Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Phys ; 6(1): 82, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124119

RESUMEN

The Extremely Brilliant Source (EBS) is the experimental implementation of the novel Hybrid Multi Bend Achromat (HMBA) storage ring magnetic lattice concept, which has been realised at European Synchrotron Radiation Facility. We present its successful commissioning and first operation. We highlight the strengths of the HMBA design and compare them to the previous designs, on which most operational synchrotron X-ray sources are based. We report on the EBS storage ring's significantly improved horizontal electron beam emittance and other key beam parameters. EBS extends the reach of synchrotron X-ray science confirming the HMBA concept for future facility upgrades and new constructions.

2.
PLoS Pathog ; 8(11): e1003052, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209420

RESUMEN

Bacterial biofilm is considered as a particular lifestyle helping cells to survive hostile environments triggered by a variety of signals sensed and integrated through adequate regulatory pathways. Pseudomonas aeruginosa, a Gram-negative bacterium causing severe infections in humans, forms biofilms and is a fantastic example for fine-tuning of the transition between planktonic and community lifestyles through two-component systems (TCS). Here we decipher the regulon of the P. aeruginosa response regulator PprB of the TCS PprAB. We identified genes under the control of this TCS and once this pathway is activated, analyzed and dissected at the molecular level the PprB-dependent phenotypes in various models. The TCS PprAB triggers a hyper-biofilm phenotype with a unique adhesive signature made of BapA adhesin, a Type 1 secretion system (T1SS) substrate, CupE CU fimbriae, Flp Type IVb pili and eDNA without EPS involvement. This unique signature is associated with drug hyper-susceptibility, decreased virulence in acutely infected flies and cytotoxicity toward various cell types linked to decreased Type III secretion (T3SS). Moreover, once the PprB pathway is activated, decreased virulence in orally infected flies associated with enhanced biofilm formation and dissemination defect from the intestinal lumen toward the hemolymph compartment is reported. PprB may thus represent a key bacterial adaptation checkpoint of multicellular and aggregative behavior triggering the production of a unique matrix associated with peculiar antibiotic susceptibility and attenuated virulence, a particular interesting breach for therapeutic intervention to consider in view of possible eradication of P. aeruginosa biofilm-associated infections.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/fisiología , Adhesinas Bacterianas/genética , Animales , Línea Celular , Drosophila melanogaster , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo
3.
ACS Nano ; 5(5): 3788-94, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21504177

RESUMEN

Protein-coated gold nanoparticles in suspension are excited by intense laser pulses to mimic the light-induced effect on biomolecules that occur in photothermal laser therapy with nanoparticles as photosensitizer. Ultrafast X-ray scattering employed to access the nanoscale structural modifications of the protein-nanoparticle hybrid reveals that the protein shell is expelled as a whole without denaturation at a laser fluence that coincides with the bubble formation threshold. In this ultrafast heating mediated by the nanoparticles, time-resolved scattering data show that proteins are not denatured in terms of secondary structure even at much higher temperatures than the static thermal denaturation temperature, probably because time is too short for the proteins to unfold and the temperature stimulus has vanished before this motion sets in. Consequently the laser pulse length has a strong influence on whether the end result is the ligand detachment (for example drug delivery) or biomaterial degradation.


Asunto(s)
Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Proteínas/química , Proteínas/efectos de la radiación , Luz , Ensayo de Materiales , Nanoestructuras/ultraestructura , Unión Proteica/efectos de la radiación , Conformación Proteica/efectos de la radiación
4.
Structure ; 17(9): 1265-75, 2009 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-19748347

RESUMEN

Bacteriorhodopsin and proteorhodopsin are simple heptahelical proton pumps containing a retinal chromophore covalently bound to helix G via a protonated Schiff base. Following the absorption of a photon, all-trans retinal is isomerized to a 13-cis conformation, initiating a sequence of conformational changes driving vectorial proton transport. In this study we apply time-resolved wide-angle X-ray scattering to visualize in real time the helical motions associated with proton pumping by bacteriorhodopsin and proteorhodopsin. Our results establish that three conformational states are required to describe their photocycles. Significant motions of the cytoplasmic half of helix F and the extracellular half of helix C are observed prior to the primary proton transfer event, which increase in amplitude following proton transfer. These results both simplify the structural description to emerge from intermediate trapping studies of bacteriorhodopsin and reveal shared dynamical principles for proton pumping.


Asunto(s)
Bacteriorodopsinas/química , Luz , Rodopsina/química , Conformación Proteica , Rodopsinas Microbianas , Dispersión de Radiación
5.
Rev Sci Instrum ; 80(1): 015101, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19191457

RESUMEN

A chopper system for time resolved pump-probe experiments with x-ray beams from a synchrotron is described. The system has three parts: a water-cooled heatload chopper, a high-speed chopper, and a millisecond shutter. The chopper system, which is installed in beamline ID09B at the European Synchrotron Radiation Facility, provides short x-ray pulses for pump-probe experiments with ultrafast lasers. The chopper system can produce x-ray pulses as short as 200 ns in a continuous beam and repeat at frequencies from 0 to 3 kHz. For bunch filling patterns of the synchrotron with pulse separations greater than 100 ns, the high-speed chopper can isolate single 100 ps x-ray pulses that are used for the highest time resolution. A new rotor in the high-speed chopper is presented with a single pulse (100 ps) and long pulse (10 micros) option. In white beam experiments, the heatload of the (noncooled) high-speed chopper is lowered by a heatload chopper, which absorbs 95% of the incoming power without affecting the pulses selected by the high speed chopper.


Asunto(s)
Rayos Láser , Sincrotrones/instrumentación , Rayos X
6.
Nat Methods ; 5(10): 881-6, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18806790

RESUMEN

We demonstrate tracking of protein structural changes with time-resolved wide-angle X-ray scattering (TR-WAXS) with nanosecond time resolution. We investigated the tertiary and quaternary conformational changes of human hemoglobin under nearly physiological conditions triggered by laser-induced ligand photolysis. We also report data on optically induced tertiary relaxations of myoglobin and refolding of cytochrome c to illustrate the wide applicability of the technique. By providing insights into the structural dynamics of proteins functioning in their natural environment, TR-WAXS complements and extends results obtained with time-resolved optical spectroscopy and X-ray crystallography.


Asunto(s)
Citocromos c/química , Hemoglobinas/química , Mioglobina/química , Cristalografía por Rayos X , Conformación Proteica , Dispersión de Radiación , Sensibilidad y Especificidad , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...