthermore, a single intranasal dose of IgM ACE2 decoy at 1 mg/kg conferred therapeutic benefit against SARS-CoV-2 Delta variant infection in a hamster model. Taken together, this engineered IgM ACE2 decoy represents a SARS-CoV-2 variant-agnostic therapeutic that leverages avidity to drive enhanced target binding, viral neutralization, and in vivo respiratory protection against SARS-CoV-2.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Animales , Cricetinae , Humanos , SARS-CoV-2 , Inmunoglobulina M , Unión ProteicaRESUMEN
Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.
Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Receptor ErbB-2/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológicoRESUMEN
ABBREVIATIONS: CE-SDS: capillary electrophoresis sodium dodecyl sulfate; DSC: differential scanning calorimetry; FACS: fluorescence-activated cell sorting; FSA: full-sized antibody; Her2: human epidermal growth factor receptor 2; MFI: mean fluorescent intensity; OAA: one-armed antibody; PBS: phosphate-buffered saline; PDB: Protein Data Bank; SEC: size-exclusion chromatography; prepSEC (preparative SEC); RMSD: root-mean-square deviation; RU: resonance units; SPR: surface plasmon resonance; TAA: tumor-associated antigen; WT: wild-type.
Asunto(s)
Inmunoglobulina A , Humanos , Cromatografía en GelRESUMEN
As biologics have become a mainstay in the development of novel therapies, protein engineering tools to expand on their structural advantages, namely specificity, affinity, and valency are of interest. Antibodies have dominated this field as the preferred scaffold for biologics development while there has been limited exploration into the use of albumin with its unique physiological characteristics as a platform for biologics design. There has been a great deal of interest to create bispecific and more complex multivalent molecules to build on the advantages offered by protein-based therapeutics relative to small molecules. Here, we explore the use of human serum albumin (HSA) as a scaffold for the design of multispecific biologics. In particular, we describe a structure-guided approach to the design of split HSA molecules we refer to as AlbuCORE, that effectively and spontaneously forms a native albumin-like molecule, but in a heterodimeric state upon co-expression. We show that the split AlbuCORE designs allow the creation of novel fusion entities with unique alternate geometries. We also show that, apart from these AlbuCORE fusion entities, there is an opportunity to explore their albumin-like small hydrophobic molecule carrying capacity as a drug conjugate in these designs.
Asunto(s)
Ingeniería de Proteínas , Multimerización de Proteína , Albúmina Sérica Humana/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Albúmina Sérica Humana/genéticaRESUMEN
Asymmetric bispecific antibodies are a rapidly expanding therapeutic antibody class, designed to recognize two different target epitopes concurrently to achieve novel functions not available with normal antibodies. Many therapeutic designs require antibodies with reduced or silenced effector function. Although many solutions have been described in the literature to knockout effector function, to date all of them have involved the use of a specific antibody subtype (e.g., IgG2 or IgG4), or symmetric mutations in the lower hinge or CH2 domain of traditional homodimeric monospecific antibodies. In the context of a heterodimeric Fc, we describe novel asymmetric Fc mutations with reduced or silenced effector function in this article. These heteromultimeric designs contain asymmetric charged mutations in the lower hinge and the CH2 domain of the Fc. Surface plasmon resonance showed that the designed mutations display much reduced binding to all of the Fc gamma receptors and C1q. Ex vivo ADCC and CDC assays showed a consistent reduction in activity. Differential scanning calorimetry showed increased thermal stability for some of the designs. Finally, the asymmetric nature of the introduced charged mutations allowed for separation of homodimeric impurities by ion exchange chromatography, providing, as an added benefit, a purification strategy for the production of bispecific antibodies with reduced or silenced effector function.
RESUMEN
Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs.
Asunto(s)
Fragmentos Fc de Inmunoglobulinas/genética , Simulación de Dinámica Molecular , Sustitución de Aminoácidos , Animales , Especificidad de Anticuerpos , Sitios de Unión , Humanos , Enlace de Hidrógeno , Fragmentos Fc de Inmunoglobulinas/biosíntesis , Fragmentos Fc de Inmunoglobulinas/química , Ingeniería de Proteínas , Estabilidad Proteica , Estructura Secundaria de ProteínaRESUMEN
While the concept of Quality-by-Design is addressed at the upstream and downstream process development stages, we questioned whether there are advantages to addressing the issues of biologics quality early in the design of the molecule based on fundamental biophysical characterization, and thereby reduce complexities in the product development stages. Although limited number of bispecific therapeutics are in clinic, these developments have been plagued with difficulty in producing materials of sufficient quality and quantity for both preclinical and clinical studies. The engineered heterodimeric Fc is an industry-wide favorite scaffold for the design of bispecific protein therapeutics because of its structural, and potentially pharmacokinetic, similarity to the natural antibody. Development of molecules based on this concept, however, is challenged by the presence of potential homodimer contamination and stability loss relative to the natural Fc. We engineered a heterodimeric Fc with high heterodimeric specificity that also retains natural Fc-like biophysical properties, and demonstrate here that use of engineered Fc domains that mirror the natural system translates into an efficient and robust upstream stable cell line selection process as a first step toward a more developable therapeutic.
Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Animales , Anticuerpos/química , Anticuerpos/genética , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Células CHO , Cromatografía Liquida , Cricetinae , Cricetulus , Diseño de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Espectrometría de Masas , Modelos Moleculares , Mutación , Ingeniería de Proteínas/métodos , Multimerización de Proteína , Estructura Terciaria de Proteína , Electricidad Estática , TemperaturaRESUMEN
Bispecific IgG asymmetric (heterodimeric) antibodies offer enhanced therapeutic efficacy, but present unique challenges for drug development. These challenges are related to the proper assembly of heavy and light chains. Impurities such as symmetric (homodimeric) antibodies can arise with improper assembly. A new method to assess heterodimer purity of such bispecific antibody products is needed because traditional separation-based purity assays are unable to separate or quantify homodimer impurities. This paper presents a liquid chromatography-mass spectrometry (LC-MS)-based method for evaluating heterodimeric purity of a prototype asymmetric antibody containing two different heavy chains and two identical light chains. The heterodimer and independently expressed homodimeric standards were characterized by two complementary LC-MS techniques: Intact protein mass measurement of deglycosylated antibody and peptide map analyses. Intact protein mass analysis was used to check molecular integrity and composition. LC-MS(E) peptide mapping of Lys-C digests was used to verify protein sequences and characterize post-translational modifications, including C-terminal truncation species. Guided by the characterization results, a heterodimer purity assay was demonstrated by intact protein mass analysis of pure deglycosylated heterodimer spiked with each deglycosylated homodimeric standard. The assay was capable of detecting low levels (2%) of spiked homodimers in conjunction with co-eluting half antibodies and multiple mass species present in the homodimer standards and providing relative purity differences between samples. Detection of minor homodimer and half-antibody C-terminal truncation species at levels as low as 0.6% demonstrates the sensitivity of the method. This method is suitable for purity assessment of heterodimer samples during process and purification development of bispecific antibodies, e.g., clone selection.
Asunto(s)
Anticuerpos Biespecíficos/química , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Multimerización de Proteína , Secuencia de Aminoácidos , Anticuerpos Biespecíficos/metabolismo , Glicosilación , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/química , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Mapeo Peptídico/métodos , Polisacáridos/química , Polisacáridos/metabolismo , Reproducibilidad de los ResultadosRESUMEN
Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization were observed in these simulations. The results were compared to essentially all known experimental data on the subject. Proximity analysis was employed to highlight the sequence dependent differences in solvation and ion localization properties in the grooves of DNA. Comparison of the MD-calculated DNA structure with canonical A- and B-forms supports the idea that the G/C-rich sequences are closer to canonical A- than B-form structures, while the reverse is true for the poly A sequences, with the exception of the alternating ATAT sequence. Analysis of hydration density maps reveals that the flexibility of solute molecule has a significant effect on the nature of observed hydration. Energetic analysis of solute-solvent interactions based on proximity analysis of solvent reveals that the GC or CG base pairs interact more strongly with water molecules in the minor groove of DNA that the AT or TA base pairs, while the interactions of the AT or TA pairs in the major groove are stronger than those of the GC or CG pairs. Computation of solvent-accessible surface area of the nucleotide units in the simulated trajectories reveals that the similarity with results derived from analysis of a database of crystallographic structures is excellent. The MD trajectories tend to follow Manning's counterion condensation theory, presenting a region of condensed counterions within a radius of about 17 A from the DNA surface independent of sequence. The GC and CG pairs tend to associate with cations in the major groove of the DNA structure to a greater extent than the AT and TA pairs. Cation association is more frequent in the minor groove of AT than the GC pairs. In general, the observed water and ion atmosphere around the DNA sequences is the MD simulation is in good agreement with experimental observations.
Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Oligonucleótidos/química , Solventes/química , Agua/química , Nucleótidos de Adenina/química , Emparejamiento Base , Secuencia de Bases , Nucleótidos de Citosina/química , Nucleótidos de Guanina/química , Conformación de Ácido Nucleico , Propiedades de Superficie , Termodinámica , Nucleótidos de Timina/químicaRESUMEN
HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1)--or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of novel broad-spectrum biopharmaceuticals that could lead to novel indirect-acting antiviral options with the current standard of care.
Asunto(s)
Antivirales/farmacología , Hepacivirus/fisiología , Hepatitis C/tratamiento farmacológico , Proproteína Convertasas/metabolismo , Inhibidores de Proteasas/farmacología , Serina Endopeptidasas/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ensamble de Virus/efectos de los fármacos , Antivirales/uso terapéutico , Línea Celular Tumoral , Colesterol/biosíntesis , Colesterol/genética , Diseño de Fármacos , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Hígado Graso/tratamiento farmacológico , Hígado Graso/enzimología , Hígado Graso/genética , Hepatitis C/enzimología , Hepatitis C/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Perilipina-2 , Proproteína Convertasas/antagonistas & inhibidores , Proproteína Convertasas/genética , Inhibidores de Proteasas/uso terapéutico , Proteolisis/efectos de los fármacos , Serina Endopeptidasas/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Ensamble de Virus/fisiologíaRESUMEN
It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein-DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of laboratories was consequently formed to obtain this information using molecular simulations. This article describes results providing information not only on all 10 unique base pair steps, but also on all possible nearest-neighbor effects on these steps. These results are derived from simulations of 50-100 ns on 39 different DNA oligomers in explicit solvent and using a physiological salt concentration. We demonstrate that the simulations are converged in terms of helical and backbone parameters. The results show that nearest-neighbor effects on base pair steps are very significant, implying that dinucleotide models are insufficient for predicting sequence-dependent behavior. Flanking base sequences can notably lead to base pair step parameters in dynamic equilibrium between two conformational sub-states. Although this study only provides limited data on next-nearest-neighbor effects, we suggest that such effects should be analyzed before attempting to predict the sequence-dependent behavior of DNA.
Asunto(s)
ADN/química , Emparejamiento Base , Secuencia de Bases , Simulación de Dinámica Molecular , Nucleótidos/químicaRESUMEN
The A-to-B form transition has been examined in three DNA duplexes, d(CGCGAATTCGCG)(2), d(CGCGAATTGCGC), and d(CGCAAATTTCGC), using circular dichroism spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and molecular dynamics (MD) simulation. Circular dichroism spectra confirm that these molecules adopt the A form under conditions of reduced water activity. UVRR results, obtained under similar conditions, suggest that the transition involves a series of intermediate forms between A and B. Cooperative and distinct transitions were observed for the bases and the sugars. Independent MD simulations on d(CGCGAATTCGCG)(2) show a spontaneous change from the A to B form in aqueous solution and describe a kinetic model that agrees well with UVRR results. Based on these observations, we predict that the mechanism of the transition involves a series of A/B hybrid forms and is sequential in nature, similar to previous crystallographic studies of derivatized duplexes. A simulation in which waters were restrained in the major groove of B DNA shows a rapid, spontaneous change from B to A at reduced water activity. These results indicate that a quasiergodic sampling of the solvent distribution may be a problem in going from B to A at reduced water activity in the course of an MD simulation.
Asunto(s)
ADN/química , ADN/ultraestructura , Modelos Químicos , Modelos Moleculares , Análisis Espectral/métodos , Simulación por Computador , ADN de Forma A/química , ADN de Forma A/ultraestructura , Conformación de Ácido Nucleico , Transición de FaseRESUMEN
An ab initio model for gene prediction in prokaryotic genomes is proposed based on physicochemical characteristics of codons calculated from molecular dynamics (MD) simulations. The model requires a specification of three calculated quantities for each codon: the double-helical trinucleotide base pairing energy, the base pair stacking energy, and an index of the propensity of a codon for protein-nucleic acid interactions. The base pairing and stacking energies for each codon are obtained from recently reported MD simulations on all unique tetranucleotide steps, and the third parameter is assigned based on the conjugate rule previously proposed to account for the wobble hypothesis with respect to degeneracies in the genetic code. The third interaction propensity parameter values correlate well with ab initio MD calculated solvation energies and flexibility of codon sequences as well as codon usage in genes and amino acid composition frequencies in approximately 175,000 protein sequences in the Swissprot database. Assignment of these three parameters for each codon enables the calculation of the magnitude and orientation of a cumulative three-dimensional vector for a DNA sequence of any length in each of the six genomic reading frames. Analysis of 372 genomes comprising approximately 350,000 genes shows that the orientations of the gene and nongene vectors are well differentiated and make a clear distinction feasible between genic and nongenic sequences at a level equivalent to or better than currently available knowledge-based models trained on the basis of empirical data, presenting a strong support for the possibility of a unique and useful physicochemical characterization of DNA sequences from codons to genomes.
Asunto(s)
Proteínas Bacterianas/genética , Mapeo Cromosómico/métodos , Codón/química , Codón/genética , ADN/química , ADN/genética , Modelos Químicos , Secuencia de Bases , Simulación por Computador , Genoma Bacteriano/genética , Modelos Moleculares , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN/métodosRESUMEN
To investigate protective immunity conferred by CTL against viral pathogens, we have analyzed CD8(+) T cell responses to the immunodominant nucleoprotein epitope (NP(366-374)) of influenza A virus in B6 mice during primary and secondary infections in vivo. Unlike the highly biased TCR Vbeta repertoire, the associated Valpha repertoire specific for the NP(366-374)/D(b) ligand is quite diverse. Nonetheless, certain public and conserved CDR3alpha clonotypes with distinct molecular signatures were identified. Pairing of public Valpha and Vbeta domains creates an alphabeta TCR heterodimer that binds efficiently to the NP(366-374)/D(b) ligand and stimulates T cell activation. In contrast, private TCRs, each comprising a distinct alpha chain paired with the same public beta chain, interact very differently. Molecular dynamics simulation reveals that the conformation and mobility of the shared Vbeta CDR loops are governed largely by the associated Valpha domains. These results provide insight into molecular principles regarding public versus private TCRs linked to immune surveillance after infection with influenza A virus.
Asunto(s)
Epítopos Inmunodominantes/inmunología , Virus de la Influenza A/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Secuencia Conservada , Femenino , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza A/química , Interleucina-2/biosíntesis , Ligandos , Activación de Linfocitos , Ratones , Modelos Moleculares , Proteínas de la Nucleocápside , Nucleoproteínas/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Conformación Proteica , Proteínas de Unión al ARN/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Proteínas del Núcleo Viral/inmunologíaRESUMEN
The comparison and detection of the commonalities and differences in multiple structural ensembles is an important step in the use of molecular simulations to gain insight into the conformation and dynamics of complex biomacromolecules. While the average structure is often employed as the representative of an ensemble of structures in such comparisons, dynamic molecular systems with multiple conformational substates call for a more accurate representation that captures the complete dynamical range of the ensemble. We present a probability analysis procedure based on the root-mean-square differences among the structural ensembles that efficiently and accurately performs the relevant comparison.
Asunto(s)
ADN/química , Secuencia de Bases , Simulación por Computador , Resonancia Magnética Nuclear Biomolecular , ProbabilidadRESUMEN
UNLABELLED: We report here the release of a web-based tool (MDDNA) to study and model the fine structural details of DNA on the basis of data extracted from a set of molecular dynamics (MD) trajectories of DNA sequences involving all the unique tetranucleotides. The dynamic web interface can be employed to analyze the first neighbor sequence context effects on the 10 unique dinucleotide steps of DNA. Functionality is included to build all atom models of any user-defined sequence based on the MD results. The backend of this interface is a relational database storing the conformational details of DNA obtained in 39 different MD simulation trajectories comprising all the 136 unique tetranucleotide steps. Examples of the use of this data to predict DNA structures are included. AVAILABILITY: http://humphry.chem.wesleyan.edu:8080/MDDNA. SUPPLEMENTARY INFORMATION: Supplementary data including color figures are available at Bioinformatics online.
Asunto(s)
ADN/química , ADN/ultraestructura , Internet , Modelos Químicos , Modelos Moleculares , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Secuencia de Bases , Biología Computacional/métodos , Simulación por Computador , Cinética , Biología Molecular/métodos , Datos de Secuencia Molecular , Conformación de Ácido NucleicoRESUMEN
The usefulness of free-energy calculations in non-academic environments, in general, and in the pharmaceutical industry, in particular, is a long-time debated issue, often considered from the angle of cost/performance criteria. In the context of the rational drug design of low-affinity, non-peptide inhibitors to the SH2 domain of the (pp60)src tyrosine kinase, the continuing difficulties encountered in an attempt to obtain accurate free-energy estimates are addressed. free-energy calculations can provide a convincing answer, assuming that two key-requirements are fulfilled: (i) thorough sampling of the configurational space is necessary to minimize the statistical error, hence raising the question: to which extent can we sacrifice the computational effort, yet without jeopardizing the precision of the free-energy calculation? (ii) the sensitivity of binding free-energies to the parameters utilized imposes an appropriate parametrization of the potential energy function, especially for non-peptide molecules that are usually poorly described by multipurpose macromolecular force fields. Employing the free-energy perturbation method, accurate ranking, within +/-0.7 kcal/mol, is obtained in the case of four non-peptide mimes of a sequence recognized by the (pp60)src SH2 domain.
Asunto(s)
Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas pp60(c-src)/química , Sitios de Unión , Simulación por Computador , Diseño de Fármacos , Ligandos , Modelos Moleculares , Termodinámica , Dominios Homologos srcRESUMEN
Molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide basepair steps are reported. The objective is to obtain the calculated dynamical structure for at least two copies of each case, use the results to examine issues with regard to convergence and dynamical stability of MD on DNA, and determine the significance of sequence context effects on all unique dinucleotide steps. This information is essential to understand sequence effects on DNA structure and has implications on diverse problems in the structural biology of DNA. Calculations were carried out on the 136 cases embedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All simulations were carried out using a well-defined state-of-the-art MD protocol, the AMBER suite of programs, and the parm94 force field. In a previous article (Beveridge et al. 2004. Biophysical Journal. 87:3799-3813), the research design, details of the simulation protocol, and informatics issues were described. Preliminary results from 15 ns MD trajectories were presented for the d(CpG) step in all 10 unique sequence contexts. The results indicated the sequence context effects to be small for this step, but revealed that MD on DNA at this length of trajectory is subject to surprisingly persistent cooperative transitions of the sugar-phosphate backbone torsion angles alpha and gamma. In this article, we report detailed analysis of the entire trajectory database and occurrence of various conformational substates and its impact on studies of context effects. The analysis reveals a possible direct correspondence between the sequence-dependent dynamical tendencies of DNA structure and the tendency to undergo transitions that "trap" them in nonstandard conformational substates. The difference in mean of the observed basepair step helicoidal parameter distribution with different flanking sequence sometimes differs by as much as one standard deviation, indicating that the extent of sequence effects could be significant. The observations reveal that the impact of a flexible dinucleotide such as CpG could extend beyond the immediate basepair neighbors. The results in general provide new insight into MD on DNA and the sequence-dependent dynamical structural characteristics of DNA.
Asunto(s)
Emparejamiento Base , Islas de CpG , ADN/química , Repeticiones de Microsatélite , Modelos Químicos , Modelos Moleculares , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Simulación por Computador , ADN/análisis , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Relación Estructura-ActividadRESUMEN
Molecular dynamics (MD) simulations of 5 ns on protein-DNA complexes of catabolite-activator protein (CAP), lambda-repressor, and their corresponding uncomplexed protein and DNA, are reported. These cases represent two extremes of DNA bending, with CAP DNA bent severely and the lambda-operator nearly straight when complexed with protein. The calculations were performed using the AMBER suite of programs and the parm94 force field, validated for these studies by good agreement with experimental nuclear magnetic resonance data on DNA. An explicit computational model of structural adaptation and computation of the quasiharmonic entropy of association were obtained from the MD. The results indicate that, with respect to canonical B-form DNA, the extreme bending of the DNA in the complex with CAP is approximately 60% protein-induced and 40% intrinsic to the sequence-dependent structure of the free oligomer. The DNA in the complex is an energetically strained form, and the MD results are consistent with a conformational-capture mechanism. The calculated quasiharmonic entropy change accounts for the entropy difference between the two cases. The calculated entropy was decomposed into contributions from protein adaptation, DNA adaptation, and protein-DNA structural correlations. The origin of the entropy difference between CAP and lambda-repressor complexation arises more from the additional protein adaptation in the case of lambda, than to DNA bending and entropy contribution from DNA bending. The entropy arising from protein DNA cross-correlations, a contribution not previously discussed, is surprisingly large.