Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(3): e4898, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358135

RESUMEN

Structural genomics consortia established that protein crystallization is the primary obstacle to structure determination using x-ray crystallography. We previously demonstrated that crystallization propensity is systematically related to primary sequence, and we subsequently performed computational analyses showing that arginine is the most overrepresented amino acid in crystal-packing interfaces in the Protein Data Bank. Given the similar physicochemical characteristics of arginine and lysine, we hypothesized that multiple lysine-to-arginine (KR) substitutions should improve crystallization. To test this hypothesis, we developed software that ranks lysine sites in a target protein based on the redundancy-corrected KR substitution frequency in homologs. This software can be run interactively on the worldwide web at https://www.pxengineering.org/. We demonstrate that three unrelated single-domain proteins can tolerate 5-11 KR substitutions with at most minor destabilization, and, for two of these three proteins, the construct with the largest number of KR substitutions exhibits significantly enhanced crystallization propensity. This approach rapidly produced a 1.9 Å crystal structure of a human protein domain refractory to crystallization with its native sequence. Structures from Bulk KR-substituted domains show the engineered arginine residues frequently make hydrogen-bonds across crystal-packing interfaces. We thus demonstrate that Bulk KR substitution represents a rational and efficient method for probabilistic engineering of protein surface properties to improve crystallization.


Asunto(s)
Lisina , Proteínas , Humanos , Lisina/química , Cristalización , Proteínas/genética , Aminoácidos/química , Cristalografía por Rayos X , Arginina/metabolismo
2.
Cell Chem Biol ; 31(4): 805-819.e9, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38061356

RESUMEN

Transcription factors have proven difficult to target with small molecules because they lack pockets necessary for potent binding. Disruption of protein expression can suppress targets and enable therapeutic intervention. To this end, we developed a drug discovery workflow that incorporates cell-line-selective screening and high-throughput expression profiling followed by regulatory network analysis to identify compounds that suppress regulatory drivers of disease. Applying this approach to neuroblastoma (NBL), we screened bioactive molecules in cell lines representing its MYC-dependent (MYCNA) and mesenchymal (MES) subtypes to identify selective compounds, followed by PLATESeq profiling of treated cells. This revealed compounds that disrupt a sub-network of MYCNA-specific regulatory proteins, resulting in MYCN degradation in vivo. The top hit was isopomiferin, a prenylated isoflavonoid that inhibited casein kinase 2 (CK2) in cells. Isopomiferin and its structural analogs inhibited MYC and MYCN in NBL and lung cancer cells, highlighting the general MYC-inhibiting potential of this unique scaffold.

3.
mBio ; 15(1): e0292623, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38112469

RESUMEN

IMPORTANCE: Cyanide is an inhibitor of heme-copper oxidases, which are required for aerobic respiration in all eukaryotes and many prokaryotes. This fast-acting poison can arise from diverse sources, but mechanisms by which bacteria sense it are poorly understood. We investigated the regulatory response to cyanide in the pathogenic bacterium Pseudomonas aeruginosa, which produces cyanide as a virulence factor. Although P. aeruginosa has the capacity to produce a cyanide-resistant oxidase, it relies primarily on heme-copper oxidases and even makes additional heme-copper oxidase proteins specifically under cyanide-producing conditions. We found that the protein MpaR controls expression of cyanide-inducible genes in P. aeruginosa and elucidated the molecular details of this regulation. MpaR contains a DNA-binding domain and a domain predicted to bind pyridoxal phosphate (vitamin B6), a compound that is known to react spontaneously with cyanide. These observations provide insight into the understudied phenomenon of cyanide-dependent regulation of gene expression in bacteria.


Asunto(s)
Oxidorreductasas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Cianuros/metabolismo , Respiración , Biopelículas , Hemo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
4.
ACS Med Chem Lett ; 14(12): 1664-1672, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116412

RESUMEN

We previously identified the natural products isopomiferin and pomiferin as powerful, indirect MYCN-ablating agents. In this work, we expand on their mechanism of action and find that casein kinase 2 (CK2), phosphoinositide 3-kinase (PI3K), checkpoint kinase 1 (CHK1) and serine/threonine protein kinase 38-like (STK38L), as well as STK38, work synchronously to create a field effect that maintains MYCN stability. By systematically inhibiting these kinases, we degraded MYCN and induced cell death. Additionally, we synthesized and tested several simpler and more cost-effective pomiferin analogues, which successfully emulated the compound's MYCN ablating activity. Our work identified and characterized key kinases that can be targeted to interfere with the stability of the MYCN protein in NBL cells, demonstrating the efficacy of an indirect approach to targeting "undruggable" cancer drivers.

5.
Nat Commun ; 14(1): 1328, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899004

RESUMEN

The TINCR (Terminal differentiation-Induced Non-Coding RNA) gene is selectively expressed in epithelium tissues and is involved in the control of human epidermal differentiation and wound healing. Despite its initial report as a long non-coding RNA, the TINCR locus codes for a highly conserved ubiquitin-like microprotein associated with keratinocyte differentiation. Here we report the identification of TINCR as a tumor suppressor in squamous cell carcinoma (SCC). TINCR is upregulated by UV-induced DNA damage in a TP53-dependent manner in human keratinocytes. Decreased TINCR protein expression is prevalently found in skin and head and neck squamous cell tumors and TINCR expression suppresses the growth of SCC cells in vitro and in vivo. Consistently, Tincr knockout mice show accelerated tumor development following UVB skin carcinogenesis and increased penetrance of invasive SCCs. Finally, genetic analyses identify loss-of-function mutations and deletions encompassing the TINCR gene in SCC clinical samples supporting a tumor suppressor role in human cancer. Altogether, these results demonstrate a role for TINCR as protein coding tumor suppressor gene recurrently lost in squamous cell carcinomas.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , ARN Largo no Codificante , Animales , Ratones , Humanos , Ubiquitina/metabolismo , Carcinoma de Células Escamosas/genética , Genes Supresores de Tumor , Queratinocitos/metabolismo , Neoplasias de Cabeza y Cuello/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Micropéptidos
6.
Cell Chem Biol ; 29(12): 1680-1693.e9, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36423641

RESUMEN

Encouraged by the dependence of drug-resistant, metastatic cancers on GPX4, we examined biophysical mechanisms of GPX4 inhibition, which revealed an unexpected allosteric site. We found that this site was involved in native regeneration of GPX4 under low glutathione conditions. Covalent binding of inhibitors to this allosteric site caused a conformational change, inhibition of activity, and subsequent cellular GPX4 protein degradation. To verify this site in an unbiased manner, we screened a library of compounds and identified and validated that an additional compound can covalently bind in this allosteric site, inhibiting and degrading GPX4. We determined co-crystal structures of six different inhibitors bound in this site. We have thus identified an allosteric mechanism for small molecules targeting aggressive cancers dependent on GPX4.


Asunto(s)
Neoplasias , Humanos , Sitio Alostérico
7.
Cancer Discov ; 12(11): 2646-2665, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35984649

RESUMEN

Low-intensity maintenance therapy with 6-mercaptopurine (6-MP) limits the occurrence of acute lymphoblastic leukemia (ALL) relapse and is central to the success of multiagent chemotherapy protocols. Activating mutations in the 5'-nucleotidase cytosolic II (NT5C2) gene drive resistance to 6-MP in over 35% of early relapse ALL cases. Here we identify CRCD2 as a first-in-class small-molecule NT5C2 nucleotidase inhibitor broadly active against leukemias bearing highly prevalent relapse-associated mutant forms of NT5C2 in vitro and in vivo. Importantly, CRCD2 treatment also enhanced the cytotoxic activity of 6-MP in NT5C2 wild-type leukemias, leading to the identification of NT5C2 Ser502 phosphorylation as a novel NT5C2-mediated mechanism of 6-MP resistance in this disease. These results uncover an unanticipated role of nongenetic NT5C2 activation as a driver of 6-MP resistance in ALL and demonstrate the potential of NT5C2 inhibitor therapy for enhancing the efficacy of thiopurine maintenance therapy and overcoming resistance at relapse. SIGNIFICANCE: Relapse-associated NT5C2 mutations directly contribute to relapse in ALL by driving resistance to chemotherapy with 6-MP. Pharmacologic inhibition of NT5C2 with CRCD2, a first-in-class nucleotidase inhibitor, enhances the cytotoxic effects of 6-MP and effectively reverses thiopurine resistance mediated by genetic and nongenetic mechanisms of NT5C2 activation in ALL. This article is highlighted in the In This Issue feature, p. 2483.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mercaptopurina/farmacología , Mercaptopurina/uso terapéutico , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/uso terapéutico , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Recurrencia
8.
EMBO J ; 41(17): e108368, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35801308

RESUMEN

The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo-EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active-site structure in one such class of proteins, the short-chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active-site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure-stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity-enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.


Asunto(s)
Evolución Biológica , Oxidorreductasas , Secuencia de Aminoácidos , Dominio Catalítico , Oxidorreductasas/metabolismo , Filogenia
9.
Nat Commun ; 13(1): 1891, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393402

RESUMEN

The SARS-CoV-2 3CL protease is a critical drug target for small molecule COVID-19 therapy, given its likely druggability and essentiality in the viral maturation and replication cycle. Based on the conservation of 3CL protease substrate binding pockets across coronaviruses and using screening, we identified four structurally distinct lead compounds that inhibit SARS-CoV-2 3CL protease. After evaluation of their binding specificity, cellular antiviral potency, metabolic stability, and water solubility, we prioritized the GC376 scaffold as being optimal for optimization. We identified multiple drug-like compounds with <10 nM potency for inhibiting SARS-CoV-2 3CL and the ability to block SARS-CoV-2 replication in human cells, obtained co-crystal structures of the 3CL protease in complex with these compounds, and determined that they have pan-coronavirus activity. We selected one compound, termed coronastat, as an optimized lead and characterized it in pharmacokinetic and safety studies in vivo. Coronastat represents a new candidate for a small molecule protease inhibitor for the treatment of SARS-CoV-2 infection for eliminating pandemics involving coronaviruses.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Proteasas , Antivirales/química , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2
10.
Nat Chem Biol ; 18(1): 91-100, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34931062

RESUMEN

Glutathione peroxidase 4 (GPX4), as the only enzyme in mammals capable of reducing esterified phospholipid hydroperoxides within a cellular context, protects cells from ferroptosis. We identified a homozygous point mutation in the GPX4 gene, resulting in an R152H coding mutation, in three patients with Sedaghatian-type spondylometaphyseal dysplasia. Using structure-based analyses and cell models, including patient fibroblasts, of this variant, we found that the missense variant destabilized a critical loop, which disrupted the active site and caused a substantial loss of enzymatic function. We also found that the R152H variant of GPX4 is less susceptible to degradation, revealing the degradation mechanism of the GPX4 protein. Proof-of-concept therapeutic treatments, which overcome the impaired R152H GPX4 activity, including selenium supplementation, selective antioxidants and a deuterated polyunsaturated fatty acid were identified. In addition to revealing a general approach to investigating rare genetic diseases, we demonstrate the biochemical foundations of therapeutic strategies targeting GPX4.


Asunto(s)
Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Medicina de Precisión , Humanos , Mutación Puntual , Prueba de Estudio Conceptual
12.
Nat Commun ; 12(1): 2016, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795671

RESUMEN

We report the identification of three structurally diverse compounds - compound 4, GC376, and MAC-5576 - as inhibitors of the SARS-CoV-2 3CL protease. Structures of each of these compounds in complex with the protease revealed strategies for further development, as well as general principles for designing SARS-CoV-2 3CL protease inhibitors. These compounds may therefore serve as leads for the basis of building effective SARS-CoV-2 3CL protease inhibitors.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Humanos , Pirrolidinas/farmacología , Ácidos Sulfónicos
13.
bioRxiv ; 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32793898

RESUMEN

We report the identification of three structurally diverse compounds - compound 4, GC376, and MAC-5576 - as inhibitors of the SARS-CoV-2 3CL protease. Structures of each of these compounds in complex with the protease revealed strategies for further development, as well as general principles for designing SARS-CoV-2 3CL protease inhibitors. These compounds may therefore serve as leads for the basis of building effective SARS-CoV-2 3CL protease inhibitors.

14.
Cancer Cell ; 34(1): 136-147.e6, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990496

RESUMEN

Activating mutations in the cytosolic 5'-nucleotidase II gene NT5C2 drive resistance to 6-mercaptopurine in acute lymphoblastic leukemia. Here we demonstrate that constitutively active NT5C2 mutations K359Q and L375F reconfigure the catalytic center for substrate access and catalysis in the absence of allosteric activator. In contrast, most relapse-associated mutations, which involve the arm segment and residues along the surface of the inter-monomeric cavity, disrupt a built-in switch-off mechanism responsible for turning off NT5C2. In addition, we show that the C-terminal acidic tail lost in the Q523X mutation functions to restrain NT5C2 activation. These results uncover dynamic mechanisms of enzyme regulation targeted by chemotherapy resistance-driving NT5C2 mutations, with important implications for the development of NT5C2 inhibitor therapies.


Asunto(s)
5'-Nucleotidasa/genética , Antimetabolitos Antineoplásicos/farmacología , Resistencia a Antineoplásicos/genética , Mercaptopurina/farmacología , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , 5'-Nucleotidasa/química , 5'-Nucleotidasa/metabolismo , Regulación Alostérica , Animales , Dominio Catalítico , Regulación Leucémica de la Expresión Génica , Células HEK293 , Humanos , Células Jurkat , Ratones Endogámicos C57BL , Modelos Moleculares , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Conformación Proteica en Hélice alfa , Recurrencia , Relación Estructura-Actividad
15.
J Biol Chem ; 293(46): 17685-17704, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29903914

RESUMEN

Many disease-causing mutations impair protein stability. Here, we explore a thermodynamic strategy to correct the disease-causing F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR). F508del destabilizes nucleotide-binding domain 1 (hNBD1) in hCFTR relative to an aggregation-prone intermediate. We developed a fluorescence self-quenching assay for compounds that prevent aggregation of hNBD1 by stabilizing its native conformation. Unexpectedly, we found that dTTP and nucleotide analogs with exocyclic methyl groups bind to hNBD1 more strongly than ATP and preserve electrophysiological function of full-length F508del-hCFTR channels at temperatures up to 37 °C. Furthermore, nucleotides that increase open-channel probability, which reflects stabilization of an interdomain interface to hNBD1, thermally protect full-length F508del-hCFTR even when they do not stabilize isolated hNBD1. Therefore, stabilization of hNBD1 itself or of one of its interdomain interfaces by a small molecule indirectly offsets the destabilizing effect of the F508del mutation on full-length hCFTR. These results indicate that high-affinity binding of a small molecule to a remote site can correct a disease-causing mutation. We propose that the strategies described here should be applicable to identifying small molecules to help manage other human diseases caused by mutations that destabilize native protein conformation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Nucleótidos de Timina/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Enlace de Hidrógeno , Ligandos , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Desplegamiento Proteico , Termodinámica
16.
Nat Chem Biol ; 14(2): 156-162, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29251719

RESUMEN

Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.


Asunto(s)
Perfilación de la Expresión Génica , Sialiltransferasas/química , Animales , Baculoviridae/metabolismo , Cristalografía por Rayos X , Citidina Monofosfato/química , Vectores Genéticos , Glicósido Hidrolasas/química , Glicosilación , Células HEK293 , Humanos , Insectos , Cinética , Proteínas Recombinantes/química , Sulfotransferasas/química
17.
Dalton Trans ; 46(39): 13211-13219, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28640310

RESUMEN

TYW1 is a metalloenzyme involved in the modifications of guanosine 37 of Phe-tRNA of Eukaryota and Archaea. It catalyzes the second step of Wybutosine biosynthesis, which consists of the formation of the tricyclic compound imG-14 from m1G using pyruvate and SAM (S-adenosyl-methionine) as co-substrates. Two [4Fe-4S] clusters are needed in the catalytic process. One effects the reductive binding of SAM, which initiates the radical reaction that inserts a C-C moiety into m1G. The other [4Fe-4S] cluster binds the pyruvate molecule that provides the C-C motif. Using a combination of EPR and Mössbauer spectroscopy, we have been able to probe the binding of both cofactors to the FeS clusters. The results highlight an interaction between pyruvate and SAM, indicating that they bind in close vicinity inside the catalytic pocket. They also indicate a chelating binding mode of pyruvate to the accessible Fe site of the corresponding FeS cluster. This binding mode has been used to construct a docking model of holoTYW1 with pyruvate and SAM, which is consistent with the spectroscopic findings.


Asunto(s)
Proteínas Arqueales/metabolismo , Carboxiliasas/metabolismo , Coenzimas/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas Arqueales/genética , Biocatálisis , Carboxiliasas/genética , Coenzimas/química , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/química , Mutagénesis Sitio-Dirigida , Nucleósidos/biosíntesis , Estructura Terciaria de Proteína , Pyrococcus abyssi/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , S-Adenosilmetionina/química , Espectroscopía de Mossbauer , Especificidad por Sustrato
18.
Genome Med ; 8(1): 116, 2016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27799065

RESUMEN

BACKGROUND: Precision medicine approaches are ideally suited for rare tumors where comprehensive characterization may have diagnostic, prognostic, and therapeutic value. We describe the clinical case and molecular characterization of an adolescent with metastatic poorly differentiated carcinoma (PDC). Given the rarity and poor prognosis associated with PDC in children, we utilized genomic analysis and preclinical models to validate oncogenic drivers and identify molecular vulnerabilities. METHODS: We utilized whole exome sequencing (WES) and transcriptome analysis to identify germline and somatic alterations in the patient's tumor. In silico and in vitro studies were used to determine the functional consequences of genomic alterations. Primary tumor was used to generate a patient-derived xenograft (PDX) model, which was used for in vivo assessment of predicted therapeutic options. RESULTS: WES revealed a novel germline frameshift variant (p.E1554fs) in APC, establishing a diagnosis of Gardner syndrome, along with a somatic nonsense (p.R790*) APC mutation in the tumor. Somatic mutations in TP53, MAX, BRAF, ROS1, and RPTOR were also identified and transcriptome and immunohistochemical analyses suggested hyperactivation of the Wnt/ß-catenin and AKT/mTOR pathways. In silico and biochemical assays demonstrated that the MAX p.R60Q and BRAF p.K483E mutations were activating mutations, whereas the ROS1 and RPTOR mutations were of lower utility for therapeutic targeting. Utilizing a patient-specific PDX model, we demonstrated in vivo activity of mTOR inhibition with temsirolimus and partial response to inhibition of MEK. CONCLUSIONS: This clinical case illustrates the depth of investigation necessary to fully characterize the functional significance of the breadth of alterations identified through genomic analysis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma/tratamiento farmacológico , Carcinoma/genética , Genómica/métodos , Enfermedades Raras/tratamiento farmacológico , Enfermedades Raras/genética , Adolescente , Animales , Carboplatino/efectos adversos , Carcinoma/diagnóstico por imagen , Análisis Mutacional de ADN , Etopósido/efectos adversos , Resultado Fatal , Humanos , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Paclitaxel/efectos adversos , Enfermedades Raras/diagnóstico por imagen , Cuero Cabelludo/efectos de los fármacos , Cuero Cabelludo/metabolismo , Cuero Cabelludo/patología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Sci Rep ; 6: 35169, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762317

RESUMEN

Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/química , Oxígeno/química , Estructura Secundaria de Proteína , Triptófano Oxigenasa/química , Triptófano/química , Catálisis , Cristalografía por Rayos X , Humanos , Quinurenina/análogos & derivados , Quinurenina/biosíntesis , Unión Proteica/fisiología , Triptófano Oxigenasa/metabolismo
20.
Biochemistry ; 55(41): 5798-5808, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27677419

RESUMEN

RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C3 methylthiolation of the D89 residue in the ribosomal S12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS- ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , S-Adenosilmetionina/metabolismo , Sulfurtransferasas/metabolismo , Catálisis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Análisis Espectral/métodos , Sulfurtransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...