Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Sci Rep ; 14(1): 6651, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509264

RESUMEN

Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative L-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR-mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.


Asunto(s)
Esclerosis Múltiple , Triptófano , Humanos , Quinurenina/metabolismo , Ligandos , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Triptófano Hidroxilasa/metabolismo
2.
Vet Res Commun ; 48(1): 357-366, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37707657

RESUMEN

Canine seminal plasma is a complex fluid containing proteins, peptides, enzymes, hormones as well as extracellular vesicles that are involved in many physiological and pathological processes including reproduction. We examined the expression of the extracellular vesicles surface antigens Aminopeptidase-N (CD13) and Dipeptidyl peptidase IV (CD26) by flow cytometry. For this study, third fraction of the ejaculate, from fertile adult male German Shepherd dogs, was manually collected twice, two days apart. FACS analyses revealed that CD13 and CD26 are co-expressed on the 69.3 ± 3.7% of extracellular vesicles and only a 2.0 ± 0.5% of extracellular vesicles express CD26 alone. On the other hand, 28.6 ± 3.6% of seminal EVs express CD13 alone. Our results agree with the hypothesis that CD26 needs to be co-expressed with other signal-transducing molecules, while CD13, can perform functions independently of the presence or co-expression of CD26. The results obtained in normal fertile dogs could represent physiological expression of these enzymes. Therefore, it would be interesting to carry out further studies to evaluate the expression of CD13 and CD26 on extracellular vesicles as biomarker for prostate pathological condition in dogs.


Asunto(s)
Dipeptidil Peptidasa 4 , Semen , Perros , Masculino , Animales , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Citometría de Flujo/veterinaria
3.
Methods Mol Biol ; 2700: 163-176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37603180

RESUMEN

Toll-like receptors (TLRs) are pivotal players in mediating immune responses. TLR4 is the main receptor for LPS, a strong activator of immune cells. LPS/TLR4-dependent pathway, by inducing NF-κB activation, is responsible for the release of several mediators, including IL-1ß, one of the most powerful cytokines deeply involved in inflammatory and immune responses. The same pathway is also involved in NLRP3-inflammasome activation, essential for IL-1ß maturation. NLRP3 is a major component of innate immune responses, being a crucial player of host immune defense against virus, bacterial, or fungal infections. NLRP3-inflammasome and IL-1ß hyperactivation have been associated to the pathogenesis of a wide range of disorders and represent therapeutic targets for the development of new treatments of inflammasome-driven inflammatory and autoimmune diseases.Here, we describe an in vitro protocol to induce LPS/TLR4-dependent NLRP3-inflammasome/IL-1ß activation in immune cells, in order to provide a useful assay to study the efficacy of different anti-inflammatory/immune-modulatory agents.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Receptor Toll-Like 4 , Lipopolisacáridos/farmacología , Inmunidad Innata , Radiofármacos
4.
Elife ; 122023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37387273

RESUMEN

Src is a protein tyrosine kinase commonly activated downstream of transmembrane receptors and plays key roles in cell growth, migration, and survival signaling pathways. In conventional dendritic cells (cDCs), Src is involved in the activation of the non-enzymatic functions of indoleamine 2,3-dioxygenase 1 (IDO1), an immunoregulatory molecule endowed with both catalytic activity and signal transducing properties. Prompted by the discovery that the metabolite spermidine confers a tolerogenic phenotype on cDCs that is dependent on both the expression of IDO1 and the activity of Src kinase, we here investigated the spermidine mode of action. We found that spermidine directly binds Src in a previously unknown allosteric site located on the backside of the SH2 domain and thus acts as a positive allosteric modulator of the enzyme. Besides confirming that Src phosphorylates IDO1, here we showed that spermidine promotes the protein-protein interaction of Src with IDO1. Overall, this study may pave the way toward the design of allosteric modulators able to switch on/off the Src-mediated pathways, including those involving the immunoregulatory protein IDO1.


Asunto(s)
Espermidina , Familia-src Quinasas , Familia-src Quinasas/metabolismo , Espermidina/farmacología , Poliaminas , Fosforilación , Transducción de Señal , Dominios Homologos src
5.
Front Immunol ; 14: 964660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081894

RESUMEN

Background: Chronic systemic inflammation reduces the bioavailability of circulating endothelial progenitor cells (EPCs). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme of immune tolerance catalyzing the initial step of tryptophan degradation along the so-called l-kynurenine (l-kyn) pathway, that is induced by inflammatory stimuli and exerts anti-inflammatory effects. A specific relationship between IDO1 activity and circulating EPC numbers has not yet been investigated. Methods: In this study, circulating EPCs were examined in mice treated with low doses of lipopolysaccharide (LPS) to mimic low-grade inflammation. Moreover, the association between IDO1 activity and circulating EPCs was studied in a cohort of 277 patients with variable systemic low-grade inflammation. Results: Repeated low doses of LPS caused a decrease in circulating EPCs and l-kyn supplementation, mimicking IDO1 activation, significantly increased EPC numbers under homeostatic conditions preventing EPC decline in low-grade endotoxemia. Accordingly, in patients with variable systemic low-grade inflammation, there was a significant interaction between IDO1 activity and high-sensitivity C-reactive protein (hs-CRP) in predicting circulating EPCs, with high hs-CRP associated with significantly lower EPCs at low IDO1 activity but not at high IDO1 activity. Interpretation: Overall, these findings demonstrate that systemic low-grade inflammation reduces circulating EPCs. However, high IDO1 activity and l-kyn supplementation limit circulating EPC loss in low-grade inflammation.


Asunto(s)
Células Progenitoras Endoteliales , Triptófano , Animales , Ratones , Triptófano/metabolismo , Células Progenitoras Endoteliales/metabolismo , Proteína C-Reactiva , Lipopolisacáridos , Inflamación , Quinurenina/metabolismo
6.
PNAS Nexus ; 2(3): pgad036, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36896128

RESUMEN

The environmental light/dark cycle has left its mark on the body's physiological functions to condition not only our inner biology, but also the interaction with external cues. In this scenario, the circadian regulation of the immune response has emerged as a critical factor in defining the host-pathogen interaction and the identification of the underlying circuitry represents a prerequisite for the development of circadian-based therapeutic strategies. The possibility to track down the circadian regulation of the immune response to a metabolic pathway would represent a unique opportunity in this direction. Herein, we show that the metabolism of the essential amino acid tryptophan, involved in the regulation of fundamental processes in mammals, is regulated in a circadian manner in both murine and human cells and in mouse tissues. By resorting to a murine model of pulmonary infection with the opportunistic fungus Aspergillus fumigatus, we showed that the circadian oscillation in the lung of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO)1, generating the immunoregulatory kynurenine, resulted in diurnal changes in the immune response and the outcome of fungal infection. In addition, the circadian regulation of IDO1 drives such diurnal changes in a pre-clinical model of cystic fibrosis (CF), an autosomal recessive disease characterized by progressive lung function decline and recurrent infections, thus acquiring considerable clinical relevance. Our results demonstrate that the circadian rhythm at the intersection between metabolism and immune response underlies the diurnal changes in host-fungal interaction, thus paving the way for a circadian-based antimicrobial therapy.

7.
Cells ; 12(4)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36831194

RESUMEN

Extracellular vesicles (EVs) are membrane-enclosed particles secreted by cells and circulating in body fluids. Initially considered as a tool to dispose of unnecessary material, they are now considered an additional method to transmit cell signals. Aging is characterized by a progressive impairment of the physiological functions of tissues and organs. The causes of aging are complex and interconnected, but there is consensus that genomic instability, telomere erosion, epigenetic alteration, and defective proteostasis are primary hallmarks of the aging process. Recent studies have provided evidence that many of these primary stresses are associated with an increased release of EVs in cell models, able to spread senescence signals in the recipient cell. Additional investigations on the role of EVs during aging also demonstrated the great potential of EVs for the modulation of age-related phenotypes and for pro-rejuvenation therapies, potentially beneficial for many diseases associated with aging. Here we reviewed the current literature on EV secretion in senescent cell models and in old vs. young individual body fluids, as well as recent studies addressing the potential of EVs from different sources as an anti-aging tool. Although this is a recent field, the robust consensus on the altered EV release in aging suggests that altered EV secretion could be considered an emerging hallmark of aging.


Asunto(s)
Senescencia Celular , Vesículas Extracelulares , Senescencia Celular/genética , Vesículas Extracelulares/metabolismo , Fenotipo , Transporte Biológico
8.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768851

RESUMEN

In pregnancy, human amniotic fluid extracellular vesicles (HAF-EVs) exert anti-inflammatory effects on T cells and on monocytes, supporting their immunoregulatory roles. The specific mechanisms are still not completely defined. The aim of this study was to investigate the ability of HAF-EVs, isolated from pregnant women who underwent amniocentesis and purified by gradient ultracentrifugation, to affect inflammasome activation in the human monocytes. Proteomic studies revealed that HAF-EV samples expressed several immunoregulatory molecules as well as small amounts of endotoxin. Surprisingly, metagenomic analysis shows the presence of specific bacterial strain variants associated with HAF-EVs as potential sources of the endotoxin. Remarkably, we showed that a single treatment of THP-1 cells with HAF-EVs triggered inflammasome activation, whereas the same treatment followed by LPS and ATP sensitization prevented inflammasome activation, a pathway resembling monocyte refractories. A bioinformatics analysis of microbiota-HAF-EVs functional pathways confirmed the presence of enzymes for endotoxin biosynthesis as well as others associated with immunoregulatory functions. Overall, these data suggest that HAF-EVs could serve as a source of the isolation of a specific microbiota during early pregnancy. Moreover, HAF-EVs could act as a novel system to balance immune training and tolerance by modulating the inflammasome in monocytes or other cells.


Asunto(s)
Vesículas Extracelulares , Microbiota , Humanos , Femenino , Embarazo , Monocitos/metabolismo , Inflamasomas/metabolismo , Líquido Amniótico , Proteómica , Vesículas Extracelulares/metabolismo , Endotoxinas/metabolismo
10.
Br J Haematol ; 201(1): 45-57, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36484163

RESUMEN

In chronic lymphocytic leukaemia (CLL) the efficacy of SARS-CoV-2 vaccination remains unclear as most studies have focused on humoral responses. Here we comprehensively examined humoral and cellular responses to vaccine in CLL patients. Seroconversion was observed in 55.2% of CLL with lower rate and antibody titres in treated patients. T-cell responses were detected in a significant fraction of patients. CD4+ and CD8+ frequencies were significantly increased independent of serology with higher levels of CD4+ cells in patients under a Bruton tyrosine kinase (BTK) or a B-cell lymphoma 2 (BCL-2) inhibitor. Vaccination skewed CD8+ cells towards a highly cytotoxic phenotype, more pronounced in seroconverted patients. A high proportion of patients showed spike-specific CD4+ and CD8+ cells producing interferon gamma (IFNγ) and tumour necrosis factor alpha (TNFα). Patients under a BTK inhibitor showed increased production of IFNγ and TNFα by CD4+ cells. Vaccination induced a Th1 polarization reverting the Th2 CLL T-cell profile in the majority of patients with lower IL-4 production in untreated and BTK-inhibitor-treated patients. Such robust T-cell responses may have contributed to remarkable protection against hospitalization and death in a cohort of 540 patients. Combining T-cell metrics with seroprevalence may yield a more accurate measure of population immunity in CLL, providing consequential insights for public health.


Asunto(s)
Antineoplásicos , COVID-19 , Leucemia Linfocítica Crónica de Células B , Vacunas , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Vacunas contra la COVID-19/uso terapéutico , Factor de Necrosis Tumoral alfa , SARS-CoV-2 , Estudios Seroepidemiológicos , COVID-19/prevención & control , Antineoplásicos/uso terapéutico , Interferón gamma
11.
Immunity ; 55(6): 1032-1050.e14, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35704993

RESUMEN

Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Quinurenina , Animales , Células Dendríticas , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Ratones , Transducción de Señal , Triptófano/metabolismo
12.
EMBO Mol Med ; 14(6): e15199, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491676

RESUMEN

Liver gene therapy with adeno-associated viral (AAV) vectors is under clinical investigation for haemophilia A (HemA), the most common inherited X-linked bleeding disorder. Major limitations are the large size of the F8 transgene, which makes packaging in a single AAV vector a challenge, as well as the development of circulating anti-F8 antibodies which neutralise F8 activity. Taking advantage of split-intein-mediated protein trans-splicing, we divided the coding sequence of the large and highly secreted F8-N6 variant in two separate AAV-intein vectors whose co-administration to HemA mice results in the expression of therapeutic levels of F8 over time. This occurred without eliciting circulating anti-F8 antibodies unlike animals treated with the single oversized AAV-F8 vector under clinical development. Therefore, liver gene therapy with AAV-F8-N6 intein should be considered as a potential therapeutic strategy for HemA.


Asunto(s)
Hemofilia A , Inteínas , Animales , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos , Hemofilia A/genética , Hemofilia A/terapia , Inteínas/genética , Hígado , Ratones , Trans-Empalme
13.
FASEB J ; 36(4): e22218, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218567

RESUMEN

An immunoregulatory role of stem cells, often mediated by their secretome, has been claimed by several studies. Stem cell-derived extracellular vesicles (EVs) are crucial components of the secretome. EVs, a heterogeneous group of membranous vesicles released by many cell types into the extracellular space, are now considered as an additional mechanism for intercellular communication. In this study, we aimed at investigating whether human amniotic stem cell-derived extracellular vesicles (HASC-EVs) were able to interfere with inflammasome activation in the THP-1 cell line. Two subsets of HASC-EVs were collected by sequential centrifugation, namely HASC-P10 and HASC-P100. We demonstrated that HASC-EVs were neither internalized into nor undertake a direct interaction with THP-1 cells. We showed that HASC-P10 and P100 were able to intrinsically produce ATP, which was further converted to adenosine by 5'-nucleotidase (CD73) and ectonucleoside triphosphate diphosphohydrolase-1 (CD39). We found that THP-1 cells conditioned with both types of HASC-EVs failed to activate the NLRP3/caspase-1/inflammasome platform in response to LPS and ATP treatment by a mechanism involving A2a adenosine receptor activation. These results support a role for HASC-EVs as independent metabolic units capable of modifying the cellular functions, leading to anti-inflammatory effects in monocytic cells.


Asunto(s)
Líquido Amniótico/citología , Antiinflamatorios/farmacología , Vesículas Extracelulares/metabolismo , Inflamasomas/antagonistas & inhibidores , Inflamación/prevención & control , Monocitos/citología , Células Madre/citología , Adenosina/metabolismo , Líquido Amniótico/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Monocitos/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacología , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Células Madre/metabolismo , Células THP-1
14.
J Pharm Pharmacol ; 74(12): 1776-1783, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33749789

RESUMEN

OBJECTIVES: Natural products are valuable sources of nutraceuticals for the prevention or treatment of ischemic stroke, a major cause of death and severe disability worldwide. Among the mechanisms implicated in cerebral ischemia-reperfusion damage, oxidative stress exerts a pivotal role in disease progression. Given the high antioxidant potential of most components of sunflower oil, we have explored its effects on ischemic brain injury produced in the mouse by transient occlusion of the middle cerebral artery (MCAo). KEY FINDINGS: Intraperitoneal (i.p.) administration of sunflower oil at doses of 3 ml/kg (48 h, 24 h and 1 h before MCAo) significantly reduced brain infarct volume and oedema assessed 24 h after the insult. This neuroprotective treatment schedule also prevented the elevation of brain lipid peroxidation produced by MCAo-reperfusion injury. By contrast, doses of 0.03 ml/kg of sunflower oil resulted ineffective on both cerebral damage and lipid peroxidation. Although sunflower oil did not affect serum levels of Diacron-reactive oxygen metabolites (d-ROMs), both 0.03 and 3 ml/kg dosing regimens resulted in the preservation of serum biological antioxidant potential (BAP) that was otherwise dramatically reduced 24 h after MCAo. CONCLUSIONS: Sunflower oil represents a promising source of neuroprotective extracts/compounds that can be exploited for the prevention and/or treatment of cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Ataque Isquémico Transitorio , Fármacos Neuroprotectores , Animales , Ratones , Neuroprotección , Aceite de Girasol/metabolismo , Aceite de Girasol/farmacología , Aceite de Girasol/uso terapéutico , Antioxidantes/metabolismo , Ataque Isquémico Transitorio/tratamiento farmacológico , Ataque Isquémico Transitorio/prevención & control , Ataque Isquémico Transitorio/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Isquemia Encefálica/metabolismo , Modelos Animales de Enfermedad , Encéfalo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo
15.
J Clin Invest ; 132(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34847078

RESUMEN

Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here, we define a molecular pathway through which recombinant IL-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1). Anakinra promoted H2O2-driven autophagy through a xenobiotic sensing pathway involving the aryl hydrocarbon receptor that, activated through the indoleamine 2,3-dioxygenase 1-kynurenine pathway, transcriptionally activated NADPH oxidase 4 independent of the IL-1R1. By coupling the mitochondrial redox balance to autophagy, anakinra improved the dysregulated proteostasis network in murine and human cystic fibrosis. We anticipate that anakinra may represent a therapeutic option in addition to its IL-1R1-dependent antiinflammatory properties by acting at the intersection of mitochondrial oxidative stress and autophagy with the capacity to restore conditions in which defective proteostasis leads to human disease.


Asunto(s)
Autofagia/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteostasis/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción/efectos de los fármacos
17.
NEJM Evid ; 1(7): EVIDoa2200052, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38319253

RESUMEN

Gene Therapy for Mucopolysaccharidosis Type VIIn this open-label gene therapy study, infusions for MPS type VI occurred without severe adverse events. In the high-dose cohort, serum active arylsulfatase B reached 30% to 100% of normal. A modest urinary GAG increase did not require reintroduction of enzyme replacement therapy. Clinical deterioration was not noted for up to 2 years after therapy.

18.
Nutrition ; 91-92: 111408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34388589

RESUMEN

OBJECTIVES: Although hypovitaminosis D appears to be highly prevalent in patients with coronavirus disease 2019 (COVID-19), its impact on their prognosis remains unclear. METHODS: In this study, serum 25-hydroxyvitamin D (Vit-D) level was measured in 200 patients hospitalized with COVID-19. The association between Vit-D and the composite endpoint of intensive care unit (ICU) admission/in-hospital death was explored using univariable and multivariable analyses. Also, serum Vit-D level in patients with COVID-19 was compared with that in age- and sex-balanced COVID-19-negative controls (i.e., 50 inpatients with sepsis). RESULTS: Serum Vit-D level was comparable between patients with COVID-19 and COVID-19-negative inpatients with sepsis (P = 0.397). No significant differences were found in serum Vit-D level according to COVID-19 severity at the time of hospital admission (P = 0.299). Incidence rates of the composite endpoint of ICU admission/in-hospital death did not differ significantly between patients with either Vit-D deficiency (i.e., Vit-D <20 ng/mL) or severe Vit-D deficiency (i.e., Vit-D <12 ng/mL) and those without (31% vs 35% with P = 0.649, and 34% vs 30% with P = 0.593, respectively). Vit-D level and status (i.e., Vit-D deficiency and severe Vit-D deficiency) were not prospectively associated with the risk of the composite endpoint of ICU admission/in-hospital death (P > 0.05 for all Cox regression models). CONCLUSIONS: Regardless of the potential usefulness of Vit-D measurement to guide appropriate supplementation, Vit-D does not appear to provide helpful information for the stratification of in-hospital prognosis in patients with COVID-19.


Asunto(s)
COVID-19 , Deficiencia de Vitamina D , Mortalidad Hospitalaria , Humanos , Prevalencia , Pronóstico , SARS-CoV-2 , Vitamina D , Deficiencia de Vitamina D/epidemiología
19.
Nat Commun ; 12(1): 4447, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290243

RESUMEN

Tryptophan catabolism is a major metabolic pathway utilized by several professional and non-professional antigen presenting cells to maintain immunological tolerance. Here we report that 3-hydroxy-L-kynurenamine (3-HKA) is a biogenic amine produced via an alternative pathway of tryptophan metabolism. In vitro, 3-HKA has an anti-inflammatory profile by inhibiting the IFN-γ mediated STAT1/NF-κΒ pathway in both mouse and human dendritic cells (DCs) with a consequent decrease in the release of pro-inflammatory chemokines and cytokines, most notably TNF, IL-6, and IL12p70. 3-HKA has protective effects in an experimental mouse model of psoriasis by decreasing skin thickness, erythema, scaling and fissuring, reducing TNF, IL-1ß, IFN-γ, and IL-17 production, and inhibiting generation of effector CD8+ T cells. Similarly, in a mouse model of nephrotoxic nephritis, besides reducing inflammatory cytokines, 3-HKA improves proteinuria and serum urea nitrogen, overall ameliorating immune-mediated glomerulonephritis and renal dysfunction. Overall, we propose that this biogenic amine is a crucial component of tryptophan-mediated immune tolerance.


Asunto(s)
Aminas Biogénicas/farmacología , Inmunomodulación/efectos de los fármacos , Quinurenina/análogos & derivados , Animales , Aminas Biogénicas/metabolismo , Aminas Biogénicas/uso terapéutico , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Células Endoteliales , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Inflamación , Interferón gamma/farmacología , Quinurenina/metabolismo , Quinurenina/farmacología , Quinurenina/uso terapéutico , Ratones , FN-kappa B/metabolismo , Nefritis/tratamiento farmacológico , Nefritis/inmunología , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Triptófano/metabolismo
20.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924971

RESUMEN

The Aryl hydrocarbon receptor (AhR) is a critical regulator of both innate and adaptive immune responses, with potent immunomodulatory effects that makes this receptor an attractive molecular target for novel therapeutics. Accumulating evidence indicates that diverse-both host's and microbial-tryptophan metabolites profoundly regulate the immune system in the host via AhR, promoting either tolerance or immunity, largely as a function of the qualitative and quantitative nature of the metabolites being contributed by either source. Additional findings indicate that host and microbiota-derived tryptophan metabolic pathways can influence the outcome of immune responses to tumors. Here, we review recent studies on the role and modalities of AhR activation by various ligands, derived from either host-cell or microbial-cell tryptophan metabolic pathways, in the regulation of immune responses. Moreover, we highlight potential implications of those ligands and pathways in tumor immunotherapy, with particular relevance to checkpoint-blockade immune intervention strategies.


Asunto(s)
Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Animales , Humanos , Inmunoterapia , Ligandos , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA