RESUMEN
Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d33*) in piezoelectric materials remains a formidable challenge for advanced actuator applications. Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arrays of ordered {100}<100> dislocations is proposed. This dislocation engineering yields an intrinsic lock-in steady-state electrostrain of 0.69% at a low field of 10 kV cm-1 without external stress and an output strain energy density of 5.24 J cm-3 in single-crystal BaTiO3, outperforming the benchmark piezoceramics and relaxor ferroelectric single-crystals. Additionally, applying a compression stress of 6 MPa fully unlocks electrostrains exceeding 1%, yielding a remarkable d33* value over 10 000 pm V-1 and achieving a record-high strain energy density of 11.67 J cm-3. Optical and transmission electron microscopy, paired with laboratory and synchrotron X-ray diffraction, is employed to rationalize the observed electrostrain. Phase-field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findings present an effective and sustainable strategy for developing high-performance, lead-free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies.
RESUMEN
In recent years, the emergence of numerous applications of artificial intelligence (AI) has sparked a new technological revolution. These applications include facial recognition, autonomous driving, intelligent robotics, and image restoration. However, the data processing and storage procedures in the conventional von Neumann architecture are discrete, which leads to the "memory wall" problem. As a result, such architecture is incompatible with AI requirements for efficient and sustainable processing. Exploring new computing architectures and material bases is therefore imperative. Inspired by neurobiological systems, in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture. The basis of neural morphological computation is a crossbar array of high-density, high-efficiency non-volatile memory devices. Among the numerous candidate memory devices, ferroelectric memory devices with non-volatile polarization states, low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing. Further research on the complementary metal-oxide-semiconductor (CMOS) compatibility for these devices is underway and has yielded favorable results. Herein, we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks. Subsequently, we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing. Finally, we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments.
RESUMEN
Because of their intrinsic polarization and related properties, ferroelectrics attract significant attention to address energy transformation and environmental protection. Here, by using trivalent-ion-lanthanum doping of BiFeO3 nanoparticles (NPs), it is shown that defects and piezoelectric potential are synergized to achieve a high piezocatalytic effect for decomposing the model Rhodamine B (RhB) pollutant, reaching a record-high piezocatalytic rate of 21 360 L mol-1 min-1 (i.e., 100% RhB degradation within 20 min) that exceeds most state-of-the art ferroelectrics. The piezocatalytic Bi0.99La0.01FeO3 NPs are also demonstrated to be versatile toward various pharmaceutical pollutants with over 90% removal efficiency, making them extremely efficient piezocatalysts for water purification. It is also shown that 1% La-doping introduces oxygen vacancies and Fe2+ defects. It is thus suggested that oxygen vacancies act as both active sites and charge providers, permitting more surface adsorption sites for the piezocatalysis process, and additional charges and better energy transfer between the NPs and surrounding molecules. Furthermore, the oxygen vacancies are proposed to couple to Fe2+ to form defect dipoles, which in turn introduces an internal field, resulting in more efficient charge de-trapping and separation when added to the piezopotential. This synergistic mechanism is believed to provide a new perspective for designing future piezocatalysts with high performance.
RESUMEN
Ferroelectric materials display exotic polarization textures at the nanoscale that could be used to improve the energetic efficiency of electronic components. The vast majority of studies were conducted in two dimensions on thin films that can be further nanostructured, but very few studies address the situation of individual isolated nanocrystals (NCs) synthesized in solution, while such structures could have other fields of applications. In this work, we experimentally and theoretically studied the polarization texture of ferroelectric barium titanate (BaTiO3, BTO) NCs attached to a conductive substrate and surrounded by air. We synthesized NCs of well-defined quasicubic shape and 160 nm average size that conserve the tetragonal structure of BTO at room temperature. We then investigated the inverse piezoelectric properties of such pristine individual NCs by vector piezoresponse force microscopy (PFM), taking particular care to suppress electrostatic artifacts. In all of the NCs studied, we could not detect any vertical PFM signal, and the maps of the lateral response all displayed larger displacement amplitude on the edges with deformations converging toward the center. Using field phase simulations dedicated to ferroelectric nanostructures, we were able to predict the equilibrium polarization texture. These simulations revealed that the NC core is composed of 180° up and down domains defining the polar axis that rotate by 90° in the two facets orthogonal to this axis, eventually lying within these planes forming a layer of about 10 nm thickness mainly composed of 180° domains along an edge. From this polarization distribution, we predicted the lateral PFM response, which was revealed to be in very good qualitative agreement with the experimental observations. This work positions PFM as a relevant tool to evaluate the potential of complex ferroelectric nanostructures to be used as sensors.
RESUMEN
Topologically protected spin whirls in ferromagnets are foreseen as the cart-horse of solitonic information technologies. Nevertheless, the future of skyrmionics may rely on antiferromagnets due to their immunity to dipolar fields, straight motion along the driving force and ultrafast dynamics. While complex topological objects were recently discovered in intrinsic antiferromagnets, mastering their nucleation, stabilization and manipulation with energy-efficient means remains an outstanding challenge. Designing topological polar states in magnetoelectric antiferromagnetic multiferroics would allow one to electrically write, detect and erase topological antiferromagnetic entities. Here we stabilize ferroelectric centre states using a radial electric field in multiferroic BiFeO3 thin films. We show that such polar textures contain flux closures of antiferromagnetic spin cycloids, with distinct antiferromagnetic entities at their cores depending on the electric field polarity. By tuning the epitaxial strain, quadrants of canted antiferromagnetic domains can also be electrically designed. These results open the path to reconfigurable topological states in multiferroic antiferromagnets.
RESUMEN
Among today's nonvolatile memories, ferroelectric-based capacitors, tunnel junctions and field-effect transistors (FET) are already industrially integrated and/or intensively investigated to improve their performances. Concurrently, because of the tremendous development of artificial intelligence and big-data issues, there is an urgent need to realize high-density crossbar arrays, a prerequisite for the future of memories and emerging computing algorithms. Here, a two-terminal ferroelectric fin diode (FFD) in which a ferroelectric capacitor and a fin-like semiconductor channel are combined to share both top and bottom electrodes is designed. Such a device not only shows both digital and analog memory functionalities but is also robust and universal as it works using two very different ferroelectric materials. When compared to all current nonvolatile memories, it cumulatively demonstrates an endurance up to 1010 cycles, an ON/OFF ratio of ~102, a feature size of 30 nm, an operating energy of ~20 fJ and an operation speed of 100 ns. Beyond these superior performances, the simple two-terminal structure and their self-rectifying ratio of ~ 104 permit to consider them as new electronic building blocks for designing passive crossbar arrays which are crucial for the future in-memory computing.
RESUMEN
Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very-large-scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non-volatile capacitances of a ferroelectric-based memcapacitor with ultralow-power consumption. The as-designed metal/ferroelectric/metal/insulator/semiconductor memcapacitor shows distinct 3-bit capacitance states controlled by the ferroelectric domain dynamics. These robust memcapacitive states exhibit uniform maintenance of more than 104 s and well endurance of 109 cycles. In a wired memcapacitor crossbar network hardware, analog vector-matrix multiplication is successfully implemented to classify 9-pixel images by collecting the sum of displacement currents (I = C × dV/dt) in each column, which intrinsically consumes zero energy in memcapacitors themselves. Our work sheds light on an ultralow-power neural hardware based on ferroelectric memcapacitors.
RESUMEN
Ultrashort light pulses induce rapid deformations of crystalline lattices. In ferroelectrics, lattice deformations couple directly to the polarization, which opens the perspective to modulate the electric polarization on an ultrafast time scale. Here, we report on the temporal and spatial tracking of strain and polar modulation in a single-domain BiFeO3 thin film by ultrashort light pulses. To map the light-induced deformation of the BiFeO3 unit cell, we perform time-resolved optical reflectivity and time-resolved x-ray diffraction. We show that an optical femtosecond laser pulse generates not only longitudinal but also shear strains. The longitudinal strain peaks at a large amplitude of 0.6%. The access of both the longitudinal and shear strains enables to quantitatively reconstruct the ultrafast deformation of the unit cell and to infer the corresponding reorientation of the ferroelectric polarization direction in space and time. Our findings open new perspectives for ultrafast manipulation of strain-coupled ferroic orders.
RESUMEN
Recently, piezoelectric-based catalysis has been demonstrated to be an efficient means and promising alternative to sunlight-driven photocatalysis, where mechanical vibrations trigger redox reactions. Here, 60 nm-size BiFeO3 nanoparticles are shown to be very effective for piezo-degrading Rhodamine B (RhB) model dye with record degradation rate reaching 13 810 L mol-1 min-1 , and even 41 750 L mol-1 min-1 (i.e., 100% RhB degradation within 5 min) when piezocatalysis is synergistically combined with sunlight photocatalysis. These BiFeO3 piezocatalytic nanoparticles are also demonstrated to be versatile toward several dyes and pharmaceutical pollutants, with over 80% piezo-decomposition within 120 min. The maintained high piezoelectric coefficient combined with low dielectric constant, high-elastic modulus, and the nanosized shape make these BiFeO3 nanoparticles extremely efficient piezocatalysts. To avoid subsequent secondary pollution and enable their reusability, the BiFeO3 nanoparticles are further embedded in a polymer P(VDF-TrFE) matrix. The as-designed flexible, chemically stable, and recyclable nanocomposites still keep remarkable piezocatalytic and piezo-photocatalytic performances (i.e., 92% and 100% RhB degradation, respectively, within 20 min). This work opens a new research avenue for BiFeO3 that is the model multiferroic and offers a new platform for water cleaning, as well as other applications such as water splitting, CO2 reduction, or surface purification.
RESUMEN
The main limitations of current methods for synthesizing perovskite oxide (ABO3 ) nanoparticles (NPs), e.g., the high reagent costs and sophisticated equipment, the long time and high-temperature processing, or multiple post-processing and thermal treatment steps, hamper their full study and potential application. Here, we use a facile low temperature (50 °C) chemical bath synthesis and only one annealing step to successfully produce high phase purity and crystalline quality nano-shaped rare-earth-based REMO3 NPs (RE=La, Nd, Sm, Gd; M=Fe, Mn, Al). We also show the versatility of this approach by fabricating La0.7 Sr0.3 MnO3 solid solution and non-RE-based BiFeO3 perovskite. To assess the potential of the as-prepared REFeO3 and REMnO3 NPs, they are used for photocatalytic degradation of the norfloxacin antibiotic and show high efficiency. We believe this easy, robust, versatile, and general route for synthesizing ABO3 -based NPs can be further explored in the vast perovskite family and beyond.
RESUMEN
The atomic-level response of zigzag ferroelectric domain walls (DWs) was investigated with in situ bias scanning transmission electron microscopy (STEM) in a subcoercive-field regime. Atomic-level movement of a single DW was observed. Unexpectedly, the change in the position of the DW, determined from the atomic displacement, did not follow the position of the strain field when the electric field was applied. This can be explained as low mobility defect segregation at the initial DW position, such as ordered clusters of oxygen vacancies. Further, the triangular apex of the zigzag wall is pinned, but it changes its shape and becomes asymmetric under electrical stimuli. This phenomenon is accompanied by strain and bound charge redistribution. We report on unique atomic-scale phenomena at the DW level and show that in situ STEM studies with atomic resolution are very relevant as they complement, and sometimes challenge, the knowledge gained from lower resolution studies.
RESUMEN
Many material properties such as superconductivity, magnetoresistance or magnetoelectricity emerge from the non-linear interactions of spins and lattice/phonons. Hence, an in-depth understanding of spin-phonon coupling is at the heart of these properties. While most examples deal with one magnetic lattice only, the simultaneous presence of multiple magnetic orderings yield potentially unknown properties. We demonstrate a strong spin-phonon coupling in SmFeO3 that emerges from the interaction of both, iron and samarium spins. We probe this coupling as a remarkably large shift of phonon frequencies and the appearance of new phonons. The spin-phonon coupling is absent for the magnetic ordering of iron alone but emerges with the additional ordering of the samarium spins. Intriguingly, this ordering is not spontaneous but induced by the iron magnetism. Our findings show an emergent phenomenon from the non-linear interaction by multiple orders, which do not need to occur spontaneously. This allows for a conceptually different approach in the search for yet unknown properties.
RESUMEN
Materials possessing multiple states are promising to emulate synaptic and neuronic behaviors. Their operation frequency, typically in or below the GHz range, however, limits the speed of neuromorphic computing. Ultrafast THz electric field excitation has been employed to induce nonequilibrium states of matter, called hidden phases in oxides. One may wonder if there are systems for which THz pulses can generate neuronic and synaptic behavior, via the creation of hidden phases. Using atomistic simulations, we discover that relaxor ferroelectrics can emulate all the key neuronic and memristive synaptic features. Their occurrence originates from the activation of many hidden phases of polarization order, resulting from the response of nanoregions to THz pulses. Such phases further possess different dielectric constants, which is also promising for memcapacitor devices.
RESUMEN
Since the emergence of memristors (or memristive devices), how to integrate them into arrays has been widely investigated. After years of research, memristor crossbar arrays have been proposed and realized with potential applications in nonvolatile memory, logic and neuromorphic computing systems. Despite the promising prospects of memristor crossbar arrays, one of the main obstacles for their development is the so-called sneak-path current causing cross-talk interference between adjacent memory cells and thus may result in misinterpretation which greatly influences the operation of memristor crossbar arrays. Solving the sneak-path current issue, the power consumption of the array will immensely decrease, and the reliability and stability will simultaneously increase. In order to suppress the sneak-path current, various solutions have been provided. So far, some reviews have considered some of these solutions and established a sophisticated classification, including 1D1M, 1T1M, 1S1M (D: diode, M: memristor, T: transistor, S: selector), self-selective and self-rectifying memristors. Recently, a mass of studies have been additionally reported. This review thus attempts to provide a survey on these new findings, by highlighting the latest research progress realized for relieving the sneak-path issue. Here, we first present the concept of the sneak-path current issue and solutions proposed to solve it. Consequently, we select some typical and promising devices, and present their structures and properties in detail. Then, the latest research activities focusing on single-device structures are introduced taking into account the mechanisms underlying these devices. Finally, we summarize the properties and perspectives of these solutions.
RESUMEN
Ultrathin Hf1-x Zr x O2 films have attracted tremendous interest since they show ferroelectric behavior at the nanoscale, where other ferroelectrics fail to stabilize the polar state. Their promise to revolutionize the electronics landscape comes from the well-known Si compatibility of HfO2 and ZrO2, which (in amorphous form) are already used as gate oxides in MOSFETs. However, the recently discovered crystalline ferroelectric phases of hafnia-based films have been grown on Si only in polycrystalline form. Better ferroelectric properties and improved quality of the interfaces have been achieved in epitaxially grown films, but these are only obtained on non-Si and buffered Si(100) substrates. Here, we report direct epitaxy of polar Hf1-x Zr x O2 phases on Si, enabled via in situ scavenging of the native a-SiO x layer by Zr (Hf), using pulsed laser deposition under ballistic deposition conditions. We investigate the effect of substrate orientation and film composition to provide fundamental insights into the conditions that lead to the preferential stabilization of polar phases, namely, the rhombohedral (r-) and the orthorhombic (o-) phases, against the nonpolar monoclinic (m-), on Si.
RESUMEN
Hafnia-based thin films are a favoured candidate for the integration of robust ferroelectricity at the nanoscale into next-generation memory and logic devices. This is because their ferroelectric polarization becomes more robust as the size is reduced, exposing a type of ferroelectricity whose mechanism still remains to be understood. Thin films with increased crystal quality are therefore needed. We report the epitaxial growth of Hf0.5Zr0.5O2 thin films on (001)-oriented La0.7Sr0.3MnO3/SrTiO3 substrates. The films, which are under epitaxial compressive strain and predominantly (111)-oriented, display large ferroelectric polarization values up to 34 µC cm-2 and do not need wake-up cycling. Structural characterization reveals a rhombohedral phase, different from the commonly reported polar orthorhombic phase. This finding, in conjunction with density functional theory calculations, allows us to propose a compelling model for the formation of the ferroelectric phase. In addition, these results point towards thin films of simple oxides as a vastly unexplored class of nanoscale ferroelectrics.
RESUMEN
Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two-terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Lix CoO2 layer. These observations are very well correlated with the observed insulator-to-metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling - much further than the present cycling life of usual lithium-ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.
RESUMEN
Piezoelectric actuators transform electrical energy into mechanical energy, and because of their compactness, quick response time and accurate displacement, they are sought after in many applications. Polycrystalline piezoelectric ceramics are technologically more appealing than single crystals due to their simpler and less expensive processing, but have yet to display electrostrain values that exceed 1%. Here we report a material design strategy wherein the efficient switching of ferroelectric-ferroelastic domains by an electric field is exploited to achieve a high electrostrain value of 1.3% in a pseudo-ternary ferroelectric alloy system, BiFeO3-PbTiO3-LaFeO3. Detailed structural investigations reveal that this electrostrain is associated with a combination of several factors: a large spontaneous lattice strain of the piezoelectric phase, domain miniaturization, a low-symmetry ferroelectric phase and a very large reverse switching of the non-180° domains. This insight for the design of a new class of polycrystalline piezoceramics with high electrostrains may be useful to develop alternatives to costly single-crystal actuators.
RESUMEN
Domain walls (DWs) in ferroic materials exhibit a plethora of unexpected properties that are different from the adjacent ferroic domains. Still, the intrinsic/extrinsic origin of these properties remains an open question. Here, density functional theory calculations are used to investigate the interaction between vacancies and 180° DWs in the prototypical ferroelectric PbTiO3, with a special emphasis on cationic vacancies and released holes. All vacancies are more easily formed within the DW than in the domains. This is interpreted, using a phenomenological model, as the partial compensation of an extra-tensile stress when the defect is created inside the DW. Oxygen vacancies are found to be always fully ionized, independently of the thermodynamic conditions, while cationic vacancies can be either neutral or partially ionized (oxygen-rich conditions), or fully ionized (oxygen-poor conditions). Therefore, in oxidizing conditions, holes are induced by neutral and partially ionized Pb vacancies. In the bulk PbTiO3, these holes are more stable as delocalized rather than small polarons, but at DWs, the two forms are found to be possible.