Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38697107

RESUMEN

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Asunto(s)
Inmunoterapia , Lípidos , ARN , Microambiente Tumoral , Animales , Perros , Femenino , Humanos , Ratones , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glioblastoma/terapia , Glioblastoma/inmunología , Glioma/terapia , Glioma/inmunología , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias/inmunología , ARN/química , ARN/uso terapéutico , ARN Mensajero/metabolismo , ARN Mensajero/genética , Lípidos/química
2.
Theriogenology ; 219: 22-31, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377715

RESUMEN

Breeding-induced endometritis is a physiological reaction to clear the uterus from excess spermatozoa and bacteria after breeding. Cysteine rich secretory protein 3 in seminal plasma (spCRISP3) protects spermatozoa from binding and destruction by uterine PMNs, but it is not clear if this involves all sperm and bacteria, or if it is selective to a sub-population of live sperm. The objective of this report was to determine if spCRISP3 (1) is selective in its suppression of PMN-binding to sperm based on viability of spermatozoa, (2) protects bacteria from binding to PMNs, and (3) to determine the localization pattern of spCRISP3 on viable and dead sperm. Semen was collected from five stallions and each ejaculate was divided into (1) live and (2) snap frozen (dead) sperm. Two distinct sperm populations were confirmed by DNA fragmentation and membrane integrity assays. CRISP3 was purified from pooled seminal plasma, and binding of PMNs (isolated from peripheral blood) to the two sperm populations and E. coli was evaluated with flow cytometry in the presence of spCRISP3. In addition, localization of spCRISP3 on live and dead spermatozoa was determined by immunocytochemistry. Comparisons between treatments were analyzed using a one-way-ANOVA and Bonferroni's comparison test, or Kruskal-Wallis ANOVA if not normally distributed. spCRISP3 significantly suppressed binding of PMNs to live spermatozoa (p < 0.0001) but had no effect on dead sperm or bacteria (p > 0.05). Immunocytochemistry confirmed binding of spCRISP3 to live, but not dead spermatozoa. It was concluded that a selective interaction between spCRISP3 and live spermatozoa may be part of a biological mechanism that allows safe transport of viable spermatozoa to the oviducts, while enabling dead spermatozoa and bacteria to be eliminated in a timely fashion after breeding.


Asunto(s)
Neutrófilos , Semen , Femenino , Caballos , Animales , Masculino , Semen/fisiología , Neutrófilos/fisiología , Cisteína , Escherichia coli , Espermatozoides/fisiología
3.
medRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993772

RESUMEN

Messenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA). Intravenous administration of RNA-LPAs mimics infectious emboli and elicits massive DC/T cell mobilization into lymphoid tissues provoking cancer immunogenicity and mediating rejection of both early and late-stage murine tumor models. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for toll-like receptor engagement, RNA-LPAs stimulate intracellular pathogen recognition receptors (RIG-I) and reprogram the TME thus enabling therapeutic T cell activity. RNA-LPAs were safe in acute/chronic murine GLP toxicology studies and immunologically active in client-owned canines with terminal gliomas. In an early phase first-in-human trial for patients with glioblastoma, we show that RNA-LPAs encoding for tumor-associated antigens elicit rapid induction of pro-inflammatory cytokines, mobilization/activation of monocytes and lymphocytes, and expansion of antigen-specific T cell immunity. These data support the use of RNA-LPAs as novel tools to elicit and sustain immune responses against poorly immunogenic tumors.

4.
Anticancer Res ; 42(6): 2819-2825, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35641293

RESUMEN

BACKGROUND/AIM: miRNA functional analysis involves transfection with miRNA-based oligos to identify gain-of or loss-of function cellular phenotypes. Apoptosis is a common phenotypic endpoint for miRNA functional analysis. We report that four common cell dissociation enzymes, TrypLE, Accutase, Trypsin, and Accumax, can differentially impact cell viability and apoptosis in Annexin V flow cytometric analysis after miRNA-based transient transfection. MATERIALS AND METHODS: We transiently transfected a nonsense oligo into an epithelial cancer cell line (UM-SCC-12) for 24 h. Cells were harvested with either TrypLE, Accutase, Accumax, or Trypsin after 5 min. The Annexin V/7-AAD assay via flow cytometry was employed. Studies were performed in triplicate. Significant effects were detected by ANOVA, followed by Tukey's Multiple Comparison tests. RESULTS: Trypsin produced the lowest cell viability and lowest percentage of apoptotic cells, specifically when compared to TrypLE and Accutase, respectively (p<0.01). Importantly, transfected trypsinized cells had a significant difference in cell viability and necrosis (p<0.05) when compared with non-transfected trypsinized cells, highlighting the influence of miRNA-based transfection on Annexin V flow cytometric outcomes. Interassay variability was lowest with TrypLE (1.13 %). As such, TrypLE provided the greatest reproducibility and reliability in our cell line. CONCLUSION: Our study highlights the variable effects of cell dissociation enzymes on transfected cells. Overall, the variability may lead to errors in detection of apoptotic cells using the Annexin V assay after miRNA-based transfection. Before assay use, we recommend pretesting cell dissociation enzymes on transfected cells to ensure reliable and reproducible results.


Asunto(s)
MicroARNs , Anexina A5/genética , Anexina A5/metabolismo , Citometría de Flujo/métodos , Humanos , MicroARNs/genética , Reproducibilidad de los Resultados , Transfección , Tripsina
5.
J Immunol ; 208(12): 2829-2836, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35589125

RESUMEN

Expression of the transmembrane protein PD-L1 is frequently upregulated in cancer. Because PD-L1-expressing cells can induce apoptosis or anergy of T lymphocytes through binding to the PD1 receptor, the PD-L1-mediated inhibition of activated PD1+ T cells is considered a major pathway for tumor immune escape. However, the mechanisms that regulate the expression of PD-L1 in the tumor microenvironment are not fully understood. Analysis of organotypic tumor tissue slice cultures, obtained from mice with implanted syngeneic tumors (MBT2 bladder tumors in C3H mice, Renca kidney, and CT26 colon tumors in BALB/c mice), as well as from patients with cancer, revealed that tumor-associated hyaluronan (HA) supports the development of immunosuppressive PD-L1+ macrophages. Using genetically modified tumor cells, we identified epithelial tumor cells and cancer-associated mesenchymal fibroblast-like cells as a major source of HA in the tumor microenvironment. These HA-producing tumor cells, and particularly the vimentin-positive fibroblast-like cells of bone marrow origin, directly interact with tumor-recruited myeloid cells to form large stromal congregates/clusters that are highly enriched for both HA and PD-L1. Furthermore, similar cell clusters composed of HA-producing fibroblast-like cells and PD-L1+ macrophages were detected in tumor-draining, but not in distant, lymph nodes. Collectively, our findings indicate that the formation of multiple large HA-enriched stromal clusters that support the development of PD-L1-expressing APCs in the tumor microenvironment and draining lymph nodes could contribute to the immune escape and resistance to immunotherapy in cancer.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Vejiga Urinaria , Animales , Línea Celular Tumoral , Ácido Hialurónico/metabolismo , Ganglios Linfáticos , Macrófagos , Ratones , Ratones Endogámicos C3H , Microambiente Tumoral
6.
Cancers (Basel) ; 14(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35267434

RESUMEN

Glioblastoma (GBM) exhibits populations of cells that drive tumorigenesis, treatment resistance, and disease progression. Cells with such properties have been described to express specific surface and intracellular markers or exhibit specific functional states, including being slow-cycling or quiescent with the ability to generate proliferative progenies. In GBM, each of these cellular fractions was shown to harbor cardinal features of cancer stem cells (CSCs). In this study, we focus on the comparison of these cells and present evidence of great phenotypic and functional heterogeneity in brain cancer cell populations with stemness properties, especially between slow-cycling cells (SCCs) and cells phenotypically defined based on the expression of markers commonly used to enrich for CSCs. Here, we present an integrative analysis of the heterogeneity present in GBM cancer stem cell populations using a combination of approaches including flow cytometry, bulk RNA sequencing, and single cell transcriptomics completed with functional assays. We demonstrated that SCCs exhibit a diverse range of expression levels of canonical CSC markers. Importantly, the property of being slow-cycling and the expression of these markers were not mutually inclusive. We interrogated a single-cell RNA sequencing dataset and defined a group of cells as SCCs based on the highest score of a specific metabolic signature. Multiple CSC groups were determined based on the highest expression level of CD133, SOX2, PTPRZ1, ITGB8, or CD44. Each group, composed of 22 cells, showed limited cellular overlap, with SCCs representing a unique population with none of the 22 cells being included in the other groups. We also found transcriptomic distinctions between populations, which correlated with clinicopathological features of GBM. Patients with strong SCC signature score were associated with shorter survival and clustered within the mesenchymal molecular subtype. Cellular diversity amongst these populations was also demonstrated functionally, as illustrated by the heterogenous response to the chemotherapeutic agent temozolomide. In conclusion, our study supports the cancer stem cell mosaicism model, with slow-cycling cells representing critical elements harboring key features of disseminating cells.

7.
JCI Insight ; 7(4)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35015729

RESUMEN

Monocyte-derived macrophages (MDMs) are key players in tissue homeostasis and diseases regulated by a variety of signaling molecules. Recent literature has highlighted the ability for biogenic amines to regulate macrophage functions, but the mechanisms governing biogenic amine signaling in and around immune cells remain nebulous. In the CNS, biogenic amine transporters are regarded as the master regulators of neurotransmitter signaling. While we and others have shown that macrophages express these transporters, relatively little is known of their function in these cells. To address these knowledge gaps, we investigated the function of norepinephrine transporter (NET) and dopamine transporter (DAT) on human MDMs. We found that both NET and DAT are present and can uptake substrate from the extracellular space at baseline. Not only was DAT expressed in cultured MDMs, but it was also detected in a subset of intestinal macrophages in situ. Surprisingly, we discovered a NET-independent, DAT-mediated immunomodulatory mechanism in response to LPS. LPS induced reverse transport of dopamine through DAT, engaging an autocrine/paracrine signaling loop that regulated the macrophage response. Removing this signaling loop enhanced the proinflammatory response to LPS. Our data introduce a potential role for DAT in the regulation of innate immunity.


Asunto(s)
Aminas Biogénicas/metabolismo , Transporte Biológico/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Regulación de la Expresión Génica , Macrófagos/metabolismo , ARN/genética , Adulto , Anciano , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/biosíntesis , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Humanos , Macrófagos/patología , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Methods Mol Biol ; 2389: 77-86, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34558003

RESUMEN

Microglia are immune cells of the central nervous system (CNS), which play an instrumental role in eliminating invading pathogens and help regulate localized inflammation. They also assist in maintaining homeostasis of the brain microenvironment. Microglia isolation from primary brain tissue can be difficult with poor yields from tissue dissociation which precludes many downstream assays from being efficiently conducted. Recovery of intact microglia for single-cell or next-generation RNA sequencing (NGS, RNAseq) can be a difficult process. The recovery of intact RNA transcripts inside viable cells has its challenges. Here we describe a method to enrich CD11b + microglial cells from brain tissue followed by FACS, for a reliable and reproducible method for the recovery of high-quality RNA from sorted microglia for downstream sequencing.


Asunto(s)
Microglía , Encéfalo , Separación Celular , Secuenciación de Nucleótidos de Alto Rendimiento , ARN/genética
9.
PLoS One ; 16(5): e0251149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33974645

RESUMEN

Single-cell transcriptome analysis has been extensively applied in humans and animal models to uncover gene expression heterogeneity between the different cell types of a tissue or an organ. It demonstrated its capability to discover key regulatory elements that determine cell fate during developmental programs. Single-cell analysis requires the isolation and labeling of the messenger RNA (mRNA) derived from each cell. These challenges were primarily addressed in mammals by developing microfluidic-based approaches. For plant species whose cells contain cell walls, these approaches have generally required the generation of isolated protoplasts. Many plant tissues' secondary cell wall hinders enzymatic digestion required for individual protoplast isolation, resulting in an unequal representation of cell types in a protoplast population. This limitation is especially critical for cell types located in the inner layers of a tissue or the inner tissues of an organ. Consequently, single-cell RNA sequencing (scRNA-seq) studies using microfluidic approaches in plants have mainly been restricted to Arabidopsis roots, for which well-established procedures of protoplast isolation are available. Here we present a simple alternative approach to generating high-quality protoplasts from plant tissue by characterizing the mRNA extracted from individual nuclei instead of whole cells. We developed the protocol using two different plant materials with varying cellular complexity levels and cell wall structure, Populus shoot apices, and more lignified stems. Using the 10× Genomics Chromium technology, we show that this procedure results in intact mRNA isolation and limited leakage, with a broad representation of individual cell transcriptomes.


Asunto(s)
Fraccionamiento Celular/métodos , Populus/genética , ARN de Planta , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica/métodos , Protoplastos , Reproducibilidad de los Resultados , Análisis de la Célula Individual
10.
J Allergy Clin Immunol ; 148(3): 813-821.e7, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33865872

RESUMEN

BACKGROUND: Hereditary alpha-tryptasemia (HαT) is characterized by elevated basal serum tryptase due to increased copies of the TPSAB1 gene. Individuals with HαT frequently present with multisystem complaints, including anaphylaxis and seemingly functional gastrointestinal (GI) symptoms. OBJECTIVE: We sought to determine the prevalence of HαT in an irritable bowel syndrome cohort and associated immunologic characteristics that may distinguish patients with HαT from patients without HαT. METHODS: Tryptase genotyping by droplet digital PCR, flow cytometry, cytometry by time-of-flight, immunohistochemistry, and other molecular biology techniques was used. RESULTS: HαT prevalence in a large irritable bowel syndrome cohort was 5% (N = 8/158). Immunophenotyping of HαT PBMCs (N ≥ 27) revealed increased total and class-switched memory B cells. In the small bowel, expansion of tissue mast cells with expression of CD203c, HLA-DR, and FcεRI, higher intestinal epithelial cell pyroptosis, and increased class-switched memory B cells were observed. IgG profiles in sera from individuals with HαT (N = 21) significantly differed from those in individuals with quiescent Crohn disease (N = 20) and non-HαT controls (N = 19), with increased antibodies directed against GI-associated proteins identified in individuals with HαT. CONCLUSIONS: Increased mast cell number and intestinal epithelial cell pyroptosis in the small intestine, and class-switched memory B cells in both the gut and peripheral blood associated with IgG reactive to GI-related proteins, distinguish HαT from functional GI disease. These innate and adaptive immunologic findings identified in association with HαT are suggestive of subclinical intestinal inflammation in symptomatic individuals.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedades Genéticas Congénitas , Inmunoglobulina G/inmunología , Intestino Delgado/inmunología , Mastocitosis , Triptasas , Adulto , Células Epiteliales/inmunología , Femenino , Enfermedades Gastrointestinales/sangre , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/inmunología , Enfermedades Gastrointestinales/patología , Enfermedades Genéticas Congénitas/sangre , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/inmunología , Enfermedades Genéticas Congénitas/patología , Genotipo , Humanos , Inmunoglobulina G/sangre , Intestino Delgado/citología , Intestino Delgado/patología , Masculino , Mastocitos/inmunología , Mastocitosis/sangre , Mastocitosis/genética , Mastocitosis/inmunología , Mastocitosis/patología , Persona de Mediana Edad , Piroptosis , Triptasas/sangre , Triptasas/genética , Adulto Joven
11.
Future Oncol ; 17(3): 263-277, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33356566

RESUMEN

The aim of this study was to establish the therapeutic relevance of the CD33D2 isoform by developing novel antibodies targeting the IgC domain of CD33. Two novel IgC-targeting antibodies, HL2541 and 5C11-2, were developed, and CD33 isoforms were assessed using multiple assays in cells overexpressing either CD33FL or CD33D2 isoforms, unmodified acute myeloid leukemia (AML) cell lines and primary AML specimens representing different genotypes for the CD33 splicing single nucleotide polymorphism. CD33D2 was recognized on cells overexpressing CD33D2 and unmodified AML cell lines; however, minimal/no cell surface detection of CD33D2 was observed in primary AML specimens. Both isoforms were detected intracellularly using novel antibodies. Minimal cell surface expression of CD33D2 on primary AML/progenitor cells warrants further studies on anti-CD33D2 immunotherapeutics.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Adolescente , Animales , Anticuerpos Monoclonales/uso terapéutico , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Línea Celular Tumoral , Niño , Preescolar , Femenino , Genotipo , Humanos , Dominios de Inmunoglobulinas/inmunología , Lactante , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Isoformas de Proteínas , Lectina 3 Similar a Ig de Unión al Ácido Siálico/química , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética
12.
J Immunol Methods ; 476: 112686, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31634479

RESUMEN

Human monocytes express known markers of dopamine synthesis, storage and clearance, including dopamine transporter (DAT), tyrosine hydroxylase (TH), all subtypes of dopamine receptors and vesicular monoamine transporter 2 (VMAT2). Immunohistochemical and immunofluorescent methodologies have traditionally been employed to determine DAT and TH expression in the CNS, their detection in the blood and specifically in the peripheral monocytes has not been studied by flow cytometry. Flow cytometry assays are widely used in medicine and in basic, preclinical or clinical research to quantify physical and chemical characteristics of target cell populations. Here, we have established a highly sensitive and reproducible flow cytometry panel to detect and quantify DAT and TH expression in freshly isolated or cryopreserved human peripheral monocytes. In healthy humans (n = 41 biological replicates), we show baseline DAT and TH expressing monocytes constitute ~12% of the peripheral blood mononuclear cell (PBMC) fraction when examined in fresh isolation from whole blood. Using an identical flow cytometry panel, we found that cryopreservation of PBMCs using multiple techniques resulted in altered PBMC populations as compared to fresh isolation and relative to one another. Among these, we identified an optimum cryopreservation method for detecting TH and DAT in cryopreserved PBMCs. Our data provide a sensitive and reproducible approach to examine dopamine signaling in peripheral human immune cells. This approach can be applied to study peripheral dopamine signaling under healthy and potentially under disease conditions. The use of dopamine signaling could also be explored as a technique to monitor therapeutic interventions particularly those targeting DAT and TH in the periphery.


Asunto(s)
Dopamina/metabolismo , Citometría de Flujo/métodos , Transducción de Señal , Adulto , Anciano , Biomarcadores/metabolismo , Criopreservación , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tirosina 3-Monooxigenasa/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
13.
PLoS One ; 13(7): e0200377, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29995938

RESUMEN

Inflammatory bowel disease (IBD) continues to increase in prevalence in industrialized countries. Major complications of IBD include formation of fibrotic strictures, fistulas, reduced absorptive function, cancer risk, and the need for surgery. In other chronic gastrointestinal disease models, stiffness has been shown to precede fibrosis; therefore, stiffness may be a reasonable indicator of progression toward stricture formation in IBD patients. Herein, we seek to quantify tissue stiffness and characterize fibrosis in patients with IBD and to compare mechanical properties of unaffected human tissue to common animal species used for IBD studies. Inflamed and unaffected tissue from IBD patients and unaffected tissue from mice, pigs, and cows were indented using a custom device to determine the effective stiffness. Histology was performed on matched tissues, and total RNA was isolated from IBD tissue samples and used for gene expression analysis of pro-fibrotic genes. We observed an increase in the effective stiffness (steady-state modulus, SSM) (p < 0.0001) and increased expression of the collagen type I gene (COL1A1, p = 0.01) in inflamed tissue compared to unaffected areas in our IBD patient cohort. We also found that increased staining of collagen fibers in submucosa positively correlated with SSM (p = 0.093). We determined that unaffected animal bowel stiffness is significantly greater than similar human tissues, suggesting additional limitations on animal models for translational investigations regarding stiffness-related hypotheses. Taken together, our data support development of tools for evaluation of bowel stiffness in IBD patients for prognostic applications that may enable more accurate prediction of those who will develop fibrosis and more precise prescription of aggressive therapies.


Asunto(s)
Fibrosis/complicaciones , Fibrosis/fisiopatología , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/fisiopatología , Intestinos/fisiopatología , Adulto , Anciano , Animales , Bovinos , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Elasticidad , Femenino , Fibrosis/patología , Expresión Génica , Humanos , Inflamación/complicaciones , Inflamación/patología , Inflamación/fisiopatología , Enfermedades Inflamatorias del Intestino/patología , Intestinos/patología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Especificidad de la Especie , Porcinos , Adulto Joven
16.
Gastroenterology ; 151(6): 1100-1104, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27693323

RESUMEN

Interleukin 10 receptor (IL10R)-deficient mice develop spontaneous colitis and, similarly, patients with loss-of-function mutations in IL10R develop severe infant-onset inflammatory bowel disease. Loss of IL10R signaling in mouse and human macrophages is associated with increased production of interleukin 1ß. We demonstrated that innate immune production of IL1ß mediates colitis in IL10R-deficient mice. Transfer of Il1r1-/- CD4+ T cells into Rag1-/-/Il10rb-/- mice reduced the severity of their colitis (compared to mice that received CD4+ T cells that express IL1R), accompanied by decreased production of interferon gamma, tumor necrosis factor-α, and IL17A. In macrophages from mice without disruption of IL10R signaling or from healthy humans (controls), incubation with IL10 reduced canonical activation of the inflammasome and production of IL1ß through transcriptional and post-translational regulation of NLRP3. Lipopolysaccharide and adenosine triphosphate stimulation of macrophages from Il10rb-/- mice or IL10R-deficient patients resulted in increased production of IL1ß. Moreover, in human IL10R-deficient macrophages, lipopolysaccharide stimulation alone triggered IL1ß secretion via non-canonical, caspase 8-dependent activation of the inflammasome. We treated 2 IL10R-deficient patients with severe and treatment-refractory infant-onset inflammatory bowel disease with the IL1-receptor antagonist anakinra. Both patients had marked clinical, endoscopic, and histologic responses after 4-7 weeks. This treatment served as successful bridge to allogeneic hematopoietic stem cell transplantation in 1 patient. Our findings indicate that loss of IL10 signaling leads to intestinal inflammation, at least in part, through increased production of IL1 by innate immune cells, leading to activation of CD4+ T cells. Agents that block IL1 signaling might be used to treat patients with inflammatory bowel disease resulting from IL10R deficiency.


Asunto(s)
Colitis/inmunología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Receptores de Interleucina-10/genética , Adenosina Trifosfato/farmacología , Adulto , Animales , Antirreumáticos/uso terapéutico , Linfocitos T CD4-Positivos , Caspasa 8/metabolismo , Células Cultivadas , Preescolar , Colitis/genética , Colitis/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Humanos , Inmunidad Innata , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Interferón gamma/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Interleucina-10/farmacología , Subunidad alfa del Receptor de Interleucina-10/genética , Interleucina-17/metabolismo , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , Macrófagos , Ratones , Ratones Noqueados , Mutación , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Receptores de Interleucina-10/deficiencia , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
17.
Cell Immunol ; 304-305: 63-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27215784

RESUMEN

Deregulation of various components of the immune system has been reported in the inflamed gut of Crohn's disease (CD) patients. Innate lymphoid cells (ILCs) are novel innate effector lymphocytes which can rapidly respond to danger signals, from invading pathogens or tissue damage, to maintain homeostasis, especially along the mucosal surfaces. The purpose of this study is to compare composition of the intestinal ILCs subsets of CD patients with differential inflammatory conditions of the terminal ileum, which are marked by distinct histological appearances and mucosal profiles of cytokines. We observed alterations in the frequency of Lineage(-)CRTH2(-)CD45(+)NKp44(-)CD117(-)CD127(+)ILC subset in the inflamed terminal ileum.


Asunto(s)
Enfermedad de Crohn/inmunología , Íleon/patología , Inmunidad Innata , Inflamación/inmunología , Mucosa Intestinal/inmunología , Subgrupos Linfocitarios/inmunología , Linfocitos/inmunología , Adulto , Linaje de la Célula , Humanos , Inmunofenotipificación , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Masculino , Persona de Mediana Edad , Receptor 2 Gatillante de la Citotoxidad Natural/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-28286805

RESUMEN

Innate lymphoid cells (ILCs) are emerging as important components of our immune system that have critical effector and regulatory functions in both innate and adaptive immune responses. They are enriched at mucosal surfaces, such as lung and intestine. Our previous work has shown that Lineage-CRTH2-CD45+NKp44-CD117-CD127+ILC1s accumulated in the inflamed terminal ileum of patients with Crohn's disease (CD) at the expense of NKp44+ILC3s. This phenotype conversion impairs the intestinal barrier integrity and contributes to the dysregulated immune responses of CD patients. Our next step was to search for pathways to modulate this phenotype switch. The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. Initial studies of AHR concentrated on its role in the detoxification of xenobiotics. However, recent research has focused on the immune system. Especially, AHR pathway is proven to be essential for the maintenance of intestinal ILC3s in mouse models. We examined whether AHR pathway participated in the human intestinal ILC phenotype change in the inflamed terminal ileum of CD patients. As anticipated, NKp44+ILC3s, NKp44-ILC3s and ILC1s had differential AHR expression. This AHR signaling mediated CD117 expression on the surface of ILC3s. The conversion from ILC3 to ILC1 was accompanied by the downregulation of AHR expression. We further observed that there was a disparity between AHR protein expression and mRNA expression in the inflamed terminal ileum tissues of CD patients compared to unaffected areas. These findings suggest that AHR pathway is also important for human intestinal ILC phenotype regulation and impaired AHR signaling in the inflamed gut of CD patients possibly contributes to the ILC3/ILC1 conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA