Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 59(6): 3467-3484, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35325397

RESUMEN

The adult neocortex is a six-layered structure, consisting of nearly continuous layers of neurons that are generated in a temporally strictly coordinated order. During development, cortical neurons originating from the ventricular zone migrate toward the Reelin-containing marginal zone in an inside-out arrangement. Focal adhesion kinase (FAK), one tyrosine kinase localizing to focal adhesions, has been shown to be phosphorylated at tyrosine 925 (Y925) by Src, an important downstream molecule of Reelin signaling. Up to date, the precise molecular mechanisms of FAK and its phosphorylation at Y925 during neuronal migration are still unclear. Combining in utero electroporation with immunohistochemistry and live imaging, we examined the function of FAK in regulating neuronal migration. We show that phosphorylated FAK is colocalized with Reelin positive Cajal-Retzius cells in the developing neocortex and hippocampus. Phosphorylation of FAK at Y925 is significantly reduced in reeler mice. Overexpression and dephosphorylation of FAK impair locomotion and translocation, resulting in migration inhibition and dislocation of both late-born and early-born neurons. These migration defects are highly correlated to the function of FAK in regulating cofilin phosphorylation and N-Cadherin expression, both are involved in Reelin signaling pathway. Thus, fine-tuned phosphorylation of focal adhesion kinase at Y925 is crucial for both glia-dependent and independent neuronal migration.


Asunto(s)
Factores Despolimerizantes de la Actina , Cadherinas , Factores Despolimerizantes de la Actina/metabolismo , Animales , Cadherinas/metabolismo , Movimiento Celular/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Ratones , Neuroglía/metabolismo , Fosforilación/fisiología
2.
PLoS One ; 15(10): e0240610, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33049001

RESUMEN

Presynaptic mitochondrial Ca2+ plays a critical role in the regulation of synaptic transmission and plasticity. The presynaptic bouton of the hippocampal mossy fiber (MF) is much larger in size than that of the Schaffer collateral (SC) synapse. Here we compare the structural and physiological characteristics of MF and SC presynaptic boutons to reveal functional and mechanistic differences between these two synapses. Our quantitative ultrastructural analysis using electron microscopy show many more mitochondria in MF presynaptic bouton cross-section profiles compared to SC boutons. Consistent with these results, post-tetanic potentiation (PTP), a form of presynaptic short-term plasticity dependent on mitochondrial Ca2+, is reduced by inhibition of mitochondrial Ca2+ release at MF synapses but not at SC synapses. However, blockade of mitochondrial Ca2+ release results in reduction of PTP at SC synapses by disynaptic MF stimulation. Furthermore, inhibition of mitochondrial Ca2+ release selectively decreases frequency facilitation evoked by short trains of presynaptic stimulation at MF synapses, while having no effect at SC synapses. Moreover, depletion of ER Ca2+ stores leads to reduction of PTP at MF synapses, but PTP is unaffected by ER Ca2+ depletion at SC synapses. These findings show that MF and SC synapses differ in presynaptic mitochondrial content as well as mitochondrial Ca2+ dependent synaptic plasticity, highlighting differential regulatory mechanisms of presynaptic plasticity at MF and SC synapses.


Asunto(s)
Calcio/metabolismo , Hipocampo/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/ultraestructura , Masculino , Ratones , Microscopía Electrónica , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fibras Musgosas del Hipocampo/efectos de los fármacos , Fibras Musgosas del Hipocampo/ultraestructura , Plasticidad Neuronal/efectos de los fármacos , Compuestos Onio/farmacología , Compuestos Organofosforados/farmacología , Técnicas de Placa-Clamp , Tiazepinas/farmacología
3.
Cereb Cortex ; 30(3): 1688-1707, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31667489

RESUMEN

Reelin is an extracellular matrix protein, known for its dual role in neuronal migration during brain development and in synaptic plasticity at adult stages. During the perinatal phase, Reelin expression switches from Cajal-Retzius (CR) cells, its main source before birth, to inhibitory interneurons (IN), the main source of Reelin in the adult forebrain. IN-derived Reelin has been associated with schizophrenia and temporal lobe epilepsy; however, the functional role of Reelin from INs is presently unclear. In this study, we used conditional knockout mice, which lack Reelin expression specifically in inhibitory INs, leading to a substantial reduction in total Reelin expression in the neocortex and dentate gyrus. Our results show that IN-specific Reelin knockout mice exhibit normal neuronal layering and normal behavior, including spatial reference memory. Although INs are the major source of Reelin within the adult stem cell niche, Reelin from INs does not contribute substantially to normal adult neurogenesis. While a closer look at the dentate gyrus revealed some unexpected alterations at the cellular level, including an increase in the number of Reelin expressing CR cells, overall our data suggest that Reelin derived from INs is less critical for cortex development and function than Reelin expressed by CR cells.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Giro Dentado/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Interneuronas/metabolismo , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Conducta Animal/fisiología , Movimiento Celular/fisiología , Giro Dentado/fisiopatología , Hipocampo/metabolismo , Interneuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/fisiología , Neuronas/metabolismo , Hojas de la Planta/metabolismo , Proteína Reelina
4.
Sci Rep ; 9(1): 15940, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685876

RESUMEN

Microtubule severing regulates cytoskeletal rearrangement underlying various cellular functions. Katanin, a heterodimer, consisting of catalytic (p60) and regulatory (p80) subunits severs dynamic microtubules to modulate several stages of cell division. The role of p60 katanin in the mammalian brain with respect to embryonic and adult neurogenesis is poorly understood. Here, we generated a Katna1 knockout mouse and found that consistent with a critical role of katanin in mitosis, constitutive homozygous Katna1 depletion is lethal. Katanin p60 haploinsufficiency induced an accumulation of neuronal progenitors in the subventricular zone during corticogenesis, and impaired their proliferation in the adult hippocampus dentate gyrus (DG) subgranular zone. This did not compromise DG plasticity or spatial and contextual learning and memory tasks employed in our study, consistent with the interpretation that adult neurogenesis may be associated with selective forms of hippocampal-dependent cognitive processes. Our data identify a critical role for the microtubule-severing protein katanin p60 in regulating neuronal progenitor proliferation in vivo during embryonic development and adult neurogenesis.


Asunto(s)
Diferenciación Celular , Katanina/genética , Microtúbulos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Factores de Edad , Alelos , Animales , Diferenciación Celular/genética , Proliferación Celular , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Giro Dentado/embriología , Giro Dentado/metabolismo , Marcación de Gen , Haploinsuficiencia , Katanina/metabolismo , Aprendizaje , Memoria , Ratones , Ratones Noqueados , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Organogénesis , Fenotipo
5.
J Cell Sci ; 132(16)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31371487

RESUMEN

The spine apparatus (SA) is an endoplasmic reticulum-related organelle that is present in a subset of dendritic spines in cortical and pyramidal neurons, and plays an important role in Ca2+ homeostasis and dendritic spine plasticity. The protein synaptopodin is essential for the formation of the SA and is widely used as a maker for this organelle. However, it is still unclear which factors contribute to its localization at selected synapses, and how it triggers local SA formation. In this study, we characterized development, localization and mobility of synaptopodin clusters in hippocampal primary neurons, as well as the molecular dynamics within these clusters. Interestingly, synaptopodin at the shaft-associated clusters is less dynamic than at spinous clusters. We identify the actin-based motor proteins myosin V (herein referring to both the myosin Va and Vb forms) and VI as novel interaction partners of synaptopodin, and demonstrate that myosin V is important for the formation and/or maintenance of the SA. We found no evidence of active microtubule-based transport of synaptopodin. Instead, new clusters emerge inside spines, which we interpret as the SA being assembled on-site.


Asunto(s)
Dendritas/metabolismo , Hipocampo/metabolismo , Proteínas de Microfilamentos/metabolismo , Miosina Tipo V/metabolismo , Animales , Dendritas/genética , Femenino , Hipocampo/citología , Ratones , Proteínas de Microfilamentos/genética , Miosina Tipo V/genética , Ratas , Ratas Wistar
6.
PLoS One ; 14(1): e0211849, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30703171

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0200268.].

7.
PLoS One ; 13(7): e0200268, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001399

RESUMEN

Serotonin (5-HT) acts as both a morphogenetic factor during early embryonic development and a neuromodulator of circuit plasticity in the mature brain. Dysregulation of serotonin signaling during critical periods is involved in developmental neurological disorders, such as schizophrenia and autism. In this study we focused on the consequences of defect reelin signaling for the development of the brainstem serotonergic raphe system. We observed that reelin signaling components are expressed by serotonergic neurons during the critical period of their lateral migration. Further, we found that reelin signaling is important for the normal migration of rostral, but not caudal hindbrain raphe nuclei and that reelin deficiency results in the malformation of the paramedian raphe nucleus and the lateral wings of the dorsal raphe nuclei. Additionally, we showed that serotonergic neurons projections to laminated brain structures were severely altered. With this study, we propose that the perturbation of canonical reelin signaling interferes with the orientation of tangentially, but not radially, migrating brainstem 5-HT neurons. Our results open the window for further studies on the interaction of reelin and serotonin and the pathogenesis of neurodevelopmental disorders.


Asunto(s)
Tronco Encefálico/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Proteínas de la Matriz Extracelular/fisiología , Proteínas del Tejido Nervioso/fisiología , Núcleos del Rafe/fisiología , Serina Endopeptidasas/fisiología , Neuronas Serotoninérgicas/fisiología , Animales , Western Blotting , Tronco Encefálico/anatomía & histología , Tronco Encefálico/enzimología , Ratones , Ratones Noqueados , Plasticidad Neuronal/fisiología , Núcleos del Rafe/anatomía & histología , Núcleos del Rafe/embriología , Proteína Reelina , Serotonina/fisiología , Transducción de Señal/fisiología
8.
Cereb Cortex ; 28(3): 852-867, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077511

RESUMEN

The Fragile X syndrome (FXS) as the most common monogenetic cause of cognitive impairment and autism indicates how tightly the dysregulation of synapse development is linked to cognitive deficits. Symptoms of FXS include excessive adherence to patterns that point to compromised hippocampal network formation. Surprisingly, one of the most complex hippocampal synapses connecting the dentate gyrus (DG) to CA3 pyramidal neurons has not been analyzed in FXS yet. Intriguingly, we found altered synaptic function between DG and CA3 in a mouse model of FXS (fmr1 knockout [KO]) demonstrated by increased mossy fiber-dependent miniature excitatory postsynaptic current (mEPSC) frequency at CA3 pyramidal neurons together with increased connectivity between granule cells and CA3 neurons. This phenotype is accompanied by increased activity of fmr1 KO animals in the marble burying task, detecting repetitive and obsessive compulsive behavior. Spine apparatus development and insertion of AMPA receptors is enhanced at postsynaptic thorny excrescences (TEs) in fmr1 KO mice. We report age-dependent alterations in TE morphology and in the underlying actin dynamics possibly linked to a dysregulation in profilin1 expression. TEs form detonator synapses guiding CA3 network activity. Thus, alterations described here are likely to contribute substantially to the impairment in hippocampal function and therefore to the pathogenesis of FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil/patología , Hipocampo/patología , Fibras Musgosas del Hipocampo/patología , Neuronas/fisiología , Sinapsis/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Noqueados , Fibras Musgosas del Hipocampo/fisiología , Neuronas/ultraestructura , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Profilinas/genética , Profilinas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/ultraestructura
9.
J Neurosci ; 38(1): 137-148, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29138282

RESUMEN

Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler, but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP-expressing dentate granule cells in slice cultures from reeler, reeler-like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler-like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer.SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the present study, we took advantage of the expression of proopiomelanocortin-EGFP by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Movimiento Celular/fisiología , Giro Dentado/citología , Proteínas de la Matriz Extracelular/fisiología , Proteínas del Tejido Nervioso/fisiología , Serina Endopeptidasas/fisiología , Animales , Movimiento Celular/genética , Células Cultivadas , Corteza Cerebral/citología , Gránulos Citoplasmáticos/fisiología , Células Ependimogliales , Femenino , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Mutación , Neuronas/fisiología , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proteína Reelina
10.
Sci Rep ; 7(1): 15268, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127326

RESUMEN

The cell adhesion molecule L1 and the extracellular matrix protein Reelin play crucial roles in the developing nervous system. Reelin is known to activate signalling cascades regulating neuronal migration by binding to lipoprotein receptors. However, the interaction of Reelin with adhesion molecules, such as L1, has remained poorly explored. Here, we report that full-length Reelin and its N-terminal fragments N-R2 and N-R6 bind to L1 and that full-length Reelin and its N-terminal fragment N-R6 proteolytically cleave L1 to generate an L1 fragment with a molecular mass of 80 kDa (L1-80). Expression of N-R6 and generation of L1-80 coincide in time at early developmental stages of the cerebral cortex. Reelin-mediated generation of L1-80 is involved in neurite outgrowth and in stimulation of migration of cultured cortical and cerebellar neurons. Morphological abnormalities in layer formation of the cerebral cortex of L1-deficient mice partially overlap with those of Reelin-deficient reeler mice. In utero electroporation of L1-80 into reeler embryos normalised the migration of cortical neurons in reeler embryos. The combined results indicate that the direct interaction between L1 and Reelin as well as the Reelin-mediated generation of L1-80 contribute to brain development at early developmental stages.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Movimiento Celular/fisiología , Corteza Cerebral/embriología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Proteolisis , Serina Endopeptidasas/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Corteza Cerebral/citología , Proteínas de la Matriz Extracelular/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Molécula L1 de Adhesión de Célula Nerviosa/genética , Neuronas/citología , Proteína Reelina , Serina Endopeptidasas/genética
11.
Cell Signal ; 40: 210-221, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28943410

RESUMEN

Reelin is a secreted glycoprotein and essential for brain development and plasticity. Recent studies provide evidence that Reelin modifies platelet actin cytoskeletal dynamics. In this study we sought to dissect the contribution of Reelin in arterial thrombus formation. Here we analyzed the impact of Reelin in arterial thrombosis ex vivo and in vivo using Reelin deficient (reeler) and wildtype mice. We found that Reelin is secreted upon platelet activation and mediates signaling via glycoprotein (GP)Ib, the amyloid precursor protein (APP) and apolipoprotein E receptor 2 (ApoER2) to induce activation of Akt, extracellular signal-regulated kinase (Erk), SYK and Phospholipase Cγ2. Moreover, our data identifies Reelin as first physiological ligand for platelet APP. Platelets from reeler mice displayed attenuated platelet adhesion and significantly reduced thrombus formation under high shear conditions indicating an important role for Reelin in GPIb-dependent integrin αIIbß3 activation. Accordingly, adhesion to immobilized vWF as well as integrin activation and the phosphorylation of Erk and Akt after GPIb engagement was reduced in Reelin deficient platelets. Defective Reelin signaling translated into protection from arterial thrombosis and cerebral ischemia/reperfusion injury beside normal hemostasis. Furthermore, treatment with an antagonistic antibody specific for Reelin protects wildtype mice from occlusive thrombus formation. Mechanistically, GPIb co-localizes to the major Reelin receptor APP in platelets suggesting that Reelin-induced effects on GPIb signaling are mediated by APP-GPIb interaction. These results indicate that Reelin is an important regulator of GPIb-mediated platelet activation and may represent a new therapeutic target for the prevention and treatment of cardio- and cerebrovascular diseases.


Asunto(s)
Plaquetas/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Matriz Extracelular/genética , Proteínas del Tejido Nervioso/genética , Agregación Plaquetaria/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Serina Endopeptidasas/genética , Trombosis/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Arterias/fisiopatología , Plaquetas/patología , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Adhesividad Plaquetaria/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Receptores de Superficie Celular/genética , Proteína Reelina , Serina Endopeptidasas/metabolismo , Transducción de Señal , Trombosis/fisiopatología
12.
Front Cell Neurosci ; 11: 148, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28588454

RESUMEN

Neurons are highly polarized cells. They give rise to several dendrites but only one axon. In addition, many neurons show a preferred orientation. For example, pyramidal neurons of the cerebral cortex extend their apical dendrites toward the cortical surface while their axons run in opposite direction toward the white matter. This characteristic orientation reflects the migratory trajectory of a pyramidal cell during cortical development: the leading process (the future apical dendrite) extends toward the marginal zone (MZ) and the trailing process (the future axon) toward the intermediate zone (IZ) while the cells migrate radially to reach their destination in the cortical plate (CP). In this review article, we summarize the function of Reelin, an extracellular matrix protein synthesized by Cajal-Retzius cells in the MZ, in the development of the characteristic orientation of the leading processes running perpendicular to the cortical surface. Reelin promotes migration toward the cortical surface since late-generated cortical neurons in the reeler mutant are unable to reach upper cortical layers. Likewise, Reelin is important for the orientation and maintenance of the leading processes of migrating neurons since they are misoriented in the developing reeler cortex, as are the apical dendrites of pyramidal cells in the mature mutant. Reelin-induced phosphorylation of cofilin, an actin-associated protein, is crucial since pyramidal neurons transfected by in utero electroporation (IUE) with a non-phosphorylatable form of cofilin (cofilinS3A) show severe migration defects reminiscent of those in the reeler mutant. Remarkably, migration of neurons in the cortex of reeler mice was partially rescued by transfecting them with LIM kinase 1 (LIMK1), the kinase that induces phosphorylation of cofilin at serine3, or with a pseudo-phosphorylated cofilin mutant (cofilinS3E). Together these results indicate that Reelin-induced phosphorylation of cofilin is an important component in the orientation and directed migration of cortical neurons and in their correct lamination.

13.
Mol Neurodegener ; 12(1): 48, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619096

RESUMEN

BACKGROUND: Presenilins play a major role in the pathogenesis of Alzheimer's disease, in which the hippocampus is particularly vulnerable. Previous studies of Presenilin function in the synapse, however, focused exclusively on the hippocampal Schaffer collateral (SC) pathway. Whether Presenilins play similar or distinct roles in other hippocampal synapses is unknown. METHODS: To investigate the role of Presenilins at mossy fiber (MF) synapses we performed field and whole-cell electrophysiological recordings and Ca2+ imaging using acute hippocampal slices of postnatal forebrain-restricted Presenilin conditional double knockout (PS cDKO) and control mice at 2 months of age. We also performed quantitative electron microscopy (EM) analysis to determine whether mitochondrial content is affected at presynaptic MF boutons of PS cDKO mice. We further conducted behavioral analysis to assess spatial learning and memory of PS cDKO and control mice at 2 months in the Morris water maze. RESULTS: We found that long-term potentiation and short-term plasticity, such as paired-pulse and frequency facilitation, are impaired at MF synapses of PS cDKO mice. Moreover, post-tetanic potentiation (PTP), another form of short-term plasticity, is also impaired at MF synapses of PS cDKO mice. Furthermore, blockade of mitochondrial Ca2+ efflux mimics and occludes the PTP deficits at MF synapses of PS cDKO mice, suggesting that mitochondrial Ca2+ homeostasis is impaired in the absence of PS. Quantitative EM analysis showed normal number and area of mitochondria at presynaptic MF boutons of PS cDKO mice, indicating unchanged mitochondrial content. Ca2+ imaging of dentate gyrus granule neurons further revealed that cytosolic Ca2+ increases induced by tetanic stimulation are reduced in PS cDKO granule neurons in acute hippocampal slices, and that inhibition of mitochondrial Ca2+ release during high frequency stimulation mimics and occludes the Ca2+ defects observed in PS cDKO neurons. Consistent with synaptic plasticity impairment observed at MF and SC synapses in acute PS cDKO hippocampal slices, PS cDKO mice exhibit profound spatial learning and memory deficits in the Morris water maze. CONCLUSIONS: Our findings demonstrate the importance of PS in the regulation of synaptic plasticity and mitochondrial Ca2+ homeostasis in the hippocampal MF pathway.


Asunto(s)
Homeostasis/fisiología , Mitocondrias/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Potenciación a Largo Plazo/fisiología , Ratones Noqueados , Técnicas de Placa-Clamp/métodos
14.
Hum Mol Genet ; 26(9): 1678, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334871

RESUMEN

Mutations in the depalmitoylation enzyme, palmitoyl protein thioesterase (PPT1), result in the early onset neurodegenerative disease known as Infantile Neuronal Ceroid Lipofuscinosis. Here, we provide proteomic evidence suggesting that PPT1 deficiency could be considered as a ciliopathy. Analysis of membrane proteins from brain enriched for acylated proteins from neonate Ppt1 knock out and control mice revealed a list of 88 proteins with differential expression levels. Amongst them, we identified Rab3IP, which regulates ciliogenesis in concert with Rab8 and Rab11. Immunostaining analysis revealed that PPT1 is localized in the cilia. Indeed, an unbiased proteomics analysis on isolated cilia revealed 660 proteins, which differed in their abundance levels between wild type and Ppt1 knock out. We demonstrate here that Rab3IP, Rab8 and Rab11 are palmitoylated, and that palmitoylation of Rab11 is required for correct intracellular localization. Cells and brain preparations from Ppt1-/- mice exhibited fewer cells with cilia and abnormally longer cilia, with both acetylated tubulin and Rab3IP wrongly distributed along the length of cilia. Most importantly, the analysis revealed a difference in the distribution and levels of the modified proteins in cilia in the retina of mutant mice versus the wildtype, which may be important in the early neurodegenerative phenotype. Overall, our results suggest a novel link between palmitoylated proteins, cilial organization and the pathophysiology of Neuronal Ceroid Lipofuscinosis.


Asunto(s)
Proteínas de la Membrana/fisiología , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Animales , Encéfalo/metabolismo , Cilios/metabolismo , Cilios/patología , Células HEK293 , Humanos , Lipoilación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mutación , Células 3T3 NIH , Neuronas/metabolismo , Proteómica/métodos , Retina/metabolismo , Tioléster Hidrolasas/deficiencia
15.
PLoS One ; 12(2): e0172967, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28235022

RESUMEN

Kainate receptors mediate glutamatergic signaling through both pre- and presynaptic receptors. Here, we studied the expression of the high affinity kainate receptor GluK5 in the mouse retina. Double-immunofluoresence labeling and electron microscopic analysis revealed a presynaptic localization of GluK5 in the outer plexiform layer. Unexpectedly, we found GluK5 almost exclusively localized to the presynaptic ribbon of photoreceptor terminals. Moreover, in GluK5-deficient mutant mice the structural integrity of synaptic ribbons was severely altered pointing to a novel function of GluK5 in organizing synaptic ribbons in the presynaptic terminals of rod photoreceptors.


Asunto(s)
Terminales Presinápticos/metabolismo , Receptores de Ácido Kaínico/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Oxidorreductasas de Alcohol , Animales , Proteínas Co-Represoras , Proteínas de Unión al ADN/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Fosfoproteínas/metabolismo , Transporte de Proteínas , Retina/metabolismo , Retina/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura
16.
Science ; 353(6304): 1117-23, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27609885

RESUMEN

The hippocampal CA3 region plays a key role in learning and memory. Recurrent CA3-CA3 synapses are thought to be the subcellular substrate of pattern completion. However, the synaptic mechanisms of this network computation remain enigmatic. To investigate these mechanisms, we combined functional connectivity analysis with network modeling. Simultaneous recording from up to eight CA3 pyramidal neurons revealed that connectivity was sparse, spatially uniform, and highly enriched in disynaptic motifs (reciprocal, convergence, divergence, and chain motifs). Unitary connections were composed of one or two synaptic contacts, suggesting efficient use of postsynaptic space. Real-size modeling indicated that CA3 networks with sparse connectivity, disynaptic motifs, and single-contact connections robustly generated pattern completion. Thus, macro- and microconnectivity contribute to efficient memory storage and retrieval in hippocampal networks.


Asunto(s)
Región CA3 Hipocampal/fisiología , Recuerdo Mental/fisiología , Red Nerviosa/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Región CA3 Hipocampal/citología , Femenino , Masculino , Modelos Neurológicos , Red Nerviosa/citología , Ratas , Ratas Wistar
17.
Sci Signal ; 9(419): ra29, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980442

RESUMEN

The multimodular glycoprotein Reelin controls neuronal migration and synaptic transmission by binding to apolipoprotein E receptor 2 (Apoer2) and very low density lipoprotein receptor (Vldlr) on neurons. In the periphery, Reelin is produced by the liver, circulates in blood, and promotes thrombosis and hemostasis. To investigate if Reelin influences atherogenesis, we studied atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice in which we inducibly deleted Reelin either ubiquitously or only in the liver, thus preventing the production of circulating Reelin. In both types of Reelin-deficient mice, atherosclerosis progression was markedly attenuated, and macrophage content and endothelial cell staining for vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were reduced at the sites of atherosclerotic lesions. Intravital microscopy revealed decreased leukocyte-endothelial adhesion in the Reelin-deficient mice. In cultured human endothelial cells, Reelin enhanced monocyte adhesion and increased ICAM1, VCAM1, and E-selectin expression by suppressing endothelial nitric oxide synthase (eNOS) activity and increasing nuclear factor κB (NF-κB) activity in an Apoer2-dependent manner. These findings suggest that circulating Reelin promotes atherosclerosis by increasing vascular inflammation, and that reducing or inhibiting circulating Reelin may present a novel approach for the prevention of cardiovascular disease.


Asunto(s)
Aterosclerosis/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Endoteliales/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Macrófagos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Adhesión Celular , Moléculas de Adhesión Celular Neuronal/genética , Selectina E/genética , Selectina E/metabolismo , Células Endoteliales/patología , Proteínas de la Matriz Extracelular/genética , Humanos , Molécula 1 de Adhesión Intercelular/genética , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína Reelina , Serina Endopeptidasas/genética , Molécula 1 de Adhesión Celular Vascular/genética
18.
Development ; 143(6): 1029-40, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26893343

RESUMEN

In reeler mutant mice, which are deficient in reelin (Reln), the lamination of the cerebral cortex is disrupted. Reelin signaling induces phosphorylation of LIM kinase 1, which phosphorylates the actin-depolymerizing protein cofilin in migrating neurons. Conditional cofilin mutants show neuronal migration defects. Thus, both reelin and cofilin are indispensable during cortical development. To analyze the effects of cofilin phosphorylation on neuronal migration we used in utero electroporation to transfect E14.5 wild-type cortical neurons with pCAG-EGFP plasmids encoding either a nonphosphorylatable form of cofilin 1 (cofilin(S3A)), a pseudophosphorylated form (cofilin(S3E)) or wild-type cofilin 1 (cofilin(WT)). Wild-type controls and reeler neurons were transfected with pCAG-EGFP. Real-time microscopy and histological analyses revealed that overexpression of cofilin(WT) and both phosphomutants induced migration defects and morphological abnormalities of cortical neurons. Of note, reeler neurons and cofilin(S3A)- and cofilin(S3E)-transfected neurons showed aberrant backward migration towards the ventricular zone. Overexpression of cofilin(S3E), the pseudophosphorylated form, partially rescued the migration defect of reeler neurons, as did overexpression of Limk1. Collectively, the results indicate that reelin and cofilin cooperate in controlling cytoskeletal dynamics during neuronal migration.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Movimiento Celular , Forma de la Célula , Corteza Cerebral/citología , Cofilina 1/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Serina Endopeptidasas/metabolismo , Animales , Recuento de Células , Electroporación , Embrión de Mamíferos/citología , Femenino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteína Reelina , Transfección
19.
Neurogenesis (Austin) ; 3(1): e1242455, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28265585

RESUMEN

Neuronal migration is an essential step in the formation of laminated brain structures. In the developing cerebral cortex, pyramidal neurons migrate toward the Reelin-containing marginal zone. Reelin is an extracellular matrix protein synthesized by Cajal-Retzius cells. In this review, we summarize our recent results and hypotheses on how Reelin might regulate neuronal migration by acting on the actin and microtubule cytoskeleton. By binding to ApoER2 receptors on the migrating neurons, Reelin induces stabilization of the leading processes extending toward the marginal zone, which involves Dab1 phosphorylation, adhesion molecule expression, cofilin phosphorylation and inhibition of tau phosphorylation. By binding to VLDLR and integrin receptors, Reelin interacts with Lis1 and induces nuclear translocation, accompanied by the ubiquitination of phosphorylated Dab1. Eventually Reelin induces clustering of its receptors resulting in the endocytosis of a Reelin/receptor complex (particularly VLDLR). The resulting decrease in Reelin contributes to neuronal arrest at the marginal zone.

20.
Artículo en Inglés | MEDLINE | ID: mdl-26557085

RESUMEN

Proper synaptic function depends on a finely-tuned balance between events such as protein synthesis and structural organization. In particular, the functional loss of just one synaptic-related protein can have a profound impact on overall neuronal network function. To this end, we used a mutant mouse model harboring a mutated form of the presynaptic scaffolding protein Bassoon (Bsn), which is phenotypically characterized by: (i) spontaneous generalized epileptic seizure activity, representing a chronically-imbalanced neuronal network; and (ii) a dramatic increase in hippocampal brain-derived neurotrophic factor (BDNF) protein concentration, a key player in synaptic plasticity. Detailed morphological and neurochemical analyses revealed that the increased BDNF levels are associated with: (i) modified neuropeptide distribution; (ii) perturbed expression of selected markers of synaptic activation or plasticity; (iii) subtle changes to microglial structure; and (iv) morphological alterations to the mossy fiber (MF) synapse. These findings emphasize the important contribution of Bassoon protein to normal hippocampal function, and further characterize the Bsn-mutant as a useful model for studying the effects of chronic changes to network activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA