RESUMEN
2-(2-Phenylethyl)chromones (PECs) are the primary constituents responsible for the promising pharmacological activities and unique fragrance of agarwood. However, the O-methyltransferases (OMTs) involved in the formation of diverse methylated PECs have not been reported. In this study, we identified one Mg2+-dependent caffeoyl-CoA-OMT subfamily enzyme (AsOMT1) and three caffeic acid-OMT subfamily enzymes (AsOMT2-4) from NaCl-treated Aquilaria sinensis calli. AsOMT1 not only converts caffeoyl-CoA to feruloyl-CoA but also performs nonregioselective methylation at either the 6-OH or 7-OH position of 6,7-dihydroxy-PEC. On the other hand, AsOMT2-4 preferentially utilizes PECs as substrates to produce structurally diverse methylated PECs. Additionally, AsOMT2-4 also accepts nonPEC-type substrates such as caffeic acid and apigenin to generate methylated products. Protein structure prediction and site-directed mutagenesis revealed that residues of L313 and I318 in AsOMT3, as well as S292 and F313 in AsOMT4 determine the distinct regioselectivity of these two OMTs toward apigenin. These findings provide important biochemical evidence of the remarkable structural diversity of PECs in agarwood.
Asunto(s)
Metiltransferasas , Proteínas de Plantas , Thymelaeaceae , Metiltransferasas/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Thymelaeaceae/enzimología , Thymelaeaceae/química , Thymelaeaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Madera/química , Especificidad por Sustrato , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Metilación , FlavonoidesRESUMEN
Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 µmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.
Asunto(s)
Compuestos de Bifenilo , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Lignanos , Proteínas Señalizadoras YAP , Humanos , Lignanos/farmacología , Lignanos/química , Lignanos/síntesis química , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Células HCT116 , Proteínas Señalizadoras YAP/metabolismo , Estructura Molecular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Sulfuros/química , Sulfuros/farmacología , Sulfuros/síntesis química , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/síntesis química , Relación Dosis-Respuesta a Droga , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Compuestos Alílicos , FenolesRESUMEN
To reduce pollution caused by traditional plastic packaging and preparation of silver nanoparticles (AgNPs), this work aims to develop biological macromolecular packaging films with green synthesized AgNPs. In this study, a novel P. cocos polysaccharide (PCP) with a unique monosaccharide composition was extracted from Poria cocos (Schw.) Wolf. Then, this polysaccharide containing 24.68 % rhamnose was used as a stabilizer for the green synthesis of PCP-AgNPs for the first time. PCP-AgNPs exhibited excellent antibacterial activity against P. aeruginosa, E. coli, and S. aureus, with the highest antibacterial activity against E. coli (inhibition zone diameter = 11.14 ± 0.79 mm). Subsequently, PCP-AgNPs/chitosan (CS) film was successfully prepared by incorporating PCP-AgNPs into the CS film solution. Several experiments demonstrated that the addition of this nanomaterial promoted the formation of noncovalent interactions between CS and PCP-AgNPs, resulting in a more regular and denser film. Compared to the CS film and control group, the PCP-AgNPs/CS film significantly maintained the quality indexes of strawberries. Therefore, this composite film successfully extended the shelf life of strawberries. Regarding safety, these packaging films were not cytotoxic toward RAW264.7 cells. In conclusion, the environmentally friendly PCP-AgNPs/CS film has the potential to replace some traditional food packaging materials.
Asunto(s)
Antibacterianos , Embalaje de Alimentos , Tecnología Química Verde , Nanopartículas del Metal , Polisacáridos , Plata , Nanopartículas del Metal/química , Plata/química , Embalaje de Alimentos/métodos , Polisacáridos/química , Polisacáridos/farmacología , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Animales , Células RAW 264.7 , Wolfiporia/química , Pruebas de Sensibilidad Microbiana , Escherichia coli/efectos de los fármacosRESUMEN
The peptide MOp2 obtained from Moringa oleifera seeds showed good antimicrobial activity. However, the stability of its activity has not yet been studied. In the present study, MOp2-loaded thiolated chitosan-stabilized (CMOp2) Pickering emulsion was prepared and applied to prolong the shelf life of grass carp. The encapsulation rate of MOp2 was 57.7% in CMOp2. In addition, the effects of different concentrations of CMOp2 solid particles and pH on droplet size, zeta optional and storage stability of Pickering emulsions were evaluated; the best condition for preparing Pickering emulsion through experiment was 1.75% CMOp2 solid particles at pH 9.5. Moreover, morphological observations and rheological analysis indicated that Pickering emulsions were considered a water-in-oil emulsion with typical non-Newtonian fluid characteristics. Furthermore, the prepared Pickering emulsion could significantly inhibit the growth of Escherichia coli and Staphylococcus aureus. Besides, Pickering emulsion effectively prevented spoilage of grass carp, and the Pickering emulsion-treated group reduced its pH, TVB-N and color values, inhibited microbial growth, and extended shelf life to 9 day at the storage of 4 °C. Overall, the present findings provide a reference for the application of MOp2-loaded Pickering emulsions in food preservation.
RESUMEN
The study aimed to explore umami peptides derived from protein hydrolysates of Morchella esculenta. According to the electronic tongue and sensory evaluation, the ultrafiltration fractions (<3 kDa) of the protein hydrolysates exhibited the strongest umami taste. The overall flavor of the screened fractions was significantly improved after the Maillard reaction, based on the electronic nose and electronic tongue analyses, and the content of total free amino acid increased from 387.35 to 589.30 µg/mL. A total of 37 peptides with high confidence were identified from the fractions using LC-MS/MS. Additionally, two novel umami peptides were screened through bioinformatics and molecular docking, and their recognition threshold was 0.43 (EYPPLGRFA) and 0.52 mmol/L (TVIDAPGHRDFI), respectively. In addition, molecular docking analysis revealed that the key binding sites, such as Ser148, Leu51, Arg327, and Leu468 in T1R1/T1R3 contributed to docking, and hydrogen bonding and hydrophobic interactions were the dominant interaction forces between the two umami peptides and T1R1/T1R3 receptor. This study contributes to the development and utilization of Morchella esculenta in flavored foods.
Asunto(s)
Hidrolisados de Proteína , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos/química , GustoRESUMEN
The metabolic modulation of major flavor precursors during coffee cherry ripening is critical for the characteristic coffee flavor formation. However, the formation mechanism of flavor precursors during coffee cherry ripening remains unknown. In the present study, a colorimeter was employed to distinguish different maturity stages of coffee cherry based on the coffee cherry skin colors, and proteomics and metabolomics profiles were integrated to comprehensively investigate the flavor precursor dynamics involved in Arabica coffee cherry ripening. The data obtained in the present study provide an integral view of the critical pathways involved in flavor precursor changes during coffee cherry ripening. Moreover, the contributions of critical events in regulating the development of flavor precursors during the four ripening stages of coffee cherries, including the biosynthesis and metabolism pathways of organic acids, amino acids, flavonoids, and sugars, are discussed. Overall, a total of 456 difference express metabolites were selected, and they were identified as being concentrated in the four maturity stages of coffee cherries; furthermore, 76 crucial enzymes from the biosynthesis and metabolism of sugars, organic acids, amino acids, and flavonoids contributed to flavor precursor formation. Among these enzymes, 45 difference express proteins that could regulate 40 primary amino acids and organic acids flavor precursors were confirmed. This confirmation indicates that the metabolic pathways of amino acids and organic acids played a significant role in the flavor formation of Arabica coffee cherries during ripening. These results provide new insights into the protease modulation of flavor precursor changes in Arabica coffee cherry ripening.
RESUMEN
This study aimed to compare chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities of coffee flowers (ACF) and coffee leaves (ACL) with green coffee beans (ACGB) of Coffea Arabica L. The chemical compositions were determined by employing high-performance liquid chromatography-mass spectroscopy (HPLC-MS) and gas chromatography-mass spectroscopy (GC-MS) techniques. Antioxidant effects of the components were evaluated using DPPH and ABTS radical scavenging assays, and the ferric reducing antioxidant power (FRAP) assay. Their acetylcholinesterase inhibitory activities were also evaluated. The coffee sample extracts contained a total of 214 components identified by HPLC-MS and belonged to 12 classes (such as nucleotides and amino acids and their derivatives, tannins, flavonoids, alkaloids, benzene, phenylpropanoids, and lipids.), where phenylpropanoids were the dominant component (>30%). The contents of flavonoids, alkaloids, saccharides, and carboxylic acid and its derivatives in ACF and ACL varied significantly (p < .05) compared to similar components in ACGB. Meanwhile, 30 differentially changed chemical compositions (variable importance in projection [VIP] > 1, p < .01 and fold change [FC] > 4, or <0.25), that determine the difference in characteristics, were confirmed in the three coffee samples. Furthermore, among 25 volatile chemical components identified by GC-MS, caffeine, n-hexadecanoic acid, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-phenol], and quinic acid were common in these samples with caffeine being the highest in percentage. In addition, ACL showed the significantly highest (p < .05) DPPH radical scavenging capacity with IC50 value of 0.491 ± 0.148 mg/ml, and acetylcholinesterase inhibitory activity with inhibition ratio 25.18 ± 2.96%, whereas ACF showed the significantly highest (p < .05) ABTS radical scavenging activity with 36.413 ± 1.523 mmol trolox/g Ex. The results suggested that ACL and ACF had potential values as novel foods in the future.
RESUMEN
As primary coffee by-products, Arabica coffee husks are largely discarded during coffee-drying, posing a serious environmental threat. However, coffee husks could be used as potential material for extracting pectin polysaccharides, with high bioactivities and excellent processing properties. Thus, the present study aimed to extract the pectin polysaccharide from Arabica coffee husk(s) (CHP). The CHP yield was calculated after vacuum freeze-drying, and its average molecular weight (Mw) was detected by gel permeation chromatography (GPC). The structural characteristics of CHP were determined by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM). Additionally, the rheological and antioxidant properties of CHP and the inhibition capacities of advanced glycation end products (AGEs) with different concentrations were evaluated. The interaction mechanisms between galacturonic acid (GalA) and the AGE receptor were analyzed using molecular docking. The results demonstrated that the CHP yield was 19.13 ± 0.85%, and its Mw was 1.04 × 106 Da. The results of the structural characteristics results revealed that CHP was an amorphous and low-methoxyl pectic polysaccharide linked with an α-(1â6) glycosidic bond, and mainly composed of rhamnose (Rha, 2.55%), galacturonic acid (GalA, 45.01%), ß-N-acetyl glucosamine (GlcNAc, 5.17%), glucose (Glc, 32.29%), galactose (Gal, 6.80%), xylose (Xyl, 0.76%), and arabinose (Ara, 7.42%). The surface microstructure of CHP was rough with cracks, and its aqueous belonged to non-Newtonian fluid with a higher elastic modulus (G'). Furthermore, the results of the antioxidant properties indicated that CHP possessed vigorous antioxidant activities in a dose manner, and the inhibition capacities of AGEs reached their highest of 66.0 ± 0.35% at 1.5 mg/mL of CHP. The molecular docking prediction demonstrated that GalA had a good affinity toward AGE receptors by -6.20 kcal/mol of binding energy. Overall, the study results provide a theoretical basis for broadening the application of CHP in the food industry.
RESUMEN
This study aimed to characterize a novel antimicrobial peptide (AMP) obtained from Moringa oleifera seed protein hydrolysates. Cell membrane chromatography and live bacteria adsorption were combined into a single step to efficiently isolate the active fraction of the AMP. Five peptides were identified by LC-MS/MS, among which the MCNDCGA peptide (termed MOp3) showed the greatest inhibitory effect against Staphylococcus aureus [minimum inhibitory concentration (MIC): 2 mg/mL]. MOp3 was identified as a hydrophobic anionic AMP rich in ß-sheet structures with negligible hemolytic activity at 2.0 × MIC. MOp3 had good tolerance to salt solutions at 5 % and pH range 6.0-8.0, but was sensitive to high temperatures (>100 °C) and acid protease. Microscopic observation further revealed that MOp3 induced irreversible damage onto the cell membrane of S. aureus and interacted with dihydrofolate reductase and DNA gyrase by hydrogen bonding and hydrophobic interaction. These findings highlight the potential application of a new antimicrobial agent against S. aureus in the food industry.
Asunto(s)
Moringa oleifera , Adenosina Monofosfato/análisis , Adsorción , Péptidos Antimicrobianos , Cromatografía Liquida , Moringa oleifera/química , Extractos Vegetales/química , Semillas/química , Staphylococcus aureus , Espectrometría de Masas en TándemRESUMEN
The purpose of this study was to investigate the neuroprotective effect of Arg-containing peptides from walnut storage protein sequences in scopolamine-induced zebrafish and further to validate the potential neuroprotection of Arg-containing peptide enriched walnut hydrolysates prepared by in silico hydrolysis and controlled enzymatic release. Results showed that walnut derived Arg-containing peptides with high abundance and great bioactivity predicted by bioinformatics displayed potent neuroprotection in scopolamine-induced zebrafish, and regulation of neurotransmitter level and antioxidant enzyme activity might be the main target for Arg-containing peptides to exert neuroprotection. Notably, Arg-containing peptides (not free arginine) contributed greater neuroprotection, and the positive charge and cell-penetrating properties also affected their neuroprotection. Subsequently, Arg-containing peptides could be released efficiently from walnut protein following hydrolysis by trypsin, pepsin, papain, and thermolysin (bound arginine content: ranging from 110.43 ± 1.58 to 121.82 ± 1.02 mg/g). Among them, trypsin had excellent potential for releasing Arg-containing peptides in silico hydrolysis, and its hydrolysate was confirmed to have neuroprotective capacity, indicating that the combination of in silico hydrolysis and controlled enzymatic release might be an effective approach to obtain Arg-containing neuroprotective peptides.
Asunto(s)
Juglans , Fármacos Neuroprotectores , Animales , Antioxidantes/química , Arginina , Cognición , Hidrólisis , Juglans/química , Trastornos de la Memoria/inducido químicamente , Neuroprotección , Fármacos Neuroprotectores/farmacología , Papaína , Pepsina A , Péptidos/química , Escopolamina/efectos adversos , Termolisina , Tripsina , Pez CebraRESUMEN
This study evaluated the anti-inflammatory effect of epicatechin (EC) on acute lung injury (ALI) induced by lipopolysaccharide (LPS) of tracheal installation in BALB/c mice. It was observed that EC could alleviate not only the histopathological changes but also decrease the wet/dry weight (W/D) ratio of lung tissues. It also suppressed the release of IL-1ß, IL-6, and TNF-α in serum, bronchoalveolar lavage fluid (BALF), and lung tissues, respectively. A quantitative realtime PCR-based study further indicated that EC also inhibited the levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA in lung tissues. In addition, the Western blot report suggested that EC was closely involved in the inhibition of phosphorylation of ERK, JNK, p38, p65, and IκB in mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) signaling pathway. These results provide an experimental and theoretical basis for treating pulmonary inflammation by EC.
Asunto(s)
Lesión Pulmonar Aguda , Catequina , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Citocinas , Lipopolisacáridos , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Transducción de SeñalRESUMEN
Previous studies supposed that Amadori rearrangement products (ARPs) of peptides might have better umami-enhancing abilities. To confirm this, five ARPs (EP-ARP, AH-ARP, EE-ARP, ß-AH-ARP, RFPHADF-ARP) were synthesized using a food-grade preparation method, and their chemical structures were clearly demonstrated by mass spectrometry and 1D/2D NMR. Sensory experiments showed that ARPs had better umami-enhancing abilities than the corresponding peptides in this research, though their enhancing performance varied. ARPs showed a synergistic effect with multiple umami substances (MSG and GMP), while their corresponding peptides did not. RFPHADF-ARP had good umami-enhancing capacity, despite that RFPHADF was a bitter peptide without any umami/umami-enhancing property. RFPHADF-ARP could bind to the T1R3, which is beneficial to the stability of the active conformation of the umami receptor. The introduction of glucose via the Maillard reaction increased the binding force of RFPHADF with the umami receptor by influencing the electron density distribution and offering more binding groups (hydroxide group).
Asunto(s)
Péptidos , Gusto , Glicoconjugados , Espectroscopía de Resonancia Magnética , Reacción de Maillard , Péptidos/químicaRESUMEN
A cysteine peptidase was previously identified from germinated Moringa oleifera seeds, but its milk-clotting properties on bovine caseins was still unclear. In this study, this novel cysteine peptidase (MoCP) showed preferential activity on κ-casein (κ-CN), with greater hydrolytic activity compared with calf rennet, whereas weak hydrolysis of α-casein and ß-casein made MoCP suitable for application in cheesemaking and may yield various functional peptides. All 3 evaluated caseins were hydrolyzed to form relatively stable peptide bands within 3 h of proteolysis with MoCP. Cleavage sites were determined by gel electrophoresis, liquid chromatography mass spectrometry/mass spectrometry, and peptide sequencing, which revealed that cleavage of κ-CN by MoCP occurred at residue Ile129-Pro130 and generated a 14,895.37-Da peptide. The flocculation reaction between MoCP and κ-CN determined by 3-dimensional microscopy with super-depth of field revealed that the initial 30 min of reaction were key for milk coagulation, which may affect curd yield. Overall, the findings presented herein suggest that the cysteine peptidase from germinated M. oleifera seeds can be considered a promising plant-derived rennet alternative for use in cheese manufacture.
Asunto(s)
Queso , Proteasas de Cisteína , Moringa oleifera , Animales , Caseínas/química , Bovinos , Queso/análisis , Cisteína/análisis , Leche/química , Moringa oleifera/química , Péptidos/análisis , Semillas/químicaRESUMEN
To improve the insecticidal activity of (+)-nootkatone, a series of 42 (+)-nootkatone thioethers containing 1,3,4-oxadiazole/thiadiazole moieties were prepared to evaluate their insecticidal activities against Mythimna separata Walker, Myzus persicae Sulzer, and Plutella xylostella Linnaeus. Insecticidal evaluation revealed that most of the title derivatives exhibited more potent insecticidal activities than the precursor (+)-nootkatone after the introduction of 1,3,4-oxadiazole/thiadiazole on (+)-nootkatone. Among all of the (+)-nootkatone derivatives, compound 8c (1 mg/mL) exhibited the best growth inhibitory (GI) activity against M. separata with a final corrected mortality rate (CMR) of 71.4%, which was 1.54- and 1.43-fold that of (+)-nootkatone and toosendanin, respectively; 8c also displayed the most potent aphicidal activity against M. persicae with an LD50 value of 0.030 µg/larvae, which was closer to that of the commercial insecticidal etoxazole (0.026 µg/larvae); and 8s showed the best larvicidal activity against P. xylostella with an LC50 value of 0.27 mg/mL, which was 3.37-fold that of toosendanin and slightly higher than that of etoxazole (0.28 mg/mL). Furthermore, the control efficacy of 8s against P. xylostella in the pot experiments under greenhouse conditions was better than that of etoxazole. Structure-activity relationships (SARs) revealed that in most cases, the introduction of 1,3,4-oxadiazole/thiadiazole containing halophenyl groups at the C-13 position of (+)-nootkatone could obtain more active derivatives against M. separata, M. persicae, and P. xylostella than those containing other groups. In addition, toxicity assays indicated that these (+)-nootkatone derivatives had good selectivity to insects over nontarget organisms (normal mammalian NRK-52E cells and C. idella and N. denticulata fries) with relatively low toxicity. Therefore, the above results indicate that these (+)-nootkatone derivatives could be further explored as new lead compounds for the development of potential eco-friendly pesticides.
Asunto(s)
Insecticidas , Mariposas Nocturnas , Tiadiazoles , Animales , Insecticidas/farmacología , Larva , Estructura Molecular , Oxadiazoles , Sesquiterpenos Policíclicos , Relación Estructura-Actividad , Sulfuros , Tiadiazoles/farmacologíaRESUMEN
The present study aimed to investigate the biological functions of germinated M. oleifera seed proteins and to identify the identity of milk-clotting proteases. A total of 963 proteins were identified, and those with molecular weights between 10 and 30 kDa were most abundant. The identified proteins were mainly involved in energy-associated catalytic activity and metabolic processes, and carbohydrate and protein metabolisms. The numbers of proteins associated with the hydrolytic and catalytic activities were higher than the matured dry M. oleifera seeds reported previously. Of the identified proteins, proteases were mainly involved in the milk-clotting activity. Especially, a cysteine peptidase with a molecular mass of 17.727 kDa exhibiting hydrolase and peptidase activities was purified and identified. The identified cysteine peptidase was hydrophilic, and its secondary structure consisted of 27.60% alpha helix, 9.20% beta fold, and 63.20% irregular curl; its tertiary structure was also constructed using M. oleifera seed 2S protein as the protein template. The optimal pH and temperature of the purified protease were pH 4.0 and 60 °C, respectively. The protease had high acidic stability and good thermostability, thus could potentially be applied in the dairy industry.
Asunto(s)
Caseínas/efectos de los fármacos , Proteasas de Cisteína/aislamiento & purificación , Moringa oleifera/enzimología , Péptido Hidrolasas/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Semillas/enzimología , Secuencia de Aminoácidos , Técnicas de Química Analítica , Proteasas de Cisteína/metabolismo , Estabilidad de Enzimas , Ontología de Genes , Germinación , Calor , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Peso Molecular , Moringa oleifera/química , Moringa oleifera/genética , Péptido Hidrolasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , ProteomaRESUMEN
Nowadays, the discovery and development of α-glucosidase inhibitors from natural products or their derivatives represents an attractive approach. Here we reported studies on a series of novel N-acyl-2-aminothiazoles fused (+)-nootkatone and evaluation for their α-glucosidase inhibitory activities. Most of (+)-nootkatone derivatives exhibited more potent α-glucosidase inhibitory ability than the positive drug acarbose. In particular, compounds II7 and II14 showed the most promising α-glucosidase inhibitory ability with IC50 values of 13.2 and 13.8 µM. II7 and II14 also exhibited relatively low cytotoxicities towards normal LO2 cells. Kinetic study indicated that compounds II7 and II14 inhibited the α-glucosidase in a noncompetitive manner, and molecular docking results were in line with the noncompetitive characteristics that II7 and II14 did not bind to the known active sites (Asp214, Glu276 and Asp349). Based on our findings, these (+)-nootkatone derivatives could be used as antidiabetic candidates.
Asunto(s)
Citrus paradisi/química , Descubrimiento de Drogas , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación del Acoplamiento Molecular , Sesquiterpenos Policíclicos/farmacología , Tiazoles/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Estructura Molecular , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/aislamiento & purificación , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad , Tiazoles/química , Tiazoles/aislamiento & purificación , alfa-Glucosidasas/metabolismoRESUMEN
This study is the first to apply label-free based proteomics to investigate the proteome changes during Moringa oleifera seed germination. In total, 1267 proteins were identified, with proteins within the molecular weight range of 10-60 kDa being most abundant. Among the 174 differentially expressed proteins (DEPs), 42 were upregulated and 26 downregulated, whereas 45 and 61 were uniquely expressed in the matured dry and germinating seeds, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the main DEPs had significant molecular functions related to catalytic activity and were involved in metabolism, degradation and biosynthesis, with 49 enzymes highly expressed in germination, including 9 proteases with hydrolytic activity, of which a peptidase and three types of endopeptidases were associated with milk-clotting activity. We further demonstrated that proteolytic activity (PA) and milk-clotting specific activity (MCSA) of protease extracts from M. oleifera seeds were increased during germination, particularly for samples from the ammonium sulfate (AS) fractionation that were statistically significance (p value < 0.05). Overall, proteases derived from germinating M. oleifera seeds can be used in the food industry, especially for potential application in the production of bioactive peptides and cheese processing.
Asunto(s)
Germinación , Moringa oleifera , Animales , Péptido Hidrolasas , Proteoma , SemillasRESUMEN
The polysaccharide obtained from edible fungi has been regarded as the major bioactive component related to the nutritional and human's health. In the present study, three purified polysaccharides (LCP-1, LCP-2, and LCP-3) were obtained from Leccinum crocipodium (Letellier.) Watliag. The characterizations of LCP-1, LCP-2, and LCP-3 were determined by high-performance liquid chromatography (HPLC), UV, FT-IR spectrometrys and 1H NMR spectrum. LCP-1 had a molecular weight of 2.303 × 105 Da and 7.519 × 103 Da, and was composed of mannose (Man), ribose (Rib), rhamnose (Rha), glucuronic acid (GluA), galacturonic acid (GalA), glucose (Glu), galactose (Gal), xylose (Xyl), arabinose (Ara) and fucuronic (Fuc). The molecular weight of LCP-2 was 2.655 × 105 Da, and its monosaccharide constituents were Man, Rib, Rha, GluA, Glu, Gal, Xyl, Ara and Fuc. The molecular weight of LCP-3 was 3.783 × 105 Da, and its monosaccharide constituents were Man, Rib, Rha, GluA, GalA, Glu, Gal, Xyl, Ara and Fuc. For the in vitro immunomodulatory experiments demonstrated that three purified polysaccharides could enhance immunomodulatory activities on macrophage RAW 264.7 cells, moreover, LCP-2 and LCP-3 showed stronger immunomodulatory activity than LCP-1. The results indicated that the LCP-1, LCP-2, and LCP-3 could be further developed as functional food or medicine.
Asunto(s)
Basidiomycota/metabolismo , Factores Inmunológicos/química , Factores Inmunológicos/inmunología , Polisacáridos/química , Polisacáridos/inmunología , Animales , Arabinosa/química , Línea Celular , Galactosa/química , Glucosa/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Manosa/química , Ratones , Monosacáridos/química , Células RAW 264.7 , Ramnosa/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Xilosa/químicaRESUMEN
Toward the search of new antibacterial agents to control methicillin-resistant Staphylococcus aureus (MRSA), a class of new norfloxacin-1,3,4-oxadiazole hybrids were designed and synthesized. Antibacterial activities against drug-sensitive bacteria S. aureus and clinical drug resistant isolates of MRSA were evaluated. Compound 5k exhibited excellent antibacterial activities against S. aureus (MIC: 2⯵g/mL) and MRSA1-3 (MIC: 0.25-1⯵g/mL). The time-kill kinetics demonstrated that compound 5k had an advantage over commonly used antibiotics vancomycin in killing S. aureus and MRSA. Moreover, compound 5k could inhibit the bacteria and destroy their membranes in a short time, and showed very low cytotoxicity to NRK-52E cells. Some interesting structure-activity relationships (SARs) were also discussed. These results indicated that these norfloxacin-1,3,4-oxadiazole hybrids could be further developed into new antibacterial agents against MRSA.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Norfloxacino/química , Norfloxacino/farmacología , Oxadiazoles/química , Oxadiazoles/farmacología , Animales , Línea Celular , Pruebas de Sensibilidad Microbiana/métodos , Ratas , Infecciones Estafilocócicas/tratamiento farmacológico , Relación Estructura-Actividad , Vancomicina/farmacologíaRESUMEN
To improve the insecticidal activities of fraxinellone, two series of fraxinellone-based N-(1,3-thiazol-2-yl)carboxamides containing 25 compounds were prepared by structural modification. Their structures were determined by melting point, optical rotation, IR, 1H NMR and ESI-MS. The steric configurations of compounds 6i, 7d and 7i were unambiguously confirmed by X-ray diffraction further. The bioassay showed that compounds 6b and 6i exhibited more potent larvicidal and growth inhibitory activities against Plutella xylostella Linnaeus and Mythimna separata Walker, respectively. Moreover, compounds 6b and 6i also displayed low cytotoxicity to noncancerous mammalian cells. The structure-activity relationships (SARs) of all target compounds were also observed.