Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genet Med ; 26(5): 101076, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38258669

RESUMEN

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Asunto(s)
Secuenciación del Exoma , Exoma , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Masculino , Femenino , Exoma/genética , Secuenciación del Exoma/economía , Estudios de Cohortes , Pruebas Genéticas/economía , Pruebas Genéticas/métodos , Secuenciación Completa del Genoma/economía , Niño , Genoma Humano/genética , Variaciones en el Número de Copia de ADN/genética , Polimorfismo de Nucleótido Simple/genética , Preescolar
2.
Eur J Hum Genet ; 30(10): 1121-1131, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970915

RESUMEN

Whole genome sequencing (WGS) improves Mendelian disorder diagnosis over whole exome sequencing (WES); however, additional diagnostic yields and costs remain undefined. We investigated differences between diagnostic and cost outcomes of WGS and WES in a cohort with suspected Mendelian disorders. WGS was performed in 38 WES-negative families derived from a 64 family Mendelian cohort that previously underwent WES. For new WGS diagnoses, contemporary WES reanalysis determined whether variants were diagnosable by original WES or unique to WGS. Diagnostic rates were estimated for WES and WGS to simulate outcomes if both had been applied to the 64 families. Diagnostic costs were calculated for various genomic testing scenarios. WGS diagnosed 34% (13/38) of WES-negative families. However, contemporary WES reanalysis on average 2 years later would have diagnosed 18% (7/38 families) resulting in a WGS-specific diagnostic yield of 19% (6/31 remaining families). In WES-negative families, the incremental cost per additional diagnosis using WGS following WES reanalysis was AU$36,710 (£19,407;US$23,727) and WGS alone was AU$41,916 (£22,159;US$27,093) compared to WES-reanalysis. When we simulated the use of WGS alone as an initial genomic test, the incremental cost for each additional diagnosis was AU$29,708 (£15,705;US$19,201) whereas contemporary WES followed by WGS was AU$36,710 (£19,407;US$23,727) compared to contemporary WES. Our findings confirm that WGS is the optimal genomic test choice for maximal diagnosis in Mendelian disorders. However, accepting a small reduction in diagnostic yield, WES with subsequent reanalysis confers the lowest costs. Whether WES or WGS is utilised will depend on clinical scenario and local resourcing and availability.


Asunto(s)
Exoma , Secuencia de Bases , Mapeo Cromosómico , Humanos , Secuenciación del Exoma , Secuenciación Completa del Genoma
3.
Genet Med ; 24(1): 130-145, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906502

RESUMEN

PURPOSE: Genetic variants causing aberrant premessenger RNA splicing are increasingly being recognized as causal variants in genetic disorders. In this study, we devise standardized practices for polymerase chain reaction (PCR)-based RNA diagnostics using clinically accessible specimens (blood, fibroblasts, urothelia, biopsy). METHODS: A total of 74 families with diverse monogenic conditions (31% prenatal-congenital onset, 47% early childhood, and 22% teenage-adult onset) were triaged into PCR-based RNA testing, with comparative RNA sequencing for 19 cases. RESULTS: Informative RNA assay data were obtained for 96% of cases, enabling variant reclassification for 75% variants that can be used for genetic counseling (71%), to inform clinical care (32%) and prenatal counseling (41%). Variant-associated mis-splicing was highly reproducible for 28 cases with samples from ≥2 affected individuals or heterozygotes and 10 cases with ≥2 biospecimens. PCR amplicons encompassing another segregated heterozygous variant was vital for clinical interpretation of 22 of 79 variants to phase RNA splicing events and discern complete from partial mis-splicing. CONCLUSION: RNA diagnostics enabled provision of a genetic diagnosis for 64% of recruited cases. PCR-based RNA diagnostics has capacity to analyze 81.3% of clinically significant genes, with long amplicons providing an advantage over RNA sequencing to phase RNA splicing events. The Australasian Consortium for RNA Diagnostics (SpliceACORD) provide clinically-endorsed, standardized protocols and recommendations for interpreting RNA assay data.


Asunto(s)
Empalme del ARN , ARN , Adolescente , Adulto , Preescolar , Humanos , Mutación , ARN/genética , Empalme del ARN/genética , Análisis de Secuencia de ARN , Secuenciación del Exoma
4.
Hum Mutat ; 42(7): 835-847, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33847015

RESUMEN

The pioneering discovery research of X-linked intellectual disability (XLID) genes has benefitted thousands of individuals worldwide; however, approximately 30% of XLID families still remain unresolved. We postulated that noncoding variants that affect gene regulation or splicing may account for the lack of a genetic diagnosis in some cases. Detecting pathogenic, gene-regulatory variants with the same sensitivity and specificity as structural and coding variants is a major challenge for Mendelian disorders. Here, we describe three pedigrees with suggestive XLID where distinctive phenotypes associated with known genes guided the identification of three different noncoding variants. We used comprehensive structural, single-nucleotide, and repeat expansion analyses of genome sequencing. RNA-Seq from patient-derived cell lines, reverse-transcription polymerase chain reactions, Western blots, and reporter gene assays were used to confirm the functional effect of three fundamentally different classes of pathogenic noncoding variants: a retrotransposon insertion, a novel intronic splice donor, and a canonical splice variant of an untranslated exon. In one family, we excluded a rare coding variant in ARX, a known XLID gene, in favor of a regulatory noncoding variant in OFD1 that correlated with the clinical phenotype. Our results underscore the value of genomic research on unresolved XLID families to aid novel, pathogenic noncoding variant discovery.


Asunto(s)
Discapacidad Intelectual , Expresión Génica , Genes Ligados a X , Genómica , Humanos , Discapacidad Intelectual/diagnóstico , Linaje
5.
Hum Mutat ; 41(2): 403-411, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31660661

RESUMEN

We present eight families with arthrogryposis multiplex congenita and myopathy bearing a TTN intron 213 extended splice-site variant (NM_001267550.1:c.39974-11T>G), inherited in trans with a second pathogenic TTN variant. Muscle-derived RNA studies of three individuals confirmed mis-splicing induced by the c.39974-11T>G variant; in-frame exon 214 skipping or use of a cryptic 3' splice-site effecting a frameshift. Confounding interpretation of pathogenicity is the absence of exons 213-217 within the described skeletal muscle TTN N2A isoform. However, RNA-sequencing from 365 adult human gastrocnemius samples revealed that 56% specimens predominantly include exons 213-217 in TTN transcripts (inclusion rate ≥66%). Further, RNA-sequencing of five fetal muscle samples confirmed that 4/5 specimens predominantly include exons 213-217 (fifth sample inclusion rate 57%). Contractures improved significantly with age for four individuals, which may be linked to decreased expression of pathogenic fetal transcripts. Our study extends emerging evidence supporting a vital developmental role for TTN isoforms containing metatranscript-only exons.


Asunto(s)
Empalme Alternativo , Artrogriposis/diagnóstico , Artrogriposis/genética , Conectina/genética , Genes Recesivos , Predisposición Genética a la Enfermedad , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Mutación , Linaje , Fenotipo , Radiografía
6.
Genet Med ; 20(12): 1564-1574, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29595814

RESUMEN

PURPOSE: Whole-exome sequencing (WES) has revolutionized Mendelian diagnostics, however, there is no consensus on the timing of data review in undiagnosed individuals and only preliminary data on the cost-effectiveness of this technology. We aimed to assess the utility of WES data reanalysis for diagnosis in Mendelian disorders and to analyze the cost-effectiveness of this technology compared with a traditional diagnostic pathway. METHODS: WES was applied to a cohort of 54 patients from 37 families with a variety of Mendelian disorders to identify the genetic etiology. Reanalysis was performed after 12 months with an improved WES diagnostic pipeline. A comparison was made between costs of a modeled WES pathway and a traditional diagnostic pathway in a cohort with intellectual disability (ID). RESULTS: Reanalysis of WES data at 12 months improved diagnostic success from 30 to 41% due to interim publication of disease genes, expanded phenotype data from referrer, and an improved bioinformatics pipeline. Cost analysis on the ID cohort showed average cost savings of US$586 (AU$782) for each additional diagnosis. CONCLUSION: Early application of WES in Mendelian disorders is cost-effective and reanalysis of an undiagnosed individual at a 12-month time point increases total diagnoses by 11%.


Asunto(s)
Secuenciación del Exoma/tendencias , Exoma/genética , Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas/tendencias , Discapacidad Intelectual/genética , Biología Computacional , Análisis Costo-Beneficio/economía , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/economía , Pruebas Genéticas/economía , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Masculino , Fenotipo , Secuenciación del Exoma/economía
7.
Eur J Hum Genet ; 25(6): 763-767, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28295038

RESUMEN

We report a family with four girls with moderate to severe intellectual disability and epilepsy. Two girls showed regression in adolescence and died of presumed sudden unexpected death in epilepsy at 16 and 22 years. Whole exome sequencing identified a truncating pathogenic variant in IQSEC2 at NM_001111125.2: c.2679_2680insA, p.(D894fs*10), a recently identified cause of epileptic encephalopathy in females (MIM 300522). The IQSEC2 variant was identified in both surviving affected sisters but in neither parent. We describe the phenotypic spectrum associated with IQSEC2 variants, highlighting how IQSEC2 is adding to a growing list of X-linked genes that have a female-specific phenotype typically associated with de novo mutations. This report illustrates the need for careful review of all whole exome data, incorporating all possible modes of inheritance including that suggested by the family history.


Asunto(s)
Epilepsia/genética , Mutación de Línea Germinal , Factores de Intercambio de Guanina Nucleótido/genética , Discapacidad Intelectual/genética , Mosaicismo , Niño , Preescolar , Epilepsia/diagnóstico , Exoma , Femenino , Humanos , Discapacidad Intelectual/diagnóstico , Linaje , Síndrome
8.
J Paediatr Child Health ; 51(9): 927-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26333075

RESUMEN

A case of severe early-onset Marfan syndrome (MFS) led us to ask the question: 'Should an ARB, particularly losartan [intervention], compared with beta blockade alone [comparison], be commenced in all paediatric MFS patients [patient] with aortic root dilatation [outcome]?' The current literature was critically appraised to address this question.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Cardiopatías Congénitas/tratamiento farmacológico , Losartán/uso terapéutico , Síndrome de Marfan/tratamiento farmacológico , Aorta/anomalías , Dilatación Patológica , Femenino , Humanos , Recién Nacido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA