Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cancer Lett ; 598: 217114, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992488

RESUMEN

Gender plays a crucial role in the occurrence and development of cancer, as well as in the metabolism of nutrients and energy. Men and women display significant differences in the incidence, prognosis, and treatment response across various types of cancer, including certain sex-specific tumors. It has been observed that male glioma patients have a higher incidence and worse prognosis than female patients, but there is currently a limited systematic evaluation of sex differences in gliomas. The purpose of this study is to provide an overview of the association between fluctuations in sex hormone levels and changes in their receptor expression with the incidence, progression, treatment, and prognosis of gliomas. Estrogen may have a protective effect on glioma patients, while exposure to androgens increases the risk of glioma. We also discussed the specific genetic and molecular differences between genders in terms of the malignant nature and prognosis of gliomas. Factors such as TP53, MGMT methylation status may play a crucial role. Therefore, it is essential to consider the gender of patients while treating glioma, particularly the differences at the hormonal and molecular levels. This approach can help in the adoption of an individualized treatment strategy.

2.
Front Mol Neurosci ; 16: 1304224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38115820

RESUMEN

Background: Synaptic transmission between neurons and glioma cells can promote glioma progression. The soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptors (SNARE) play a key role in synaptic functions. We aimed to construct and validate a novel model based on the SNARE proteins to predict the prognosis and immune microenvironment of glioma. Methods: Differential expression analysis and COX regression analysis were used to identify key SRGs in glioma datasets, and we constructed a prognostic risk model based on the key SRGs. The prognostic value and predictive performance of the model were assessed in The Cancer Genome Atlas (TCGA) and Chinese glioma Genome Atlas (CGGA) datasets. Functional enrichment analysis and immune-related evaluation were employed to reveal the association of risk scores with tumor progression and microenvironment. A prognostic nomogram containing the risk score was established and assessed by calibration curves and time-dependent receiver operating characteristic curves. We verified the changes of the key SRGs in glioma specimens and cells by real-time quantitative PCR and Western blot analyses. Results: Vesicle-associated membrane protein 2 (VAMP2) and vesicle-associated membrane protein 5 (VAMP5) were identified as two SRGs affecting the prognoses of glioma patients. High-risk patients characterized by higher VAMP5 and lower VAMP2 expression had a worse prognosis. Higher risk scores were associated with older age, higher tumor grades, IDH wild-type, and 1p19q non-codeletion. The SRGs risk model showed an excellent predictive performance in predicting the prognosis in TCGA and CGGA datasets. Differentially expressed genes between low- and high-risk groups were mainly enriched in the pathways related to immune infiltration, tumor metastasis, and neuronal activity. Immune score, stromal score, estimate score, tumor mutational burden, and expression of checkpoint genes were positively correlated with risk scores. The nomogram containing the risk score showed good performance in predicting the prognosis of glioma. Low VAMP2 and high VAMP5 were found in different grades of glioma specimens and cell lines. Conclusion: We constructed and validated a novel risk model based on the expression of VAMP2 and VAMP5 by bioinformatics analysis and experimental confirmation. This model might be helpful for clinically predicting the prognosis and response to immunotherapy of glioma patients.

3.
Explor Target Antitumor Ther ; 4(1): 139-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937322

RESUMEN

Medulloblastoma (MB) is the commonest primary malignant brain cancer. The current treatment of MB is usually surgical resection combined with radiotherapy or chemotherapy. Although great progress has been made in the clinical management of MB, tumor metastasis and recurrence are still the main cause of death. Therefore, definitive and timely diagnosis is of great importance for improving therapeutic effects on MB. In 2016, the World Health Organization (WHO) divided MB into four subtypes: wingless-type mouse mammary tumor virus integration site (WNT), sonic hedgehog (SHH), non-WNT/non-SHH group 3, and group 4. Each subtype of MB has a unique profile in copy number variation, DNA alteration, gene transcription, or post-transcriptional/translational modification, all of which are associated with different biological manifestations, clinical features, and prognosis. This article reviewed the research progress of different molecular pathology markers in MB and summarized some targeted drugs against these molecular markers, hoping to stimulate the clinical application of these molecular markers in the classification, diagnosis, and treatment of MB.

4.
Biomed Pharmacother ; 162: 114555, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36966667

RESUMEN

The standard regimen treatment has improved GBM outcomes, but the survival rate of patients is still unsatisfactory. Temozolomide (TMZ) resistance is one of main reasons limiting the therapeutic efficacy of GBM. However, there are currently no TMZ-sensitizing drugs available in the clinic. Here we aimed to study whether the antidiabetic drug Sitagliptin can inhibit the survival, stemness and autophagy of GBM cells, and thus enhance TMZ cytotoxicity. We used CCK-8, EdU, colony formation, TUNEL and flow cytometry assays to assess cell proliferation and apoptosis; sphere formation and limiting dilution assays to measure self-renewal and stemness of glioma stem cells (GSCs); Western blot, qRT-PCR or immunohistochemical analysis to measure the expression of proliferation or stem cell markers; Western blot/fluorescent analysis of LC3 and other molecules to evaluate autophagy formation and degradation in glioma cells. We found that Sitagliptin inhibited proliferation and induced apoptosis in GBM cells and suppressed self-renewal and stemness of GSCs. The in vitro findings were further confirmed in glioma intracranial xenograft models. Sitagliptin administration prolonged the survival time of tumor-bearing mice. Sitagliptin could inhibit TMZ-induced protective autophagy and enhance the cytotoxicity of TMZ in glioma cells. In addition, Sitagliptin acted as a dipeptidyl peptidase 4 inhibitor in glioma as well as in diabetes, but it did not affect the blood glucose level and body weight of mice. These findings suggest that Sitagliptin with established pharmacologic and safety profiles could be repurposed as an antiglioma drug to overcome TMZ resistance, providing a new option for GBM therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animales , Ratones , Temozolomida , Fosfato de Sitagliptina/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Apoptosis , Autofagia , Glioblastoma/tratamiento farmacológico , Resistencia a Antineoplásicos , Antineoplásicos Alquilantes/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Br J Neurosurg ; 37(5): 1074-1077, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33307833

RESUMEN

OBJECTIVE: To evaluate the value of texture analysis of routine MRI image in peritumoral edema of differentiating diagnosis between glioblastoma (GBM) and primary brain lymphoma (PBL). METHODS: The MRI imaging data of 22 patients with glioblastoma and 21 patients with PBL who were hospitalized in our hospital from January 2010 to October 2018 were selected. All the patients were pathologically diagnosed as glioblastoma or PBL, and MRI plain scan and enhanced examination were performed before operation. FireVoxel software was used to delineate the region of interest (ROI) on the most obvious level of peritumoral edema based on T1WI enhancement. Texture parameters were extracted and compared between glioblastoma and PBL. RESULTS: In the glioblastoma group, the inhomogeneity, kurtosis and entropy texture parameters were statistically different from those in the PBL group. The entropy parameter area under the curve (AUC) (0.903) was significantly better than the kurtosis parameter AUC (0.859) and the inhomogeneity parameter AUC (0.729). When the entropy parameter Cut-off point = 3.883, the sensitivity, specificity and accuracy of glioblastoma and PBL were 85.7, 86.4 and 86.0%, respectively, by differential diagnosis. CONCLUSION: Texture analysis of tumor peritumoral edema provided quantifiable information, which might be a new method for differentiating glioblastoma from PBL.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Linfoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Linfoma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Diagnóstico Diferencial , Edema/diagnóstico , Encéfalo/patología , Estudios Retrospectivos
6.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166498, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868483

RESUMEN

BACKGROUND: Previous studies have suggested an important role for N6-methyladenosine (m6A) modification in the proliferation of glioma cells. N6, 2'-O-dimethyladenosine (m6Am) is another methylated form affecting the fate and function of most RNA. PCIF1 has recently been identified as the sole m6Am methyltransferase in mammalian mRNA. However, it remains unknown about the role of PCIF1 in the growth and survival of glioma cells. METHODS: We constructed glioma cell lines that stably downregulated/upregulated PCIF1, established intracranial xenograft models using these cell lines, and employed the following methods for investigations: CCK-8, EdU, colony formation, flow cytometry, qRT-PCR, Western blot, and immunohistochemistry. FINDINGS: Downregulating PCIF1 promoted glioma cell proliferation, while overexpressing PCIF1 showed the opposite effects. Overexpression of PCIF1 blocked cell cycle progression and induced apoptosis in glioma cells, which was further confirmed by alterations in the expression of cell checkpoint proteins and apoptotic markers. Interestingly, disruption of PCIF1 methyltransferase activity slightly reversed the effect of PCIF1 overexpression on cell proliferation, but had no significant reversal effects on cell cycle progression or apoptosis. Knockdown of PCIF1 promoted the growth of gliomas, while overexpressing PCIF1 inhibited tumor growth and prolonged the survival time of tumor-bearing mice. In addition, the mRNA and protein levels of PCIF1 were gradually decreased with the increase of WHO grade in glioma tissues, but there was no significant correlation with patient survival. INTERPRETATION: These results indicated that PCIF1 played a suppressing role in glioma growth and survival, which may not entirely depend on its methyltransferase activity.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Glioma/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , Sincalida/metabolismo
7.
Cancer Lett ; 527: 140-149, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34923043

RESUMEN

Psychotropic drugs can penetrate the blood-brain barrier and regulate the levels of neurotransmitters and neuromodulators such as γ-aminobutyric acid, glutamate, serotonin, dopamine, and norepinephrine in the brain, and thus influence neuronal activity. Neuronal activity in the tumor microenvironment can promote the growth and expansion of glioma. There is increasing evidence that in addition to their use in the treatment of mental disorders, antipsychotic, antidepressant, and mood-stabilizing drugs have clinical potential for cancer therapy. These drugs have been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. In this review, we summarize findings from preclinical and clinical studies investigating the use of antipsychotics, antidepressants, and mood stabilizers in the treatment of various types of cancer, with a focus on glioma; and discuss their presumed antitumor mechanisms. The existing evidence indicates that psychotropic drugs with established pharmacologic and safety profiles can be repurposed as anticancer agents, thus providing new options for the treatment of glioma.


Asunto(s)
Antipsicóticos/uso terapéutico , Reposicionamiento de Medicamentos/métodos , Glioma/tratamiento farmacológico , Psicotrópicos/uso terapéutico , Antipsicóticos/farmacología , Humanos , Psicotrópicos/farmacología
8.
Biochem Pharmacol ; 194: 114795, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34687671

RESUMEN

AB38b is a novel biphenyl diester derivative synthesized in our laboratory, and it has been shown to improve the pathology of nephropathy and encephalopathy in diabetic mice. Glioblastoma (GBM) is the most lethal brain tumor, without effective drugs to date. The present study aims at investigating the role of AB38b in GBM growth and revealing the underlying molecular mechanisms. We found that AB38b administration showed a dose- and time-dependent inhibition on cell proliferation in multiple immortalized and primary GBM cell lines, but it had no significant effects on human astrocyte cell line. More importantly, AB38b blocked cell cycle progression, induced early apoptosis, decreased the activity of AKT/mTOR pathway, and increased the generation of reactive oxygen species (ROS) in GBM cells. Interestingly, antioxidant treatments could reverse the AB38b-mediated abovementioned effects; overexpression of constitutively active AKT could partially rescue the suppressive effects of Ab38b on GBM cell proliferation. In addition, AB38b administration inhibited the tumor growth, decreased the activity of AKT/mTOR pathway, and prolonged the survival time in GBM animal models, without any adverse influences on the important organs. These findings suggest that AB38b exerts anti-glioma activity via elevating the ROS generation followed by inhibiting the activity of AKT/mTOR pathway.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Inhibidores de Crecimiento/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Anciano , Animales , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Inhibidores de Crecimiento/química , Inhibidores de Crecimiento/uso terapéutico , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cancer Biol Med ; 18(1): 88-104, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33628587

RESUMEN

Objective: BYSL, which encodes the Bystin protein in humans, is upregulated in reactive astrocytes following brain damage and/or inflammation. We aimed to determine the role and mechanism of BYSL in glioma cell growth and survival. Methods: BYSL expression in glioma tissues was measured by quantitative real-time PCR, Western blot, and immunohistochemistry. In vitro assays were performed to assess the role of BYSL in cell proliferation and apoptosis. Protein interactions and co-localization were determined by co-immunoprecipitation and double immunofluorescence. The expression and activity of the AKT/mTOR signaling molecules were determined by Western blot analysis, and the role of BYSL in glioma growth was confirmed in an orthotopic xenograft model. Results: The BYSL mRNA and protein levels were elevated in glioma tissues. Silencing BYSL inhibited glioma cell proliferation, impeded cell cycle progression, and induced apoptosis, whereas overexpressing BYSL protein led to the opposite effects. We identified a complex consisting of BYSL, RIOK2, and mTOR, and observed co-localization and positive correlations between BYSL and RIOK2 in glioma cells and tissues. Overexpressing BYSL or RIOK2 increased the expression and activity of AKT/mTOR signaling molecules, whereas downregulation of BYSL or RIOK2 decreased the activity of AKT/mTOR signaling molecules. Silencing BYSL or RIOK2 decreased the growth of the tumors and prolonged the lifespan of the animals in an orthotopic xenograft model. Conclusions: High expression of BYSL in gliomas promoted tumor cell growth and survival both in vitro and in vivo. These effects could be attributed to the association of BYSL with RIOK2 and mTOR, and the subsequent activation of AKT signaling.


Asunto(s)
Neoplasias Encefálicas/genética , Moléculas de Adhesión Celular/genética , Glioma/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Glioma/patología , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Front Oncol ; 10: 565225, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178594

RESUMEN

BYSL, which encodes the human bystin protein, is a sensitive marker for astrocyte proliferation during brain damage and inflammation. Previous studies have revealed that BYSL has important roles in embryo implantation and prostate cancer infiltration. However, the role and mechanism of BYSL in glioblastoma (GBM) cell migration and invasion remain unknown. We found that knockdown of BYSL inhibited cell migration and invasion, downregulated the expression of mesenchymal markers (e.g., ß-catenin and N-cadherin), and upregulated the expression of epithelial marker E-cadherin in GBM cell lines. Overexpression of BYSL promoted GBM cell migration, invasion, and epithelial-mesenchymal transition (EMT). In addition, the role of BYSL in promoting EMT was further confirmed in a glioma stem cell line derived from a GBM patient. Mechanistically, overexpression of BYSL increased the phosphorylation of GSK-3ß and the nuclear distribution of ß-catenin. Inhibition of GSK-3ß by 1-Azakenpaullone could partially reverse the effects of BYSL downregulation on the transcriptional activity of ß-catenin, the expression of EMT markers, and GBM cell migration/invasion. Moreover, immunohistochemical analysis showed strong expression of BYSL in GBM tissues, which was positively correlated with markers of mesenchymal GBM. These results suggest that BYSL promotes GBM cell migration, invasion, and EMT through the GSK-3ß/ß-catenin signaling pathway.

11.
Korean J Physiol Pharmacol ; 24(3): 193-201, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32392910

RESUMEN

Chromosomal region maintenance 1 (CRM1) is associated with an adverse prognosis in glioma. We previously reported that CRM1 inhibition suppressed glioma cell proliferation both in vitro and in vivo. In this study, we investigated the role of CRM1 in the migration and invasion of glioma cells. S109, a novel reversible selective inhibitor of CRM1, was used to treat Human glioma U87 and U251 cells. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. The results showed that S109 significantly inhibited the migration and invasion of U87 and U251 cells. However, mutation of Cys528 in CRM1 abolished the inhibitory activity of S109 in glioma cells. Furthermore, we found that S109 treatment decreased the expression level and activity of MMP2 and reduced the level of phosphorylated STAT3 but not total STAT3. Therefore, the inhibition of migration and invasion induced by S109 may be associated with the downregulation of MMP2 activity and expression, and inactivation of the STAT3 signaling pathway. These results support our previous conclusion that inhibition of CRM1 is an attractive strategy for the treatment of glioma.

12.
J Cell Mol Med ; 24(13): 7550-7562, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32452133

RESUMEN

Glioblastoma multiforme (GBM) is the most common malignant tumour in the adult brain and hard to treat. Nuclear factor κB (NF-κB) signalling has a crucial role in the tumorigenesis of GBM. EGFR signalling is an important driver of NF-κB activation in GBM; however, the correlation between EGFR and the NF-κB pathway remains unclear. In this study, we investigated the role of mucosa-associated lymphoma antigen 1 (MALT1) in glioma progression and evaluated the anti-tumour activity and effectiveness of MI-2, a MALT1 inhibitor in a pre-clinical GBM model. We identified a paracaspase MALT1 that is involved in EGFR-induced NF-kB activation in GBM. MALT1 deficiency or inhibition significantly affected the proliferation, survival, migration and invasion of GBM cells both in vitro and in vivo. Moreover, MALT1 inhibition caused G1 cell cycle arrest by regulating multiple cell cycle-associated proteins. Mechanistically, MALTI inhibition blocks the degradation of IκBα and prevents the nuclear accumulation of the NF-κB p65 subunit in GBM cells. This study found that MALT1, a key signal transduction cascade, can mediate EGFR-induced NF-kB activation in GBM and may be potentially used as a novel therapeutic target for GBM.


Asunto(s)
Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Terapia Molecular Dirigida , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Factor de Crecimiento Epidérmico/farmacología , Glioblastoma/patología , Humanos , Ratones Noqueados , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , Invasividad Neoplásica , Ensayo de Tumor de Célula Madre
13.
Cancer Cell Int ; 20: 97, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256206

RESUMEN

BACKGROUND: Activation of nuclear factor-kappa B (NF-κΒ) through DNA damage is one of the causes of tumor cell resistance to radiotherapy. Chromosome region 1 (CRM1) regulates tumor cell proliferation, drug resistance, and radiation resistance by regulating the nuclear-cytoplasmic translocation of important tumor suppressor proteins or proto-oncoproteins. A large number of studies have reported that inhibition of CRM1 suppresses the activation of NF-κΒ. Thus, we hypothesize that the reversible CRM1 inhibitor S109 may induce radiosensitivity in glioblastoma (GBM) by regulating the NF-κΒ signaling pathway. METHODS: This study utilized the cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and colony formation assay to evaluate the effect of S109 combined with radiotherapy on the proliferation and survival of GBM cells. The therapeutic efficacy of S109 combined with radiotherapy was evaluated in vivo to explore the therapeutic mechanism of S109-induced GBM radiosensitization. RESULTS: We found that S109 combined with radiotherapy significantly inhibited GBM cell proliferation and colony formation. By regulating the levels of multiple cell cycle- and apoptosis-related proteins, the combination therapy induced G1 cell cycle arrest in GBM cells. In vivo studies showed that S109 combined with radiotherapy significantly inhibited the growth of intracranial GBM and prolonged survival. Importantly, we found that S109 combined with radiotherapy promoted the nuclear accumulation of IκΒα, and inhibited phosphorylation of p65 and the transcriptional activation of NF-κΒ. CONCLUSION: Our findings provide a new therapeutic regimen for improving GBM radiosensitivity as well as a scientific basis for further clinical trials to evaluate this combination therapy.

14.
J Cell Mol Med ; 24(8): 4494-4509, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32125767

RESUMEN

RIOK2 is a member of RIO (right open reading frame) kinase family. Recent studies have revealed the involvement of RIO kinases in glioma cell growth and expansion. However, the role and mechanism of RIOK2 in glioma cell migration and invasion remain unclear. Wound healing assay, Transwell assay and real-time quantitative PCR (qRT-PCR) detection of matrix metalloproteinases (MMPs) were used to evaluate the migration/invasion of glioma cells. Western blot and qRT-PCR were employed to measure the expression of epithelial-mesenchymal transition (EMT) markers. Dual luciferase reporter assay was performed to determine the binding between RIOK2 and miR-4744. In addition, RIOK2 and miR-4744 levels were quantified by qRT-PCR and/or immunohistochemistry in glioma tissues. Transfection of RIOK2 siRNAs significantly inhibited glioma cell migration and invasion and down-regulated the expression of MMPs (MMP2 and MMP9) and mesenchymal markers (N-cadherin, ß-catenin, Twist1, fibronectin, ZEB-1) in glioma cells. Overexpression of RIOK2 showed the opposite effects. MiR-4744 directly bound to the 3'-untranslated region of RIOK2 and negatively regulated the expression of RIOK2. Up-regulation of miR-4744 inhibited the migration and invasion of glioma cells. Overexpression of RIOK2 could reverse the effects of miR-4744 up-regulation on the migration, invasion and EMT process in glioma cells. Moreover, RIOK2 was high, while miR-4744 was low in glioma tissues, and a negative correlation was found between them. These results suggest that RIOK2 is post-transcriptionally targeted by miR-4744, the low miR-4744 and high RIOK2 levels in glioma may contribute to tumour cell infiltration through promoting the EMT.


Asunto(s)
Proliferación Celular/genética , Glioma/genética , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Adulto , Anciano , Cadherinas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/genética
15.
Int J Med Sci ; 16(4): 614-622, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31171914

RESUMEN

Background: CAPON has two isoforms in human brain: long form of CAPON (CAPON-L) and short form of CAPON (CAPON-S). Recent studies have indicated the involvement of CAPON in tumor cell growth. We aimed to reveal the role of the two CAPON isoforms in the proliferation of glioma cells in this study. Materials and Methods: Lentivirus-mediated stable cell lines with CAPON-L or CAPON-S overexpression were established in U87 and U251 glioma cells. Cell counting kit-8 and colony formation assays were used to evaluate cell proliferation. Western blot analysis of cell cycle-related proteins and flow cytometry were performed to analyze cell cycle progression. Some important molecules of the AKT/mTOR pathway and P53 were also measured by Western blot analysis. Results: Overexpression of CAPON-L showed a significantly inhibitory role in U251 cells, while it exhibited a promoting role in U87 cells. Consistently, overexpressing CAPON-L impeded the cell cycle progression and down-regulated the expression levels of Cyclin D1, CDK4 and CDK6 in U251 cells, whereas it up-regulated the CDK6 level in U87 cells. The overexpression of CAPON-L significantly decreased the phosphorylation and/or total levels of AKT, mTOR and S6 in U251 cells, while it did not affect these signaling molecules in U87 cells, except for a significant increase in the phosphorylation of AKT at Thr-308 site. Transfecting constitutively active AKT (myr-AKT) partially reversed the decreased phosphorylation of AKT and S6 in the CAPON-L-overexpressing U251 cells. In addition, we found a significant decrease in the wild-type P53 level in the CAPON-L-overexpressing U87 cells. The overexpression of CAPON-S also inhibited cell proliferation, blocked cell cycle progression, and decreased the AKT/mTOR pathway activity in U251 cells. Conclusion: The effects of CAPON-L overexpression on glioma cell proliferation are dependent on the AKT/mTOR/P53 activity. The overexpression of CAPON inhibits U251 cell proliferation through the AKT/mTOR signaling pathway, while overexpressing CAPON-L promoted U87 cell proliferation, possibly through down-regulating the P53 level.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Glioma/genética , Proteína Oncogénica v-akt/genética , Serina-Treonina Quinasas TOR/genética , Proteína p53 Supresora de Tumor/genética , Apoptosis/genética , Autofagia/genética , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Humanos , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genética
16.
J Exp Clin Cancer Res ; 38(1): 219, 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31122294

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a fatal brain tumor, lacking effective treatment. Epidermal growth factor receptor (EGFR) is recognized as an attractive target for GBM treatment. However, GBMs have very poor responses to the first- and second-generation EGFR inhibitors. The third-generation EGFR-targeted drug, AZD9291, is a novel and irreversible inhibitor. It is noteworthy that AZD9291 shows excellent blood-brain barrier penetration and has potential for the treatment of brain tumors. METHODS: In this study, we evaluated the anti-tumor activity and effectiveness of AZD9291 in a preclinical GBM model. RESULTS: AZD9291 showed dose-responsive growth inhibitory activity against six GBM cell lines. Importantly, AZD9291 inhibited GBM cell proliferation > 10 times more efficiently than the first-generation EGFR inhibitors. AZD9291 induced GBM cell cycle arrest and significantly inhibited colony formation, migration, and invasion of GBM cells. In an orthotopic GBM model, AZD9291 treatment significantly inhibited tumor survival and prolonged animal survival. The underlying anti-GBM mechanism of AZD9291 was shown to be different from that of the first-generation EGFR inhibitors. In contrast to erlotinib, AZD9291 continuously and efficiently inhibited the EGFR/ERK signaling in GBM cells. CONCLUSION: AZD9291 demonstrated an efficient preclinical activity in GBM in vitro and in vivo models. AZD9291 has been approved for the treatment of lung cancer with good safety and tolerability. Our results support the possibility of conducting clinical trials of anti-GBM therapy using AZD9291.


Asunto(s)
Acrilamidas/administración & dosificación , Compuestos de Anilina/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Acrilamidas/farmacología , Compuestos de Anilina/farmacología , Animales , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Receptores ErbB/antagonistas & inhibidores , Glioblastoma/metabolismo , Humanos , Masculino , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cereb Cortex ; 29(9): 3752-3765, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30307500

RESUMEN

Aberrant regulation and activity of synaptic proteins may cause synaptic pathology in the prefrontal cortex (PFC) of mood disorder patients. Carboxy-terminal PDZ ligand of NOS1 (CAPON) is a critical scaffold protein linked to synaptic proteins like nitric oxide synthase 1, synapsins. We hypothesized that CAPON is altered together with its interacting synaptic proteins in the PFC in mood disorder patients and may contribute to depression-like behaviors in mice subjected to chronic unpredictable mild stress (CUMS). Here, we found that CAPON-immunoreactivity (ir) was significantly increased in the dorsolateral PFC (DLPFC) and anterior cingulate cortex in major depressive disorder (MDD), which was accompanied by an upregulation of spinophilin-ir and a downregulation of synapsin-ir. The increases in CAPON and spinophilin and the decrease in synapsin in the DLPFC of MDD patients were also seen in the PFC of CUMS mice. CAPON-ir positively correlated with spinophilin-ir (but not with synapsin-ir) in mood disorder patients. CAPON colocalized with spinophilin in the DLPFC of MDD patients and interacted with spinophilin in human brain. Viral-mediated CAPON downregulation in the medial PFC notably reversed the depression-like behaviors in the CUMS mice. These data suggest that CAPON may contribute to aspects of depressive behavior, possibly as an interacting protein for spinophilin in the PFC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encéfalo/metabolismo , Depresión/metabolismo , Trastorno Depresivo Mayor/metabolismo , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo , Animales , Modelos Animales de Enfermedad , Giro del Cíngulo/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsinas/metabolismo
18.
J Cell Mol Med ; 22(7): 3595-3604, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29667783

RESUMEN

PHAP1 (Putative HLA-DR-associated protein 1), also termed acidic leucine-rich nuclear phosphoprotein 32A (ANP32A), Phosphoprotein 32 (pp32) or protein phosphatase 2A inhibitor (I1PP2A), is a multifunctional protein aberrantly expressed in multiple types of human cancers. However, its expression pattern and clinical relevance in human glioma remain unknown. In this study, Western blotting and immunohistochemistry analysis demonstrated PHAP1 protein was highly expressed in glioma patients, especially in those with high-grade disease. Publicly available data also revealed high levels of PHAP1 were associated with poor prognosis in glioma patients. The functional studies showed that knock-down of PHAP1 suppressed the proliferation of glioma cells, while overexpression of PHAP1 facilitated it. The iTRAQ proteomic analysis suggested that stathmin might be a potential downstream target of PHAP1. Consistently, PHAP1 knock-down significantly decreased the expression of stathmin, while overexpression of PHAP1 increased it. Also, the upstream negative regulator, p27, expression levels increased upon PHAP1 knock-down and decreased when PHAP1 was overexpressed. As a result, the phosphorylated Akt (S473), an upstream regulator of p27, expression levels decreased upon silencing of PHAP1, but elevated after PHAP1 overexpression. Importantly, we demonstrate the p27 down-regulation, stathmin up-regulation and cell proliferation acceleration induced by PHAP1 overexpression were dependent on Akt activation. In conclusion, the above results suggest that PHAP1 expression is elevated in glioma patients, which may accelerate the proliferation of glioma cells by regulating the Akt/p27/stathmin pathway.


Asunto(s)
Neoplasias Encefálicas/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Glioma/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/metabolismo , Estatmina/metabolismo , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Glioma/mortalidad , Humanos , Inmunohistoquímica , Proteínas Nucleares , Pronóstico , Proteómica/métodos , Proteínas de Unión al ARN/genética
19.
Cancer Lett ; 415: 151-163, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29233656

RESUMEN

The RIO (right open reading frame) protein kinases include RIOK1, RIOK2 and RIOK3. Emerging evidence has suggested an important role of RIO kinases in cancer cell proliferation, apoptosis, migration and invasion. However, the expression profile and specific roles of RIOK3 are largely unknown during glioma progression. In the current study, quantitative real-time PCR, Western blot, and immunohistochemical analysis showed that RIOK3 was upregulated in glioma tissues. Available database analysis revealed that higher levels of RIOK3 were associated with poorer survival outcome in glioma patients. Flow cytometry, CCK8 and EdU assays showed that downregulation of RIOK3 arrested cell cycle progression and inhibited glioma cell proliferation. Wound healing, transwell and gelatin zymography assays revealed that silencing RIOK3 decreased glioma cell migration and invasion. Furthermore, the downregulation of RIOK3 significantly decreased the activity of AKT/mTOR signaling and induced apoptosis in glioma cells. Overexpression of RIOK3 showed the opposite effects on glioma cell proliferation, migration, invasion and the AKT/mTOR pathway. These results indicate that high RIOK3 levels in gliomas appear to contribute to the growth and expansion of this cancer, and may thus serve as a novel therapeutic target.


Asunto(s)
Neoplasias Encefálicas/genética , Movimiento Celular/genética , Proliferación Celular/genética , Glioma/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Glioma/patología , Células HEK293 , Humanos , Invasividad Neoplásica , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal , Análisis de Supervivencia
20.
Int J Mol Med ; 41(3): 1339-1348, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29286066

RESUMEN

Aberrant activation of extracellular signal­regulated kinase 1/2 (ERK1/2) by phosphorylation modification can trigger tumor cell development in glioma. S­nitrosylation, which refers to the covalent addition of a nitric oxide (NO) group to a cysteine (Cys) thiol, is an important post­translational modification that occurs on numerous cancer­associated proteins. Protein S­nitrosylation can increase or decrease protein activity and stability, and subsequent signal transduction and cellular processes. However, the association between ERK1/2 S­nitrosylation and ERK1/2 phosphorylation, and the effects of ERK1 S­nitrosylation on glioma cell survival are currently unknown. U251 glioma cells were treated with NO donors sodium nitroprusside (SNP) or S­nitrosoglutathione (GSNO). CCK8 assay was used to assess the cell viability. NO levels in the medium were detected by Griess assay. Western blot analysis and biotin switch assay were employed to detect the ERK1/2 phosphorylation and S-nitrosylation. ERK1 wild-type and mutant plasmids were constructed, and used to transfect the U251 cells. Caspase-3 western blot analysis and flow cytometry were employed to assess cell apoptosis. The present study demonstrated that treatment with the NO donors SNP or GSNO led to an increase in ERK1/2 S­nitrosylation, and a reduction in ERK1/2 phosphorylation, which was accompanied by growth inhibition of U251 glioma cells. Mutational analysis demonstrated that Cys183 was vital for S­nitrosylation of ERK1, and that preventing ERK1 S­nitrosylation by replacing Cys183 with alanine partially reversed GSNO­induced cell apoptosis, and reductions in cell viability and ERK1/2 phosphorylation. In addition, increased ERK1/2 phosphorylation was associated with decreased ERK1/2 S­nitrosylation in human glioma tissues. These findings identified the relationship between ERK1/2 S­nitrosylation and phosphorylation in vitro and in vivo, and revealed a novel mechanism of ERK1/2 underlying tumor cell development and apoptotic resistance of glioma.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glioma/enzimología , Glioma/patología , Secuencia de Aminoácidos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisteína/genética , Quinasas MAP Reguladas por Señal Extracelular/química , Humanos , Mutación/genética , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Nitrosación , Fosforilación/efectos de los fármacos , S-Nitrosoglutatión/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...