Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Insect Sci ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837613

RESUMEN

A systems biology approach was employed to gain insight into tick biology and interactions between vectors and pathogens. Haemaphysalis longicornis serves as one of the primary vectors of Babesia microti, significantly impacting human and animal health. Obtaining more information about their relationship is crucial for a comprehensive understanding of tick and pathogen biology, pathogen transmission dynamics, and potential control strategies. RNA sequencing of uninfected and B. microti-infected ticks resulted in the identification of 15 056 unigenes. Among these, 1 051 were found to be differentially expressed, with 796 being upregulated and 255 downregulated (P < 0.05). Integrated transcriptomics datasets revealed the pivotal role of immune-related pathways, including the Toll, Janus kinase/signal transducer and activator of transcription (JAK-STAT), immunodeficiency, and RNA interference (RNAi) pathways, in response to infection. Consequently, 3 genes encoding critical transcriptional factor Dorsal, Relish, and STAT were selected for RNAi experiments. The knockdown of Dorsal, Relish, and STAT resulted in a substantial increase in Babesia infection levels compared to the respective controls. These findings significantly advanced our understanding of tick-Babesia molecular interactions and proposed novel tick antigens as potential vaccine targets against tick infestations and pathogen transmission.

2.
Mater Horiz ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845573

RESUMEN

To effectively compete with the quenching process in long-wavelength regions like deep red (DR) and near-infrared (NIR), rapid radiative decay is urgently needed to address the challenges posed by the "energy gap law". Herein, we confirmed that it is crucial for hot exciton emitters to attain a narrow energy gap (ΔES1-T2) between the lowest singlet excited (S1) state and second triplet excited (T2) state, while ensuring that T2 slightly exceeds S1 in the energy level. Two proofs-of-concept of hot exciton DR emitters, namely αT-IPD and ßT-IPD, were successfully designed and synthesized by coupling electron-acceptors N,N-diphenylnaphthalen-2-amine (αTPA) and N,N-diphenylnaphthalen-1-amine (ßTPA) with an electron-withdrawing unit 5-(4-(tert-butyl) phenyl)-5H-pyrazino[2,3-b]indole-2,3-dicarbonitrile (IPD). Both emitters exhibited a narrow ΔES1-T2, with T2 being slightly higher than S1. Additionally, both emitters showed significantly large ΔET2-T1. Moreover, due to their aggregation-induced emission characteristics, J-aggregated packing modes, moderate strength intermolecular CN⋯H-C and C-H⋯π interactions, and unique, comparatively large center-to-center distances among trimers in the crystalline state, both αT-IPD and ßT-IPD emitters exhibited remarkable photoluminescence quantum yields of 68.5% and 73.5%, respectively, in non-doped films. Remarkably, the corresponding non-doped DR-OLED based on ßT-IPD achieved a maximum external quantum efficiency of 15.5% at an emission peak wavelength of 667 nm, representing the highest reported value for hot exciton DR-OLEDs.

3.
Nano Lett ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865330

RESUMEN

Bioorthogonal chemistry represents a powerful tool in chemical biology, which shows great potential in epigenetic modulation. As a proof of concept, the epigenetic modulation model of mitochondrial DNA (mtDNA) is selected because mtDNA establishes a relative hypermethylation stage under oxidative stress, which impairs the mitochondrion-based therapeutic effect during cancer therapy. Herein, we design a new biocompatible hydrogen-bonded organic framework (HOF) for a HOF-based mitochondrion-targeting bioorthogonal platform TPP@P@PHOF-2. PHOF-2 can activate a prodrug (pro-procainamide) in situ, which can specifically inhibit DNA methyltransferase 1 (DNMT1) activity and remodel the epigenetic modification of mtDNA, making it more susceptible to ROS damage. In addition, PHOF-2 can also catalyze artemisinin to produce large amounts of ROS, effectively damaging mtDNA and achieving better chemodynamic therapy demonstrated by both in vitro and in vivo studies. This work provides new insights into developing advanced bioorthogonal therapy and expands the applications of HOF and bioorthogonal catalysis.

4.
Front Immunol ; 15: 1380229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911867

RESUMEN

Background: Vitamin E, which is also known as tocopherol, is a compound with a polyphenol structure. Its esterified derivative, Vitamin E succinate (VES), exhibits unique anticancer and healthcare functions as well as immunomodulatory effects. Natural polysaccharides are proved to be a promising material for nano-drug delivery systems, which show excellent biodegradability and biocompatibility. In this study, we employed a novel bletilla striata polysaccharide-vitamin E succinate polymer (BSP-VES) micelles to enhance the tumor targeting and anti-colon cancer effect of andrographolide (AG). Methods: BSP-VES polymer was synthesized through esterification and its structure was confirmed using 1H NMR. AG@BSP-VES was prepared via the dialysis method and the drug loading, entrapment efficiency, stability, and safety were assessed. Furthermore, the tumor targeting ability of AG@BSP-VES was evaluated through targeted cell uptake and in vivo imaging. The antitumor activity of AG@BSP-VES was measured in vitro using MTT assay, Live&Dead cell staining, and cell scratch test. Results: In this study, we successfully loaded AG into BSP-VES micelles (AG@BSP-VES), which exhibited good stability, biosafety and sustained release effect. In addition, AG@BSP-VES also showed excellent internalization capability into CT26 cells compared with NCM460 cells in vitro. Meanwhile, the specific delivery of AG@BSP-VES micelles into subcutaneous and in-situ colon tumors was observed compared with normal colon tissues in vivo during the whole experiment process (1-24 h). What's more, AG@BSP-VES micelles exhibited significant antitumor activities than BSP-VES micelles and free AG. Conclusion: The study provides a meaningful new idea and method for application in drug delivery system and targeted treatment of colon cancer based on natural polysaccharides.


Asunto(s)
Neoplasias del Colon , Diterpenos , Micelas , Polisacáridos , Animales , Neoplasias del Colon/tratamiento farmacológico , Diterpenos/química , Diterpenos/farmacología , Diterpenos/administración & dosificación , Humanos , Ratones , Línea Celular Tumoral , Polisacáridos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Ensayos Antitumor por Modelo de Xenoinjerto , Portadores de Fármacos/química , Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/química , Ratones Desnudos , Ratones Endogámicos BALB C
5.
Sci Total Environ ; 945: 174019, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885713

RESUMEN

Emerging evidence suggests that plants experiencing abiotic stress actively seek help from soil microbes. However, the empirical evidence supporting this strategy is limited, especially in response to heavy metal stress. We used integrated microbial community profiling and culture-based methods to investigate the interaction between mercury (Hg) stress, the entophytic root microbiome, and maize seedlings. The results of the pot experiment showed that soil Hg (20 mg/kg) strongly inhibited maize growth, indicating its strong phytotoxicity. Furthermore, Hg stress significantly altered the structure of the bacterial and fungal communities and enriched the potentially pathogenic Fusarium sp., suggesting that soil Hg stress may enhance the bio-stress induced by Fusarium species in maize. Additionally, soil Hg also led to the enrichment of beneficial bacterial members of Streptomyces, Lysobacter, and Sphingomonas (defined as differential species), which were also identified as keystone species in the Hg treatment by the analysis of co-occurrence networks. Therefore, it can be postulated that the members of Streptomyces, Lysobacter, and Sphingomonas function as stress-alleviating microbes. We successfully isolated the representatives of these stress-alleviating microbes. As expected, these strains mitigated the detrimental effects of Hg stess for the maize seedlings, suggesting that plants recruit the stress-alleviated microbiota to combat Hg stress. This study provides insights into the potential of manipulating the root microbiome to enhance plant growth in polluted environments.

6.
J Thorac Dis ; 16(5): 3272-3281, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38883647

RESUMEN

Background: The use of a commercial snare for retrograde chronic total occlusion (CTO) percutaneous coronary intervention (PCI) is time-consuming and expensive. This study aimed to evaluate the benefits and complications of a novel modified homemade snare (MHS) for retrograde CTO-PCI. Methods: This retrospective cohort study included patients with CTO who underwent retrograde PCI with guidewire snaring between January 2017 and June 2022 at Beijing Anzhen Hospital. The patients were divided into the MHS and gooseneck snare (GS) groups according to the devices used for externalization. Clinical, procedural, and angiographic data were collected. Results: Ninety patients (46 with MHS and 44 with GS) were included. There was no significant difference in the location of the CTO vessel between the MHS and GS groups, and the target CTO vessel was mainly located in the right coronary artery (RCA) in both groups (73.9% and 68.2% respectively). There were no significant differences in the J-CTO (Multicenter CTO Registry in Japan) and PROGRESS-CTO (Prospective Global Registry for the Study of Chronic Total Occlusion Intervention) scores between the two groups. More patients in the MHS group had lesions with ambiguous proximal caps compared with the GS group (54.3% vs. 31.8%, P=0.04). Retrograde wire crossing technique was used more in the GS group (54.5% vs. 41.3%, P=0.04), while reverse-controlled antegrade and retrograde subintimal tracking (CART) technique was used more in the MHS group (58.7% vs. 45.5%, P=0.037). The mean guidewire capture time was shorter in the MHS group than in the GS group (2.7±0.6 vs. 3.4±0.7 min, P<0.001). One case of delayed pericardial tamponade was observed in the MHS group. No other complications occurred. Conclusions: MHS appears to facilitate externalization in retrograde PCI for complex CTO lesions.

7.
Angew Chem Int Ed Engl ; : e202407040, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761056

RESUMEN

Multi-component copolymerized donors (MCDs) have gained significant interest and have been rapidly developed in flexible organic solar cells (f-OSCs) in recent years. However, ensuring the power conversion efficiency (PCE) of f-OSCs while retaining ideal mechanical properties remains an enormous challenge. The fracture strain (FS) value of typical high-efficiency blend films is generally less than 8 %, which is far from the application standards of wearable photovoltaic devices. Therefore, we developed a series of novel MCDs after meticulous molecular design. Among them, the consistent MCD backbone and end-capped functional group formed a highly conjugated molecular plane, and the solubilization and mechanical properties were effectively optimized by modifying the proportion of solubilized alkyl chains. Consequently, due to the formation of entangled structures with a frozen blend film morphology considerably improved the high ductility of the active layer, P10.8/P20.2-TCl exhibited efficient PCE in rigid (18.53 %) and flexible (17.03 %) OSCs, along with excellent FS values (16.59 %) in pristine films, meanwhile, the outstanding FS values of 25.18 % and 12.3 % were achieved by P10.6/P20.4-TCl -based pristine and blend films, respectively, which were one of the highest records achieved by end-capped MCD-based binary OSCs, demonstrating promising application to synchronize the realization of high-efficiency and mechanically ductile flexible OSCs.

8.
PLoS Pathog ; 20(5): e1012214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722857

RESUMEN

Epithelial cells function as the primary line of defense against invading pathogens. However, bacterial pathogens possess the ability to compromise this barrier and facilitate the transmigration of bacteria. Nonetheless, the specific molecular mechanism employed by Mycobacterium tuberculosis (M.tb) in this process is not fully understood. Here, we investigated the role of Rv2569c in M.tb translocation by assessing its ability to cleave E-cadherin, a crucial component of cell-cell adhesion junctions that are disrupted during bacterial invasion. By utilizing recombinant Rv2569c expressed in Escherichia coli and subsequently purified through affinity chromatography, we demonstrated that Rv2569c exhibited cell wall-associated serine protease activity. Furthermore, Rv2569c was capable of degrading a range of protein substrates, including casein, fibrinogen, fibronectin, and E-cadherin. We also determined that the optimal conditions for the protease activity of Rv2569c occurred at a temperature of 37°C and a pH of 9.0, in the presence of MgCl2. To investigate the function of Rv2569c in M.tb, a deletion mutant of Rv2569c and its complemented strains were generated and used to infect A549 cells and mice. The results of the A549-cell infection experiments revealed that Rv2569c had the ability to cleave E-cadherin and facilitate the transmigration of M.tb through polarized A549 epithelial cell layers. Furthermore, in vivo infection assays demonstrated that Rv2569c could disrupt E-cadherin, enhance the colonization of M.tb, and induce pathological damage in the lungs of C57BL/6 mice. Collectively, these results strongly suggest that M.tb employs the serine protease Rv2569c to disrupt epithelial defenses and facilitate its systemic dissemination by crossing the epithelial barrier.


Asunto(s)
Proteínas Bacterianas , Cadherinas , Células Epiteliales , Mycobacterium tuberculosis , Serina Proteasas , Cadherinas/metabolismo , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/metabolismo , Animales , Humanos , Ratones , Serina Proteasas/metabolismo , Serina Proteasas/genética , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Células A549 , Tuberculosis/microbiología , Tuberculosis/metabolismo , Femenino
10.
Cancer Cell Int ; 24(1): 192, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822322

RESUMEN

BACKGROUND: Immunotherapy combined with molecular targeted therapy is increasingly popular in patients with advanced hepatocellular carcinoma (HCC). However, immune-related adverse events(irAEs) brought on by immunotherapy increase the likelihood of side effects, thus it is important to look into ways to address this issue. METHODS: Different metabolite patterns were established by analyzing metabolomics data in liver tissue samples from 10 patients(divided into severe and mild liver injury) before and after immuno-targeted therapy. After establishing a subcutaneous tumor model of HCC, the mice were divided into PBS group, ascorbic acid(AA) group, and anti-PD1 + tyrosine kinase inhibitor (TKI) group, anti-PD1 + TKI + AA group. Liver tissue were stained with hematoxylin-eosin staining(HE) and the content of aspartate transaminase (AST) and alanine transaminase(ALT) in blood were determined. The mechanism was confirmed by western blotting, mass cytometry, and other techniques. RESULTS: Through metabolomics analysis, AA was significantly reduced in the sample of patients with severe liver injury caused by immuno-targeted therapy compared to patients with mild liver injury. The addition of AA in vivo experiments demonstrated a reduction in liver injury in mice. In the liver tissues of the anti-PD1 + TKI + AA group, the protein expressions of SLC7A11,GPX4 and the level of glutathione(GSH) were found to be higher compared to the anti-PD1 + TKI group. Mass cytometry analysis revealed a significant increase in the CD11b+CD44+ PD-L1+ cell population in the AA group when compared to the PBS group. CONCLUSIONS: AA could reduce liver injury by preventing hepatocyte SLC7A11/GPX4 ferroptosis and improve the immunotherapy effect of anti-PD1 by boosting CD11b+CD44+PD-L1+cell population in HCC.

11.
J Agric Food Chem ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38603782

RESUMEN

D-Allulose is a high value rare sugar with multiple physiological functions and commercial potential that can be enzymatically synthesized from D-fructose by D-allulose 3-epimerase (DAEase). Poor catalytic activity and thermostability of DAEase prevent the industrial production of D-allulose. In this work, rational design was applied to a previously identified DAEase from Clostridium bolteae ATCC BAA-613 based on the "back to consensus mutations" hypothesis, and the catalytic activity of the Cb-I265 V variant was enhanced 2.5-fold. Furthermore, the Cb-I265 V/E268D double-site variant displayed 2.0-fold higher specific catalytic activity and 1.4-fold higher thermostability than the wild-type enzyme. Molecular docking and kinetic simulation results indicated increased hydrogen bonds between the active pocket and substrate, possibly contributing to the improved thermal stability and catalytic activity of the double-site mutant. The findings outlined a feasible approach for the rational design of multiple preset functions of target enzymes simultaneously.

12.
Plants (Basel) ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38592751

RESUMEN

Panicle type is one of the important factors affecting rice (Oryza sativa L.) yield, and the identification of regulatory genes in panicle development can provide significant insights into the molecular network involved. This study identified a large and dense panicle 1 (ldp1) mutant produced from the Wuyunjing 7 (WYJ7) genotype, which displayed significant relative increases in panicle length, number of primary and secondary branches, number of grains per panicle, grain width, and grain yield per plant. Scanning electron microscopy results showed that the shoot apical meristem (SAM) of ldp1 was relatively larger at the bract stage (BM), with a significantly increased number of primary (PBM) and secondary branch (SBM) meristematic centers, indicating that the ldp1 mutation affects early stages in SAM development Comparative RNA-Seq analysis of meristem tissues from WYJ7 and ldp1 at the BM, PBM, and SBM developmental stages indicated that the number of differentially expressed genes (DEGs) were highest (1407) during the BM stage. Weighted gene coexpression network analysis (WGCNA) revealed that genes in one module (turquoise) are associated with the ldp1 phenotype and highly expressed during the BM stage, suggesting their roles in the identity transition and branch differentiation stages of rice inflorescences. Hub genes involved in auxin synthesis and transport pathways, such as OsAUX1, OsAUX4, and OsSAUR25, were identified. Moreover, GO and KEGG analysis of the DEGs in the turquoise module and the 1407 DEGs in the BM stage revealed that a majority of genes involved in tryptophan metabolism and auxin signaling pathway were differentially expressed between WYJ and ldp1. The genetic analysis indicated that the ldp1 phenotype is controlled by a recessive monogene (LDP1), which was mapped to a region between 16.9 and 18.1 Mb on chromosome seven. This study suggests that the ldp1 mutation may affect the expression of key genes in auxin synthesis and signal transduction, enhance the size of SAM, and thus affect panicle development. This study provides insights into the molecular regulatory network underlying rice panicle morphogenesis and lays an important foundation for further understanding the function and molecular mechanism of LDP1 during panicle development.

13.
Int J Ophthalmol ; 17(4): 676-685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638258

RESUMEN

AIM: To identify different metabolites, proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy (PDR) and resistance to anti-vascular endothelial growth factor (VEGF) drugs, and to provide biomarkers for the diagnosis and treatment of PDR. METHODS: Vitreous specimens from patients with diabetic retinopathy were collected and analyzed by Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analyses based on 4D label-free technology. Statistically differentially expressed proteins (DEPs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway representation and protein interactions were analyzed. RESULTS: A total of 12 samples were analyzed. The proteomics results showed that a total of 58 proteins were identified as DEPs, of which 47 proteins were up-regulated and 11 proteins were down-regulated. We found that C1q and tumor necrosis factor related protein 5 (C1QTNF5), Clusterin (CLU), tissue inhibitor of metal protease 1 (TIMP1) and signal regulatory protein alpha (SIRPα) can all be specifically regulated after aflibercept treatment. GO functional analysis showed that some DEPs are related to changes in inflammatory regulatory pathways caused by PDR. In addition, protein-protein interaction (PPI) network evaluation revealed that TIMP1 plays a central role in neural regulation. In addition, CD47/SIRPα may become a key target to resolve anti-VEGF drug resistance in PDR. CONCLUSION: Proteomic analysis is an approach of choice to explore the molecular mechanisms of PDR. Our data show that multiple proteins are differentially changed in PDR patients after intravitreal injection of aflibercept, among which C1QTNF5, CLU, TIMP1 and SIRPα may become targets for future treatment of PDR and resolution of anti-VEGF resistance.

14.
Anal Chem ; 96(18): 7138-7144, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38676633

RESUMEN

Superoxide anion (O2·-) and peroxynitrite (ONOO-), two important oxidants under oxidative stress, coexist in complex cell and organism systems, playing crucial roles in various physiological and pathological processes, particularly in neurodegenerative diseases. Despite the absence of robust molecular tools capable of simultaneously visualizing O2·- and ONOO- in biosystems, the relationship between these two species remains understudied. Herein, we present sequentially activated fluorescent probe, DHX-SP, which exhibits exceptional selectivity and sensitivity toward O2·- and ONOO-. This probe enables precise imaging of these species in living PC12 cells under oxidative stress conditions using distinct fluorescence signal combinations. Furthermore, the probe DHX-SP has the ability to visualize changes in O2·- and ONOO- levels during ferroptosis of PC12 cells and in the Parkinson's disease model. These findings establish a connection between the crosstalk of the phosphorus group of O2·- and ONOO- in PC12 cells under oxidative stress.


Asunto(s)
Colorantes Fluorescentes , Estrés Oxidativo , Ácido Peroxinitroso , Superóxidos , Células PC12 , Ácido Peroxinitroso/análisis , Ácido Peroxinitroso/metabolismo , Animales , Ratas , Estrés Oxidativo/efectos de los fármacos , Colorantes Fluorescentes/química , Superóxidos/metabolismo , Superóxidos/análisis , Imagen Óptica
15.
J Colloid Interface Sci ; 667: 688-699, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38670012

RESUMEN

Lithium oxides (Li2O) possess a considerable theoretical capacity, rendering them highly promising as cathodic pre-lithiation additives. However, its decomposition voltage exceeds the charging cut-off voltage of most cathode materials, hindering its direct use as a cathode sacrificial additive. Herein, we design a facile and safe method to reduce the decomposition energy of Li2O at room temperature to offset the irreversible capacity loss by using a core-shell structured Li2O-reduced graphene oxide (rGO)-polyethylene glycol (PEG) composite (denoted as Li2O-rGO-PEG). The graphene oxide (GO) was heat-treated to remove oxygen functional groups to synthesize rGO, and then reacted with Li2O to form a Li2O-rGO composite. According to the DFT calculations, the density of states at the Fermi level of Li2O-rGO becomes continuous and features a metallic nature, which significantly improves the electrical conductivity of Li2O and facilitates electron conduction that modify the delithiation potential of Li2O. PEG was used to enhance the cohesive force between rGO and Li2O and to protect Li2O from atmospheric contamination. Moreover, in order to demonstrate the excellent pre-lithiation ability of Li2O-rGO-PEG composite, hard carbon (HC) with low initial coulombic efficiency (ICE) was used as the anode. In the application of LFP (Li2O)/HC full cell, Li2O was decomposed to Li+ to effectively improve the initial charge capacity from 149.7 to 200 mAh/g and discharge capacity from 104.2 to 147.5 mAh/g, which are 33.6 % and 41.6 % higher than those of the pristine LFP/HC full cell, respectively. The cathode pre-lithiation method proposed in this work is simple and environmentally friendly. The successful utilization of Li2O as a pre-lithiation additive effectively addressed the issue of low initial coulombic efficiency of the HC, indicating excellent prospects for practical applications.

16.
Front Genet ; 15: 1364944, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686025

RESUMEN

Fructose-1, 6-bisphosphate aldolase (FBA) plays vital roles in plant growth, development, and response to abiotic stress. However, genome-wide identification and structural characterization of the potato (Solanum tuberosum L.) FBA gene family has not been systematically analyzed. In this study, we identified nine StFBA gene members in potato, with six StFBA genes localized in the chloroplast and three in the cytoplasm. The analysis of gene structures, protein structures, and phylogenetic relationships indicated that StFBA genes were divided into Class I and II, which exhibited significant differences in structure and function. Synteny analysis revealed that segmental duplication events promoted the expansion of the StFBA gene family. Promoter analysis showed that most StFBA genes contained cis-regulatory elements associated with light and stress responses. Expression analysis showed that StFBA3, StFBA8, and StFBA9 showing significantly higher expression levels in leaf, stolon, and tuber under blue light, indicating that these genes may improve photosynthesis and play an important function in regulating the induction and expansion of microtubers. Expression levels of the StFBA genes were influenced by drought and salt stress, indicating that they played important roles in abiotic stress. This work offers a theoretical foundation for in-depth understanding of the evolution and function of StFBA genes, as well as providing the basis for the genetic improvement of potatoes.

17.
Animal Model Exp Med ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38590118

RESUMEN

BACKGROUND: Breast cancer is the most common cancer in women, and in advanced stages, it often metastasizes to the brain. However, research on the biological mechanisms of breast cancer brain metastasis and potential therapeutic targets are limited. METHODS: Differential gene expression analysis (DEGs) for the datasets GSE43837 and GSE125989 from the GEO database was performed using online analysis tools such as GEO2R and Sangerbox. Further investigation related to SULF1 was conducted using online databases such as Kaplan-Meier Plotter and cBioPortal. Thus, expression levels, variations, associations with HER2, biological processes, and pathways involving SULF1 could be analyzed using UALCAN, cBioPortal, GEPIA2, and LinkedOmics databases. Moreover, the sensitivity of SULF1 to existing drugs was explored using drug databases such as RNAactDrug and CADSP. RESULTS: High expression of SULF1 was associated with poor prognosis in advanced breast cancer brain metastasis and was positively correlated with the expression of HER2. In the metastatic breast cancer population, SULF1 ranked top among the 16 DEGs with the highest mutation rate, reaching 11%, primarily due to amplification. KEGG and GSEA analyses revealed that the genes co-expressed with SULF1 were positively enriched in the 'ECM-receptor interaction' gene set and negatively enriched in the 'Ribosome' gene set. Currently, docetaxel and vinorelbine can act as treatment options if the expression of SULF1 is high. CONCLUSIONS: This study, through bioinformatics analysis, unveiled SULF1 as a potential target for treating breast cancer brain metastasis (BM).

18.
Molecules ; 29(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611724

RESUMEN

In this study, oxidized single-walled carbon nanohorns (oxSWCNHs) were prepared using nitric acid oxidation and subsequently combined with 3'6-carboxyfluorescein through charge transfer to prepare fluorescent probes. These oxSWCNHs were used to quench fluorogen signals at short distances and dissociate ssDNA using cryonase enzymes. We established a method for rapidly detecting tetracycline (TC) in complex samples based on the amplification of cryonase enzyme signals. After optimizing the experimental conditions, our method showed a detection limit of 5.05 ng/mL, with good specificity. This method was used to determine the TC content in complex samples, yielding a recovery rate of 90.0-103.3%. This result validated the efficacy of our method in detecting TC content within complex samples.


Asunto(s)
Compuestos Heterocíclicos , Tetraciclina , Antibacterianos , Reciclaje , Carbono , ADN de Cadena Simple
19.
Front Genet ; 15: 1381690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650857

RESUMEN

The ALOG (Arabidopsis LSH1 and Oryza G1) family proteins, namely, DUF640 domain-containing proteins, have been reported to function as transcription factors in various plants. However, the understanding of the response and function of ALOG family genes during reproductive development and under abiotic stress is still largely limited. In this study, we comprehensively analyzed the structural characteristics of ALOG family proteins and their expression profiles during inflorescence development and under abiotic stress in rice. The results showed that OsG1/OsG1L1/2/3/4/5/6/7/8/9 all had four conserved helical structures and an inserted Zinc-Ribbon (ZnR), the other four proteins OsG1L10/11/12/13 lacked complete Helix-1 and Helix-2. In the ALOG gene promoters, there were abundant cis-acting elements, including ABA, MeJA, and drought-responsive elements. Most ALOG genes show a decrease in expression levels within 24 h under ABA and drought treatments, while OsG1L2 expression levels show an upregulated trend under ABA and drought treatments. The expression analysis at different stages of inflorescence development indicated that OsG1L1/2/3/8/11 were mainly expressed in the P1 stage; in the P4 stage, OsG1/OsG1L4/5/9/12 had a higher expression level. These results lay a good foundation for further studying the expression of rice ALOG family genes under abiotic stresses, and provide important experimental support for their functional research.

20.
J Agric Food Chem ; 72(20): 11503-11514, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38634424

RESUMEN

The fruits of Rosa roxburghii Tratt. are edible nutritional food with high medicinal value and have been traditionally used as Chinese folk medicine for a long time. In this study, 26 triterpenoids including four new pentacyclic triterpenoids, roxbuterpenes A-D (1, 4, 5, and 24), along with 22 known analogues (2, 3, 6-23, 25, and 26), were isolated from the fruits of R. roxburghii. Their chemical structures were determined on the basis of extensive spectroscopic analyses (including IR, HRESIMS and NMR spectroscopy). The absolute configuration of roxbuterpene A (1) was determined by an X-ray crystallographic analysis. This is the first report of the crystal structure of 5/6/6/6/6-fused system pentacyclic triterpenoid. Notably, roxbuterpenes A and B (1 and 4) possessed the A-ring contracted triterpenoid and nortriterpenoid skeletons with a rare 5/6/6/6/6-fused system, respectively. Compounds 1-7, 11, 13-15, 18-20, 24, and 25 exhibited moderate or potent inhibitory activities against α-glucosidase. Compounds 2, 4, 6, 11, and 14 showed strong activities against α-glucosidase with IC50 values of 8.4 ± 1.6, 7.3 ± 2.2, 13.6 ± 1.4, 0.9 ± 0.4, and 12.5 ± 2.4 µM, respectively (positive control acarbose, 10.1 ± 0.8 µM). Compounds 13, 14, and 16 moderately inhibited the release of NO (nitric oxide) with IC50 values ranging from 25.1 ± 2.0 to 51.4 ± 3.1 µM. Furthermore, the expressions of TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6) were detected by ELISA (enzyme-linked immunosorbent assay), and compounds 13, 14, and 16 exhibited moderate inhibitory effects on TNF-α and IL-6 release in a dose-dependent manner ranging from 12.5 to 50 µM.


Asunto(s)
Antiinflamatorios , Frutas , Inhibidores de Glicósido Hidrolasas , Rosa , Triterpenos , alfa-Glucosidasas , Animales , Ratones , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Frutas/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/inmunología , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Células RAW 264.7 , Rosa/química , Triterpenos/química , Triterpenos/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...