Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 358, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37442951

RESUMEN

BACKGROUND: GLutamate Receptor-like (GLR) channels are multimeric, ionotropic, ligand-gated plant transmembrane receptors. They are homologous to mammalian glutamate receptors, iGLuRs, which are critical to neuronal function. GLRs have been reported several times to play a role in photomorphogenesis. However, to date, no study has looked at the mechanism of their involvement in this process. Here we focused on examining the impact of GLRs on the regulation of early seedling growth in blue light, red light, and in the dark. RESULTS: Wild type and six photoreceptor mutant seedlings were grown on media supplemented with known iGLuR/GLR channel antagonists: MK-801, which non-competitively blocks NMDA channels in mammalian cells, and CNQX, known for competitive blocking of AMPA channels in mammalian cells. The lengths of hypocotyls and roots were measured in seedlings of phyA, phyB, phot1, phot2, cry1, and cry2 mutants after 7 days of in vitro culture. Changes in growth parameters, both in light and in darkness upon application of chemical antagonists, show that both types of GLR channels, NMDA-like and AMPA-like, are involved in the regulation of seedling growth irrespective of light conditions. Analysis of seedling growth of photoreceptor mutants indicates that the channels are influenced by signaling from phot1, phot2, and cry1. To extend our analysis, we also evaluated the elicitation of a calcium wave, which is likely to be partially driven by GLRs, in Arabidopsis seedlings. The changes in cellobiose-induced calcium waves observed after applying GLR inhibitors suggest that both types of channels likely cooperate in shaping Arabidopsis seedling growth and development. CONCLUSIONS: Our work provides the first experimental evidence that two types of GLR channels function in plants: NMDA-like and AMPA-like. We also demonstrate that the channels are involved in seedling growth and development, at least partially through modulation of calcium signaling, but they are unlikely to play a major role in photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Plantones/genética , Proteínas de Arabidopsis/genética , N-Metilaspartato , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Plantas , Mutación
2.
BMC Plant Biol ; 22(1): 197, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428177

RESUMEN

BACKGROUND: Glutamate receptor-like (GLR) channels are plant homologs of iGluRs, animal ionotropic glutamate receptors which participate in neurotransmission. GLRs mediate plant adaptive processes and photomorphogenesis. Despite their contribution to light-dependent processes, signaling mechanisms that modulate GLR response to light remain unknown. Here we show that leaf expression of 7 out of 20 Arabidopsis GLRs is significantly up-regulated by monochromatic irradiation. RESULTS: Our data indicates that both red and blue light stimulate the expression of selected AtGLRs. Using a photosynthesis inhibitor and different irradiation regimes, we demonstrated that retrograde signaling from photosystem II is unlikely to be involved in light-dependent GLR up-regulation. Analysis of transcriptional patterns in mutants of key photoreceptors allowed us to observe that both phytochromes and cryptochromes are likely to be involved in the control of light-dependent up-regulation of AtGLR expression, with phytochromes playing a clearly dominating role in this process. CONCLUSIONS: In mature Arabidopsis leaves, phytochromes, assisted by cryptochromes, mediate light-driven transcriptional up-regulation of several genes encoding GLR proteins. Since GLRs are known to be involved in a wide range of plant developmental processes our results provide mechanistic insight into how light may influence plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación hacia Arriba
3.
Plant Cell Physiol ; 62(4): 693-707, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33594440

RESUMEN

The disruption of the sumoylation pathway affects processes controlled by the two phototropins (phots) of Arabidopsis thaliana, phot1 and phot2. Phots, plant UVA/blue light photoreceptors, regulate growth responses and fast movements aimed at optimizing photosynthesis, such as phototropism, chloroplast relocations and stomatal opening. Sumoylation is a posttranslational modification, consisting of the addition of a SUMO (SMALL UBIQUITIN-RELATED MODIFIER) protein to a lysine residue in the target protein. In addition to affecting the stability of proteins, it regulates their activity, interactions and subcellular localization. We examined physiological responses controlled by phots, phototropism and chloroplast movements, in sumoylation pathway mutants. Chloroplast accumulation in response to both continuous and pulse light was enhanced in the E3 ligase siz1 mutant, in a manner dependent on phot2. A significant decrease in phot2 protein abundance was observed in this mutant after blue light treatment both in seedlings and mature leaves. Using plant transient expression and yeast two-hybrid assays, we found that phots interacted with SUMO proteins mainly through their N-terminal parts, which contain the photosensory LOV domains. The covalent modification in phots by SUMO was verified using an Arabidopsis sumoylation system reconstituted in bacteria followed by the mass spectrometry analysis. Lys 297 was identified as the main target of SUMO3 in the phot2 molecule. Finally, sumoylation of phot2 was detected in Arabidopsis mature leaves upon light or heat stress treatment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ligasas/genética , Ligasas/metabolismo , Lisina/metabolismo , Mutación , Fototropismo/genética , Fototropismo/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Plantones/genética , Plantones/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación
4.
Plant Cell Rep ; 39(10): 1331-1343, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32661816

RESUMEN

KEY MESSAGE: Brachypodium distachyon is a good model for studying chloropla st movements in the crop plants, wheat, rye and barley. The movements are activated only by blue light, similar to Arabidopsis. Chloroplast translocations are ubiquitous in photosynthetic organisms. On the one hand, they serve to optimize energy capture under limiting light, on the other hand, they minimize potential photodamage to the photosynthetic apparatus in excess light. In higher plants chloroplast movements are mediated by phototropins (phots), blue light receptors that also control other light acclimation responses. So far, Arabidopsis thaliana has been the main model for studying the mechanism of blue light signaling to chloroplast translocations in terrestrial plants. Here, we propose Brachypodium distachyon as a model in research into chloroplast movements in C3 cereals. Brachypodium chloroplasts respond to light in a similar way to those in Arabidopsis. The amino acid sequence of Brachypodium PHOT1 is 79.3% identical, and that of PHOT2 is 73.6% identical to the sequence of the corresponding phototropin in Arabidopsis. Both phototropin1 and 2 are expressed in Brachypodium, as shown using quantitative real-time PCR. Intriguingly, the light-expression pattern of BradiPHOT1 and BradiPHOT2 is the opposite of that for Arabidopsis phototropins, suggesting potential unique light signaling in C3 grasses. To investigate if Brachypodium is a good model for studying grass chloroplast movements we analyzed these movements in the leaves of three C3 crop grasses, namely wheat, rye and barley. Similarly to Brachypodium, chloroplasts only respond to blue light in all these species.


Asunto(s)
Brachypodium/metabolismo , Brachypodium/efectos de la radiación , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Luz , Arabidopsis/metabolismo , Brachypodium/genética , Regulación de la Expresión Génica de las Plantas , Movimiento , Fototropinas/genética , Fototropinas/metabolismo , Filogenia , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación
5.
Front Plant Sci ; 10: 1279, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681376

RESUMEN

We examined the impact of UV-B irradiation on chloroplast movements in Arabidopsis leaves. Directional chloroplast movements induced by blue light have been described in multiple plant species. In weak light, chloroplasts accumulate at periclinal cell walls to increase light capture. In strong light, chloroplasts exhibit the avoidance response, as they move towards anticlinal walls to protect the photosynthetic apparatus from light-induced damage. In Arabidopsis, chloroplast movements are triggered by phototropins, phot1 and phot2, which are known as blue/UV-A photoreceptors. We found that irradiation with UV-B of 3.3 µmol·m-2·s-1 induced chloroplast accumulation in wild-type plants. UV-B-triggered accumulation was dependent on the presence of phototropins, especially phot1, but not on UVR8 (the canonical UV-B photoreceptor). Irradiation with strong UV-B of 20 µmol·m-2·s-1 did not induce substantial chloroplast relocations in wild-type leaves. However, in the jac1 mutant, which is defective in chloroplast accumulation, strong UV-B elicited chloroplast avoidance. This indicated that UV-B can also activate signaling to the avoidance response. To assess the possibility of indirect effects of UV-B on chloroplast movements, we examined the impact of UV-B on the actin cytoskeleton, which serves as the motile system for chloroplast movements. While irradiation with UV-B of 3.3 µmol·m-2·s-1 did not affect the actin cytoskeleton, strong UV-B disrupted its structure as shown using an Arabidopsis line expressing Lifeact-green fluorescent protein (GFP). In wild-type plants, pretreatment with strong UV-B attenuated chloroplast responses triggered by subsequent blue light irradiation, further indicating that this UV-B intensity also indirectly affects chloroplast movements. Taken together, our results suggest that the effect of UV-B on chloroplast movement is twofold: it directly induces phototropin-mediated movements; however, at higher intensities, it attenuates the movements in a nonspecific manner.

8.
Bio Protoc ; 7(11): e2310, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34541077

RESUMEN

Assessment of chloroplast movements by measuring changes in leaf transmittance is discussed, with special reference to the conditions necessary for reliable estimation of blue light-activated chloroplast responses.

9.
Acta Biochim Pol ; 63(3): 449-58, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27486921

RESUMEN

Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/citología , Cloroplastos/fisiología , Células del Mesófilo/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/efectos de la radiación , Cloroplastos/efectos de los fármacos , Cloroplastos/efectos de la radiación , Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Células del Mesófilo/ultraestructura , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
10.
J Exp Bot ; 67(17): 4963-78, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27406783

RESUMEN

Phototropins are plant photoreceptors which regulate numerous responses to blue light, including chloroplast relocation. Weak blue light induces chloroplast accumulation, whereas strong light leads to an avoidance response. Two Arabidopsis phototropins are characterized by different light sensitivities. Under continuous light, both can elicit chloroplast accumulation, but the avoidance response is controlled solely by phot2. As well as continuous light, brief light pulses also induce chloroplast displacements. Pulses of 0.1s and 0.2s of fluence rate saturating the avoidance response lead to transient chloroplast accumulation. Longer pulses (up to 20s) trigger a biphasic response, namely transient avoidance followed by transient accumulation. This work presents a detailed study of transient chloroplast responses in Arabidopsis. Phototropin mutants display altered chloroplast movements as compared with the wild type: phot1 is characterized by weaker responses, while phot2 exhibits enhanced chloroplast accumulation, especially after 0.1s and 0.2s pulses. To determine the cause of these differences, the abundance and phosphorylation levels of both phototropins, as well as the interactions between phototropin molecules are examined. The formation of phototropin homo- and heterocomplexes is the most plausible explanation of the observed phenomena. The physiological consequences of this interplay are discussed, suggesting the universal character of this mechanism that fine-tunes plant reactions to blue light. Additionally, responses in mutants of different protein phosphatase 2A subunits are examined to assess the role of protein phosphorylation in signaling of chloroplast movements.


Asunto(s)
Cloroplastos/fisiología , Fototropinas/fisiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Luz , Fototropinas/metabolismo , Técnicas del Sistema de Dos Híbridos
11.
Plant Physiol Biochem ; 105: 271-281, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27208503

RESUMEN

The aim of this study was to analyze the metabolism of storage materials in germinating tomato (Solanum lycopersicum) seeds and to determine whether it is regulated by light via phytochromes. Wild type, single and multiple phytochrome A, B1 and B2 mutants were investigated. Imbibed seeds were briefly irradiated with far-red or far-red followed by red light, and germinated in darkness. Triacylglycerols and starch were quantified using biochemical assays in germinating seeds and seedlings during the first 5 days of growth. To investigate the process of fat-carbohydrate transformation, the activity of the glyoxylate cycle was assessed. Our results confirm the role of phytochrome in the control of tomato seed germination. Phytochromes A and B2 were shown to play specific roles, acting antagonistically in far-red light. While the breakdown of triacylglycerols proceeded independently of light, phytochrome control was visible in the next stages of the lipid-carbohydrate transformation. The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were regulated by phytochrome(s). This was reflected in a greater increase of starch content during seedling growth in response to additional red light treatment. This study is the first attempt to build a comprehensive image of storage material metabolism regulation by light in germinating dicotyledonous seeds.


Asunto(s)
Germinación/efectos de la radiación , Luz , Semillas/embriología , Solanum lycopersicum/efectos de la radiación , Transporte Biológico/efectos de la radiación , Glioxilatos/metabolismo , Lípidos , Solanum lycopersicum/genética , Mutación/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Proteínas de Plantas/metabolismo , Plantones/metabolismo , Plantones/efectos de la radiación , Semillas/metabolismo , Almidón/metabolismo
12.
J Exp Bot ; 67(13): 3953-64, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26957564

RESUMEN

Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells.


Asunto(s)
Arabidopsis/metabolismo , Calcio/metabolismo , Cloroplastos/metabolismo , Luz , Células del Mesófilo/metabolismo , Microanálisis por Sonda Electrónica
13.
Physiol Plant ; 156(3): 351-66, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26467664

RESUMEN

Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins.


Asunto(s)
Cloroplastos/metabolismo , Ácidos Indolacéticos/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Transporte Biológico/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ácidos Indolacéticos/farmacología , Luz , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/metabolismo , Movimiento , Mutación/genética , Fototropinas/genética , Fototropinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
BMC Plant Biol ; 15: 281, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26608826

RESUMEN

BACKGROUND: Ultraviolet B (UV-B) irradiation can influence many cellular processes. Irradiation with high UV-B doses causes chlorophyll degradation, a decrease in the expression of genes associated with photosynthesis and its subsequent inhibition. On the other hand, sublethal doses of UV-B are used in post-harvest technology to prevent yellowing in storage. To address this inconsistency the effect of short, high-dose UV-B irradiation on detached Arabidopsis thaliana leaves was examined. RESULTS: Two different experimental models were used. After short treatment with a high dose of UV-B the Arabidopsis leaves were either put into darkness or exposed to constant light for up to 4 days. UV-B inhibited dark-induced chlorophyll degradation in Arabidopsis leaves in a dose-dependent manner. The expression of photosynthesis-related genes, chlorophyll content and photosynthetic efficiency were higher in UV-B -treated leaves left in darkness. UV-B treatment followed by constant light caused leaf yellowing and induced the expression of senescence-related genes. Irrespective of light treatment a high UV-B dose led to clearly visible cell death 3 days after irradiation. CONCLUSIONS: High doses of UV-B have opposing effects on leaves depending on their light status after UV treatment. In darkened leaves short UV-B treatment delays the appearance of senescence symptoms. When followed by light treatment, the same doses of UV-B result in chlorophyll degradation. This restricts the potential usability of UV treatment in postharvest technology to crops which are stored in darkness.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fotosíntesis , Hojas de la Planta/efectos de la radiación , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Oscuridad , Luz , Hojas de la Planta/metabolismo , Factores de Tiempo
15.
Plant Sci ; 239: 238-49, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26398808

RESUMEN

Chloroplast movements in Arabidopsis thaliana are controlled by two blue light photoreceptors, phototropin1 and phototropin2. Under weak blue light chloroplasts gather at cell walls perpendicular to the direction of incident light. This response, called chloroplast accumulation, is redundantly regulated by both phototropins. Under strong blue light chloroplasts move to cell walls parallel to the direction of incident light, this avoidance response being solely dependent on phototropin2. Temperature is an important factor in modulating chloroplast relocations. Here we focus on temperature effects in Arabidopsis leaves. At room temperature, under medium blue light chloroplasts start to move to cell walls parallel to the light direction and undergo a partial avoidance response. In the same conditions, at low temperatures the avoidance response is strongly enhanced-chloroplasts behave as if they were responding to strong light. Higher sensitivity of avoidance response is correlated with changes in gene expression. After cold treatment, in darkness, the expression of phototropin1 is down-regulated, while phototropin2 levels are up-regulated. The motile system of chloroplasts in Arabidopsis is more sensitive to blue light at low temperatures, similar to other species studied before. The physiological role of the cold-enhancement of the avoidance response is explained in the context of phototropin levels, photochemical activities and signaling in the cell.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/metabolismo , Fosfoproteínas/genética , Temperatura , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Frío , Calor , Luz , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas
16.
PLoS One ; 10(2): e0116757, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25646776

RESUMEN

Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 µM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic effect of lead on chloroplasts can include disturbances in their movement and distribution pattern.


Asunto(s)
Araceae/citología , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Plomo/farmacología , Movimiento/efectos de los fármacos , Hojas de la Planta/citología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efectos de la radiación , Araceae/efectos de los fármacos , Araceae/efectos de la radiación , Catalasa/metabolismo , Cloroplastos/efectos de la radiación , Oscuridad , Peróxido de Hidrógeno/farmacología , Movimiento/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de la radiación
17.
Rev Sci Instrum ; 85(6): 063703, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24985823

RESUMEN

We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.


Asunto(s)
Módulo de Elasticidad , Microscopía de Fuerza Atómica/métodos , Programas Informáticos
18.
J Exp Bot ; 65(12): 3263-76, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24821953

RESUMEN

Phototropins are plasma membrane-localized UVA/blue light photoreceptors which mediate phototropism, inhibition of primary hypocotyl elongation, leaf positioning, chloroplast movements, and stomatal opening. Blue light irradiation activates the C-terminal serine/threonine kinase domain of phototropin which autophosphorylates the receptor. Arabidopsis thaliana encodes two phototropins, phot1 and phot2. In response to blue light, phot1 moves from the plasma membrane into the cytosol and phot2 translocates to the Golgi complex. In this study the molecular mechanism and route of blue-light-induced phot2 trafficking are demonstrated. It is shown that Atphot2 behaves in a similar manner when expressed transiently under 35S or its native promoter. The phot2 kinase domain but not blue-light-mediated autophosphorylation is required for the receptor translocation. Using co-localization and western blotting, the receptor was shown to move from the cytoplasm to the Golgi complex, and then to the post-Golgi structures. The results were confirmed by brefeldin A (an inhibitor of the secretory pathway) which disrupted phot2 trafficking. An association was observed between phot2 and the light chain2 of clathrin via bimolecular fluorescence complementation. The fluorescence was observed at the plasma membrane. The results were confirmed using co-immunoprecipitation. However, tyrphostin23 (an inhibitor of clathrin-mediated endocytosis) and wortmannin (a suppressor of receptor endocytosis) were not able to block phot2 trafficking, indicating no involvement of receptor endocytosis in the formation of phot2 punctuate structures. Protein turnover studies indicated that the receptor was continuously degraded in both darkness and blue light. The degradation of phot2 proceeded via a transport route different from translocation to the Golgi complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citoplasma/metabolismo , Aparato de Golgi/metabolismo , Luz , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Inmunoprecipitación , Fosforilación , Fosfotransferasas/metabolismo , Transporte de Proteínas/efectos de la radiación
19.
Plant Signal Behav ; 8(8)2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23733070

RESUMEN

In angiosperms, light-dependent chloroplast movements are exclusively mediated by UVA/blue light receptors - phototropins. The two photoreceptors of Arabidopsis thaliana, phot1 and phot2, have overlapping roles in the control of these movements. Experiments performed in different plant species point to the participation of phosphoinositides in blue light-controlled chloroplast relocations. Here, we report a summary of recent findings presenting the involvement of phosphatidylinositol 4,5-bisphosphate as well as phosphatidylinositol 3- and 4-phosphates in weak blue light-mediated (accumulation) and strong blue light-mediated (avoidance) responses of chloroplasts. The blue light-activated alterations in phosphoinositide concentration are partly responsible for cytosolic Ca (2+) changes. Ca (2+) influx from apoplast does not seem to be involved in the mechanism of movement responses. In summary, interplay between phosphoinositides and intracellular Ca (2+) regulates chloroplast redistribution in response to blue light in higher plants.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Fosfatidilinositoles/metabolismo , Fototropinas/metabolismo , Transducción de Señal , Movimiento
20.
PLoS One ; 8(2): e55393, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405144

RESUMEN

Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca(2+) ((c)) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca(2+) ((c)) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca(2+) signaling during movements.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Cloroplastos/fisiología , Fosfatidilinositoles/metabolismo , Fototropinas/metabolismo , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Arabidopsis/metabolismo , Calcio/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Citosol/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasas/metabolismo , Fototropismo/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...