Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(5): 1018-1031, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693345

RESUMEN

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.


Asunto(s)
Embryophyta , Evolución Molecular , Filogenia , Transducción de Señal , Transducción de Señal/genética , Embryophyta/genética , Redes Reguladoras de Genes , Genoma/genética , Genoma de Planta
2.
bioRxiv ; 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36778228

RESUMEN

The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.

3.
Methods Mol Biol ; 2149: 483-502, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617952

RESUMEN

In the past hundreds of millions of years, from green algae to land plants, cell walls have developed into a highly complex structure that is essential for plant growth and survival. Plant cell wall diversity and evolution can be directly investigated by chemically profiling polysaccharides and lignins in the cell walls of diverse plants and algae. With the increasingly low cost and high throughput of DNA sequencing technologies, cell wall evolution can also be studied by bioinformatics analysis of the occurrence of cell wall synthesis-related enzymes in the genomes and transcriptomes of different species. This chapter presents a bioinformatics workflow running on a Linux platform to process genomic data for such gene occurrence analysis. As a case study, cellulose synthase (CesA) and CesA-like (Csl) protein families are mined for in two newly sequenced organisms: the charophyte green alga Klebsormidium flaccidum (renamed as Klebsormidium nitens) and the fern Lygodium japonicum.


Asunto(s)
Pared Celular/enzimología , Pared Celular/genética , Biología Computacional/métodos , Evolución Molecular , Plantas/enzimología , Plantas/genética , Celulosa/biosíntesis , Chlorophyta/enzimología , Chlorophyta/genética , Análisis por Conglomerados , Helechos/enzimología , Helechos/genética , Glucosiltransferasas/genética , Filogenia , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Transcriptoma
4.
J Exp Bot ; 71(11): 3361-3373, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32206790

RESUMEN

The complete chloroplast and mitochondrial genomes of Charophyta have shed new light on land plant terrestrialization. Here, we report the organellar genomes of the Zygnema circumcarinatum strain UTEX 1559, and a comparative genomics investigation of 33 plastomes and 18 mitogenomes of Chlorophyta, Charophyta (including UTEX 1559 and its conspecific relative SAG 698-1a), and Embryophyta. Gene presence/absence was determined across these plastomes and mitogenomes. A comparison between the plastomes of UTEX 1559 (157 548 bp) and SAG 698-1a (165 372 bp) revealed very similar gene contents, but substantial genome rearrangements. Surprisingly, the two plastomes share only 85.69% nucleotide sequence identity. The UTEX 1559 mitogenome size is 215 954 bp, the largest among all sequenced Charophyta. Interestingly, this large mitogenome contains a 50 kb region without homology to any other organellar genomes, which is flanked by two 86 bp direct repeats and contains 15 ORFs. These ORFs have significant homology to proteins from bacteria and plants with functions such as primase, RNA polymerase, and DNA polymerase. We conclude that (i) the previously published SAG 698-1a plastome is probably from a different Zygnema species, and (ii) the 50 kb region in the UTEX 1559 mitogenome might be recently acquired as a mobile element.


Asunto(s)
Embryophyta , Genoma del Cloroplasto , Genoma Mitocondrial , Secuencia de Bases , Cloroplastos , Evolución Molecular , Genoma de Planta , Filogenia
5.
Front Plant Sci ; 10: 732, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231410

RESUMEN

Previous analysis of charophyte green algal (CGA) genomes and transcriptomes for specific protein families revealed that numerous land plant characteristics had already evolved in CGA. In this study, we have sequenced and assembled the transcriptome of Zygnema circumcarinatum UTEX 1559, and combined its predicted protein sequences with those of 13 additional species [five embryophytes (Emb), eight charophytes (Cha), and two chlorophytes (Chl) as the outgroup] for a comprehensive comparative genomics analysis. In total 25,485 orthologous gene clusters (OGCs, equivalent to protein families) of the 14 species were classified into nine OGC groups. For example, the Cha+Emb group contains 4,174 OGCs found in both Cha and Emb but not Chl species, representing protein families that have evolved in the common ancestor of Cha and Emb. Different OGC groups were subjected to a Gene Ontology (GO) enrichment analysis with the Chl+Cha+Emb group (including 5,031 OGCs found in Chl and Cha and Emb) as the control. Interestingly, nine of the 20 top enriched GO terms in the Cha+Emb group are cell wall-related, such as biological processes involving celluloses, pectins, lignins, and xyloglucans. Furthermore, three glycosyltransferase families (GT2, 8, 43) were selected for in-depth phylogenetic analyses, which confirmed their presence in UTEX 1559. More importantly, of different CGA groups, only Zygnematophyceae has land plant cellulose synthase (CesA) orthologs, while other charophyte CesAs form a CGA-specific CesA-like (Csl) subfamily (likely also carries cellulose synthesis activity). Quantitative real-time-PCR experiments were performed on selected GT family genes in UTEX 1559. After osmotic stress treatment, significantly elevated expression was found for GT2 family genes ZcCesA, ZcCslC and ZcCslA-like (possibly mannan and xyloglucan synthases, respectively), as well as for GT8 family genes (possibly pectin synthases). All these suggest that the UTEX 1559 cell wall polysaccharide synthesis-related genes respond to osmotic stress in a manner that is similar to land plants.

6.
Ecol Evol ; 8(11): 5837-5851, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29938097

RESUMEN

DNA barcoding has proved difficult in a number of woody plant genera, including the ecologically important oak genus Quercus. In this study, we utilized restrictionsite-associated DNA sequencing (RAD-seq) to develop an economical single nucleotide polymorphism (SNP) DNA barcoding system that suffices to distinguish eight common, sympatric eastern North American white oak species. Two de novo clustering pipelines, PyRAD and Stacks, were used in combination with postclustering bioinformatic tools to generate a list of 291 potential SNPs, 80 of which were included in a barcoding toolkit that is easily implemented using MassARRAY mass spectrometry technology. As a proof-of-concept, we used the genotyping toolkit to infer potential hybridization between North American white oaks transplanted outside of their native range (Q. michauxii, Q. montana, Q muehlenbergii/Q. prinoides, and Q. stellata) into a horticultural collection surrounded by natural forests of locally native trees (Q. alba and Q. macrocarpa) in the living collection at The Morton Arboretum (Lisle, IL, USA). Phylogenetic and clustering analyses suggested low rates of hybridization between cultivated and native species, with the exception of one Q. michauxii mother tree, the acorns of which exhibited high admixture from either Q. alba or Q. stellata and Q. macrocarpa, and a hybrid between Q. stellata that appears to have backcrossed almost exclusively to Q. alba. Together, RAD-seq and MassARRAY technologies allow for efficient development and implementation of a multispecies barcode for one of the more challenging forest tree genera.

7.
Biochim Biophys Acta Gen Subj ; 1862(9): 1862-1869, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29864445

RESUMEN

Noncatalytic carbohydrate binding modules (CBMs) have been demonstrated to play various roles with cognate catalytic domains. However, for polysaccharide lyases (PLs), the roles of CBMs remain mostly unknown. AlyB is a multidomain alginate lyase that contains CBM32 and a PL7 catalytic domain. The AlyB structure determined herein reveals a noncanonical alpha helix linker between CBM32 and the catalytic domain. More interestingly, CBM32 and the linker does not significantly enhance the catalytic activity but rather specifies that trisaccharides are predominant in the degradation products. Detailed mutagenesis, biochemical and cocrystallization analyses show "weak but important" CBM32 interactions with alginate oligosaccharides. In combination with molecular modeling, we propose that the CBM32 domain serves as a "pivot point" during the trisaccharide release process. Collectively, this work demonstrates a novel role of CBMs in the activity of the appended PL domain and provides a new avenue for the well-defined generation of alginate oligosaccharides by taking advantage of associated CBMs.


Asunto(s)
Alginatos/metabolismo , Oligosacáridos/metabolismo , Polisacárido Liasas/química , Polisacárido Liasas/metabolismo , Vibrio/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Modelos Moleculares , Polisacárido Liasas/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Especificidad por Sustrato
8.
J Mol Evol ; 86(1): 77-89, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29349599

RESUMEN

In archaea, pseudouridine (Ψ) synthase Pus10 modifies uridine (U) to Ψ at positions 54 and 55 of tRNA. In contrast, Pus10 is not found in bacteria, where modifications at those two positions are carried out by TrmA (U54 to m5U54) and TruB (U55 to Ψ55). Many eukaryotes have an apparent redundancy; their genomes contain orthologs of archaeal Pus10 and bacterial TrmA and TruB. Although eukaryal Pus10 genes share a conserved catalytic domain with archaeal Pus10 genes, their biological roles are not clear for the two reasons. First, experimental evidence suggests that human Pus10 participates in apoptosis induced by the tumor necrosis factor-related apoptosis-inducing ligand. Whether the function of human Pus10 is in place or in addition to of Ψ synthesis in tRNA is unknown. Second, Pus10 is found in earlier evolutionary branches of fungi (such as chytrid Batrachochytrium) but is absent in all dikaryon fungi surveyed (Ascomycetes and Basidiomycetes). We did a comprehensive analysis of sequenced genomes and found that orthologs of Pus10, TrmA, and TruB were present in all the animals, plants, and protozoa surveyed. This indicates that the common eukaryotic ancestor possesses all the three genes. Next, we examined 116 archaeal and eukaryotic Pus10 protein sequences to find that Pus10 existed as a single copy gene in all the surveyed genomes despite ancestral whole genome duplications had occurred. This indicates a possible deleterious gene dosage effect. Our results suggest that functional redundancy result in gene loss or neofunctionalization in different evolutionary lineages.


Asunto(s)
Hidroliasas/genética , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Secuencia de Aminoácidos/genética , Animales , Archaea/genética , Bacterias/genética , Secuencia de Bases/genética , Evolución Biológica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eucariontes/genética , Evolución Molecular , Humanos , Hidroliasas/metabolismo , Filogenia , Seudogenes/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARNt Metiltransferasas
9.
Nat Commun ; 8(1): 1899, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196618

RESUMEN

Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C3 photosynthesis. To test this hypothesis, we generate a de novo genome assembly and genome-wide transcript expression data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb). Our comparative analyses identify signatures of convergence in protein sequence and re-scheduling of diel transcript expression of genes involved in nocturnal CO2 fixation, stomatal movement, heat tolerance, circadian clock, and carbohydrate metabolism in K. fedtschenkoi and other CAM species in comparison with non-CAM species. These findings provide new insights into molecular convergence and building blocks of CAM and will facilitate CAM-into-C3 photosynthesis engineering to enhance water-use efficiency in crops.


Asunto(s)
Ácidos/metabolismo , Evolución Molecular , Genoma de Planta , Kalanchoe/genética , Dióxido de Carbono/metabolismo , Duplicación de Gen , Kalanchoe/clasificación , Kalanchoe/metabolismo , Fotosíntesis , Filogenia , Plantas/clasificación , Plantas/genética , Plantas/metabolismo , Agua/metabolismo
10.
PLoS One ; 9(4): e93975, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24705617

RESUMEN

Previous phylogenetic studies in oaks (Quercus, Fagaceae) have failed to resolve the backbone topology of the genus with strong support. Here, we utilize next-generation sequencing of restriction-site associated DNA (RAD-Seq) to resolve a framework phylogeny of a predominantly American clade of oaks whose crown age is estimated at 23-33 million years old. Using a recently developed analytical pipeline for RAD-Seq phylogenetics, we created a concatenated matrix of 1.40 E06 aligned nucleotides, constituting 27,727 sequence clusters. RAD-Seq data were readily combined across runs, with no difference in phylogenetic placement between technical replicates, which overlapped by only 43-64% in locus coverage. 17% (4,715) of the loci we analyzed could be mapped with high confidence to one or more expressed sequence tags in NCBI Genbank. A concatenated matrix of the loci that BLAST to at least one EST sequence provides approximately half as many variable or parsimony-informative characters as equal-sized datasets from the non-EST loci. The EST-associated matrix is more complete (fewer missing loci) and has slightly lower homoplasy than non-EST subsampled matrices of the same size, but there is no difference in phylogenetic support or relative attribution of base substitutions to internal versus terminal branches of the phylogeny. We introduce a partitioned RAD visualization method (implemented in the R package RADami; http://cran.r-project.org/web/packages/RADami) to investigate the possibility that suboptimal topologies supported by large numbers of loci--due, for example, to reticulate evolution or lineage sorting--are masked by the globally optimal tree. We find no evidence for strongly-supported alternative topologies in our study, suggesting that the phylogeny we recover is a robust estimate of large-scale phylogenetic patterns in the American oak clade. Our study is one of the first to demonstrate the utility of RAD-Seq data for inferring phylogeny in a 23-33 million year-old clade.


Asunto(s)
Filogenia , Quercus/genética , Secuencia de Bases , Análisis por Conglomerados , Biología Computacional , Etiquetas de Secuencia Expresada , Secuenciación de Nucleótidos de Alto Rendimiento , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , América del Norte , Quercus/clasificación , Mapeo Restrictivo , Homología de Secuencia , Programas Informáticos
11.
RNA ; 19(9): 1279-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23898217

RESUMEN

Pseudouridines (Ψ) are found in structurally and functionally important regions of RNAs. Six families of Ψ synthases, TruA, TruB, TruD, RsuA, RluA, and Pus10 have been identified. Pus10 is present in Archaea and Eukarya. While most archaeal Pus10 produce both tRNA Ψ54 and Ψ55, some produce only Ψ55. Interestingly, human PUS10 has been implicated in apoptosis and Crohn's and Celiac diseases. Homology models of archaeal Pus10 proteins based on the crystal structure of human PUS10 reveal that there are subtle structural differences in all of these Pus10 proteins. These observations suggest that structural changes in homologous proteins may lead to loss, gain, or change of their functions, warranting the need to study the structure-function relationship of these proteins. Using comparison of structural models and a series of mutations, we identified forefinger loop (reminiscent of that of RluA) and an Arg and a Tyr residue of archaeal Pus10 as critical determinants for its Ψ54, but not for its Ψ55 activity. We also found that a Leu residue, in addition to the catalytic Asp, is essential for both activities. Since forefinger loop is needed for both rRNA and tRNA Ψ synthase activities of RluA, but only for tRNA Ψ54 activity of Pus10, archaeal Pus10 proteins must use a different mechanism of recognition for Ψ55 activity. We propose that archaeal Pus10 uses two distinct mechanisms for substrate uridine recognition and binding. However, since we did not observe any mutation that affected only Ψ55 activity, both mechanisms for archaeal Pus10 activities must share some common features.


Asunto(s)
Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/metabolismo , Transferasas Intramoleculares/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Emparejamiento Base , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Seudouridina/genética , Seudouridina/metabolismo , ARN Ribosómico/metabolismo , ARN de Transferencia/genética
12.
Biochem J ; 439(3): 375-9, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21992098

RESUMEN

Plant pyrophosphorylases that are capable of producing UDP-sugars, key precursors for glycosylation reactions, include UDP-glucose pyrophosphorylases (A- and B-type), UDP-sugar pyrophosphorylase and UDP-N-acetylglucosamine pyrophosphorylase. Although not sharing significant homology at the amino acid sequence level, the proteins share a common structural blueprint. Their structures are characterized by the presence of the Rossmann fold in the central (catalytic) domain linked to enzyme-specific N-terminal and C-terminal domains, which may play regulatory functions. Molecular mobility between these domains plays an important role in substrate binding and catalysis. Evolutionary relationships and the role of (de)oligomerization as a regulatory mechanism are discussed.


Asunto(s)
Nucleotidiltransferasas/biosíntesis , Nucleotidiltransferasas/química , Extractos Vegetales/química , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Homología Estructural de Proteína , Azúcares de Uridina Difosfato/biosíntesis , Azúcares de Uridina Difosfato/química , Animales , Humanos , Nucleotidiltransferasas/fisiología , Filogenia , Extractos Vegetales/metabolismo , Proteínas de Plantas/fisiología , UTP-Glucosa-1-Fosfato Uridililtransferasa/biosíntesis , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/fisiología , Azúcares de Uridina Difosfato/fisiología
13.
Biochim Biophys Acta ; 1794(12): 1734-42, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19683599

RESUMEN

UDP-glucose (UDPG) pyrophosphorylase (UGPase) produces UDPG for sucrose and polysaccharide synthesis and glycosylation reactions. In this study, several barley UGPase mutants were produced, either single amino acid mutants or involving deletions of N- and C-terminal domains (Ncut and Ccut mutants, respectively) and of active site region ("NB loop"). The Del-NB mutant yielded no activity, whereas Ncut deletions and most of Ccut mutants, including short deletions at the so called "I-loop" region of C-terminal domain, as well as a single K260A mutant resulted in very low activity. For wt and the mutants, kinetics with UDPG were linear on reciprocal plots, whereas PPi at concentrations above 1 mM exerted strong substrate inhibition. Both K260A and most of the Ccut mutants had very high Km with PPi (up to 33 mM), whereas Ncut deletions had greatly increased Km with UDPG (up to 57 mM). Surprisingly, an 8 amino acid deletion from end of the C-terminus resulted in an enzyme (Ccut-8 mutant) with 44% higher activity when compared to wt, but with similar Km values. Whereas Ccut-8 existed solely as a monomer, other deletion mutants had a more oligomerized status, e.g. Ncut mutants existing primarily as dimers. Overall, the data confirmed the essential role of NB loop in catalysis, but also pointed out to the role of both N- and C-termini for activity, substrate binding and oligomerization. The importance of oligomerization status for enzymatic activity of UGPase is discussed.


Asunto(s)
Hordeum/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Dominio Catalítico/genética , Cartilla de ADN/genética , Difosfatos/metabolismo , Hordeum/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Especificidad por Sustrato , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...