Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genetics ; 191(2): 461-75, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22426883

RESUMEN

The vacuolar-type ATPase (V-ATPase) is a proton pump composed of two sectors, the cytoplasmic V(1) sector that catalyzes ATP hydrolysis and the transmembrane V(o) sector responsible for proton translocation. The transmembrane V(o) complex directs the complex to different membranes, but also has been proposed to have roles independent of the V(1) sector. However, the roles of the V(1) sector have not been well characterized. In the nematode Caenorhabditis elegans there are two V(1) B-subunit genes; one of them, vha-12, is on the X chromosome, whereas spe-5 is on an autosome. vha-12 is broadly expressed in adults, and homozygotes for a weak allele in vha-12 are viable but are uncoordinated due to decreased neurotransmission. Analysis of a null mutation demonstrates that vha-12 is not required for oogenesis or spermatogenesis in the adult germ line, but it is required maternally for early embryonic development. Zygotic expression begins during embryonic morphogenesis, and homozygous null mutants arrest at the twofold stage. These mutant embryos exhibit a defect in the clearance of apoptotic cell corpses in vha-12 null mutants. These observations indicate that the V(1) sector, in addition to the V(o) sector, is required in exocytic and endocytic pathways.


Asunto(s)
Caenorhabditis elegans/metabolismo , Transmisión Sináptica/fisiología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Apoptosis/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Desarrollo Embrionario/genética , Epidermis/metabolismo , Expresión Génica , Genes Letales , Masculino , Morfogénesis/genética , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transmisión Sináptica/genética , ATPasas de Translocación de Protón Vacuolares/genética
2.
Proc Natl Acad Sci U S A ; 106(4): 1139-44, 2009 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-19151157

RESUMEN

Clathrin is a coat protein involved in vesicle budding from several membrane-bound compartments within the cell. Here we present an analysis of a temperature-sensitive (ts) mutant of clathrin heavy chain (CHC) in a multicellular animal. As expected Caenorhabditis elegans chc-1(b1025ts) mutant animals are defective in receptor-mediated endocytosis and arrest development soon after being shifted to the restrictive temperature. Steady-state clathrin levels in these mutants are reduced by more than 95% at all temperatures. Hub interactions and membrane associations are lost at the restrictive temperature. chc-1(b1025ts) animals become paralyzed within minutes of exposure to the restrictive temperature because of a defect in the nervous system. Surprisingly synaptic vesicle number is not reduced in chc-1(b1025ts) animals. Consistent with the normal number of vesicles, postsynaptic miniature currents occur at normal frequencies. Taken together, these results indicate that a high level of CHC activity is required for receptor-mediated endocytosis in nonneuronal cells but is largely dispensable for maintenance of synaptic vesicle pools.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Cadenas Pesadas de Clatrina/metabolismo , Endocitosis , Receptores de Superficie Celular/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cadenas Pesadas de Clatrina/genética , Mutación/genética , Unión Neuromuscular/citología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Transmisión Sináptica , Vesículas Sinápticas/ultraestructura
3.
Cell ; 132(1): 149-60, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-18191228

RESUMEN

Muscle contraction is normally mediated by the release of neurotransmitters from motor neurons. Here we demonstrate that protons can act as a direct transmitter from intestinal cells to stimulate muscle contraction. During the C. elegans defecation motor program the posterior body muscles contract even in the absence of neuronal inputs or vesicular neurotransmission. In this study, we demonstrate that the space between the intestine and the muscle is acidified just prior to muscle contraction and that the release of caged protons is sufficient to induce muscle contraction. PBO-4 is a putative Na+/H+ ion exchanger expressed on the basolateral membrane of the intestine, juxtaposed to the posterior body muscles. In pbo-4 mutants the extracellular space is not acidified and the muscles fail to contract. The pbo-5 and pbo-6 genes encode subunits of a "cys-loop" proton-gated cation channel required for muscles to respond to acidification. In heterologous expression assays the PBO receptor is half-maximally activated at a pH of 6.8. The identification of the mechanisms for release and reception of proton signals establishes a highly unusual mechanism for intercellular communication.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mucosa Intestinal/metabolismo , Contracción Muscular/fisiología , Protones , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Comunicación Celular/fisiología , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Defecación/fisiología , Intestinos/citología , Activación del Canal Iónico/fisiología , Canales Iónicos/química , Canales Iónicos/metabolismo , Músculos/metabolismo , Músculos/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transducción de Señal/fisiología , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/aislamiento & purificación
4.
Nature ; 420(6916): 669-73, 2002 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-12478294

RESUMEN

Mechanosensory transduction in touch receptor neurons is believed to be mediated by DEG/ENaC (degenerin/epithelial Na+ channel) proteins in nematodes and mammals. In the nematode Caenorhabditis elegans, gain-of-function mutations in the degenerin genes mec-4 and mec-10 (denoted mec-4(d) and mec-10(d), respectively) cause degeneration of the touch cells. This phenotype is completely suppressed by mutation in a third gene, mec-6 (refs 3, 4), that is needed for touch sensitivity. This last gene is also required for the function of other degenerins. Here we show that mec-6 encodes a single-pass membrane-spanning protein with limited similarity to paraoxonases, which are implicated in human coronary heart disease. This gene is expressed in muscle cells and in many neurons, including the six touch receptor neurons. MEC-6 increases amiloride-sensitive Na+ currents produced by MEC-4(d)/MEC-10(d) by approximately 30-fold, and functions synergistically with MEC-2 (a stomatin-like protein that regulates MEC-4(d)/MEC-10(d) channel activity) to increase the currents by 200-fold. MEC-6 physically interacts with all three channel proteins. In vivo, MEC-6 co-localizes with MEC-4, and is required for punctate MEC-4 expression along touch-neuron processes. We propose that MEC-6 is a part of the degenerin channel complex that may mediate mechanotransduction in touch cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mecanorreceptores/química , Canales de Sodio/química , Canales de Sodio/metabolismo , Tacto/fisiología , Animales , Arildialquilfosfatasa , Axones/química , Células CHO , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Clonación Molecular , Cricetinae , Conductividad Eléctrica , Genes de Helminto/genética , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Mecanorreceptores/citología , Mecanorreceptores/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína , Transporte de Proteínas , Sodio/metabolismo , Canales de Sodio/genética , Especificidad por Sustrato , Supresión Genética/genética , Xenopus laevis
5.
Annu Rev Genet ; 36: 411-53, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12429699

RESUMEN

The molecular mechanisms for the transduction of light and chemical signals in animals are fairly well understood. In contrast, the processes by which the senses of touch, balance, hearing, and proprioception are transduced are still largely unknown. Biochemical approaches to identify transduction components are difficult to use with mechanosensory systems, but genetic approaches are proving more successful. Genetic research in several organisms has demonstrated the importance of cytoskeletal, extracellular, and membrane components for sensory mechanotransduction. In particular, researchers have identified channel proteins in the DEG/ENaC and TRP families that are necessary for signaling in a variety of mechanosensory cells. Proof that these proteins are components of the transduction channel, however, is incomplete.


Asunto(s)
Mecanotransducción Celular/genética , Animales , Mecanotransducción Celular/fisiología
6.
Nature ; 415(6875): 1039-42, 2002 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-11875573

RESUMEN

Touch sensitivity in animals relies on nerve endings in the skin that convert mechanical force into electrical signals. In the nematode Caenorhabditis elegans, gentle touch to the body wall is sensed by six mechanosensory neurons that express two amiloride-sensitive Na+ channel proteins (DEG/ENaC). These proteins, MEC-4 and MEC-10, are required for touch sensation and can mutate to cause neuronal degeneration. Here we show that these mutant or 'd' forms of MEC-4 and MEC-10 produce a constitutively active, amiloride-sensitive ionic current when co-expressed in Xenopus oocytes, but not on their own. MEC-2, a stomatin-related protein needed for touch sensitivity, increased the activity of mutant channels about 40-fold and allowed currents to be detected with wild-type MEC-4 and MEC-10. Whereas neither the central, stomatin-like domain of MEC-2 nor human stomatin retained the activity of full-length MEC-2, both produced amiloride-sensitive currents with MEC-4d. Our findings indicate that MEC-2 regulates MEC-4/MEC-10 ion channels and raise the possibility that similar ion channels may be formed by stomatin-like proteins and DEG/ENaC proteins that are co-expressed in both vertebrates and invertebrates. Some of these channels may mediate mechanosensory responses.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas del Helminto/fisiología , Canales Iónicos/fisiología , Mecanorreceptores/fisiología , Proteínas de la Membrana/fisiología , Canales de Sodio/fisiología , Tacto/fisiología , Amilorida/farmacología , Animales , Proteínas Sanguíneas/química , Caenorhabditis elegans , Electrofisiología , Canales Epiteliales de Sodio , Escherichia coli , Genes de Helminto , Proteínas del Helminto/genética , Humanos , Canales Iónicos/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Oocitos , Estructura Terciaria de Proteína , Proteínas Recombinantes , Sodio/metabolismo , Canales de Sodio/genética , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...