Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Malar J ; 23(1): 205, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982475

RESUMEN

BACKGROUND: Drug resistance in Plasmodium falciparum is a major threat to malaria control efforts. Pathogen genomic surveillance could be invaluable for monitoring current and emerging parasite drug resistance. METHODS: Data from two decades (2000-2020) of continuous molecular surveillance of P. falciparum parasites from Senegal were retrospectively examined to assess historical changes in malaria drug resistance mutations. Several known drug resistance markers and their surrounding haplotypes were profiled using a combination of single nucleotide polymorphism (SNP) molecular surveillance and whole genome sequence based population genomics. RESULTS: This dataset was used to track temporal changes in drug resistance markers whose timing correspond to historically significant events such as the withdrawal of chloroquine (CQ) and the introduction of sulfadoxine-pyrimethamine (SP) in 2003. Changes in the mutation frequency at Pfcrt K76T and Pfdhps A437G coinciding with the 2014 introduction of seasonal malaria chemoprevention (SMC) in Senegal were observed. In 2014, the frequency of Pfcrt K76T increased while the frequency of Pfdhps A437G declined. Haplotype-based analyses of Pfcrt K76T showed that this rapid increase was due to a recent selective sweep that started after 2014. DISCUSSION (CONCLUSION): The rapid increase in Pfcrt K76T is troubling and could be a sign of emerging amodiaquine (AQ) resistance in Senegal. Emerging AQ resistance may threaten the future clinical efficacy of artesunate-amodiaquine (ASAQ) and AQ-dependent SMC chemoprevention. These results highlight the potential of molecular surveillance for detecting rapid changes in parasite populations and stress the need to monitor the effectiveness of AQ as a partner drug for artemisinin-based combination therapy (ACT) and for chemoprevention.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Mutación , Plasmodium falciparum , Senegal , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Resistencia a Medicamentos/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Estudios Retrospectivos , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Haplotipos , Proteínas de Transporte de Membrana/genética
2.
Malar J ; 23(1): 149, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750583

RESUMEN

BACKGROUND: Malaria elimination in Senegal requires accurate diagnosis of all Plasmodium species. Plasmodium falciparum is the most prevalent species in Senegal, although Plasmodium malariae, Plasmodium ovale, and recently Plasmodium vivax have also been reported. Nonetheless, most malaria control tools, such as Histidine Rich Protein 2 rapid diagnosis test (PfHRP2-RDT,) can only diagnose P. falciparum. Thus, PfHRP2-RDT misses non-falciparum species and P. falciparum infections that fall below the limit of detection. These limitations can be addressed using highly sensitive Next Generation Sequencing (NGS). This study assesses the burden of the four different Plasmodium species in western and eastern regions of Senegal using targeted PCR amplicon sequencing. METHODS: Three thousand samples from symptomatic and asymptomatic individuals in 2021 from three sites in Senegal (Sessene, Diourbel region; Parcelles Assainies, Kaolack region; Gabou, Tambacounda region) were collected. All samples were tested using PfHRP2-RDT and photoinduced electron transfer polymerase chain reaction (PET-PCR), which detects all Plasmodium species. Targeted sequencing of the nuclear 18S rRNA and the mitochondrial cytochrome B genes was performed on PET-PCR positive samples. RESULTS: Malaria prevalence by PfHRP2-RDT showed 9.4% (94/1000) and 0.2% (2/1000) in Diourbel (DBL) and Kaolack (KL), respectively. In Tambacounda (TAM) patients who had malaria symptoms and had a negative PfHRP2-RDT were enrolled. The PET-PCR had a positivity rate of 23.5% (295/1255) overall. The PET-PCR positivity rate was 37.6%, 12.3%, and 22.8% in Diourbel, Kaolack, and Tambacounda, respectively. Successful sequencing of 121/295 positive samples detected P. falciparum (93%), P. vivax (2.6%), P. malariae (4.4%), and P. ovale wallikeri (0.9%). Plasmodium vivax was co-identified with P. falciparum in thirteen samples. Sequencing also detected two PfHRP2-RDT-negative mono-infections of P. vivax in Tambacounda and Kaolack. CONCLUSION: The findings demonstrate the circulation of P. vivax in western and eastern Senegal, highlighting the need for improved malaria control strategies and accurate diagnostic tools to better understand the prevalence of non-falciparum species countrywide.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Senegal/epidemiología , Humanos , Adolescente , Adulto , Adulto Joven , Niño , Persona de Mediana Edad , Masculino , Femenino , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Preescolar , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Prevalencia , Anciano , Lactante , Reacción en Cadena de la Polimerasa , Plasmodium ovale/genética , Plasmodium ovale/aislamiento & purificación
3.
BMC Res Notes ; 17(1): 68, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461329

RESUMEN

BACKGROUND: Following WHO guidelines, microscopy is the gold standard for malaria diagnosis in endemic countries. The Parasitology-Mycology laboratory (LPM) is the National Reference Laboratory and is currently undergoing ISO 15189 accreditation. In this context, we assessed the performance of the laboratory by confirming the reliability and the accuracy of results obtained in accordance with the requirements of the ISO 15189 standards. This study aimed to verify the method of microscopic diagnosis of malaria at the LPM, in the Aristide Le Dantec hospital (HALD) in Dakar, Senegal. METHODS: This is a validation/verification study conducted from June to August 2020. Twenty (20) microscopic slides of thick/thin blood smear with known parasite densities (PD) selected from the Cheick Anta Diop University malaria slide bank in Dakar were used for this assessment. Six (6) were used to assess microscopists' ability to determine PD and fourteen (14) slides were used for detection (positive vs negative) and identification of parasites. Four (4) LPM-HALD microscopists read and recorded their results on prepared sheets. Data analysis was done with Microsoft Excel 2010 software. RESULTS: A minimum threshold of 50% concordance was used for comparison. Of the twenty (20) slides read, 100% concordance was obtained on eight (8) detection (positive vs negative) slides. Four (4) out of the six (6) parasite density evaluation slides obtained a concordance of less than 50%. Thirteen (13) out of the fourteen (14) identification slides obtained a concordance greater than 50%. Only one (1) identification slide obtained zero agreement from the microscopists. For species identification a concordance greater than 80% was noted and the microscopists obtained scores between 0.20 and 0.4 on a scale of 0 to 1 for parasite density reading. The microscopists obtained 100% precision, sensitivity, specificity and both negative and positive predictive values. CONCLUSION: This work demonstrated that the microscopic method of malaria diagnosis used in the LPM/HALD is in accordance with the requirements of WHO and ISO 15189. Further training of microscopists may be needed to maintain competency.


Asunto(s)
Malaria , Humanos , Senegal , Reproducibilidad de los Resultados , Malaria/diagnóstico , Malaria/parasitología , Laboratorios , Hospitales Universitarios
4.
Nat Commun ; 15(1): 747, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272885

RESUMEN

The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata in a cross-sectional study of febrile patients and healthy controls in a low malaria burden area. Using 16S and untargeted sequencing, we detected viral, bacterial, or eukaryotic pathogens in 23% (38/163) of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15.5% and 3.8% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model that can distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs (F1 score: 0.823). These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance.


Asunto(s)
Borrelia , Malaria , Plasmodium , Humanos , Senegal/epidemiología , Estudios Transversales , Malaria/diagnóstico , Malaria/epidemiología , Fiebre/epidemiología , Borrelia/genética
5.
Nat Commun ; 14(1): 7268, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949851

RESUMEN

We here analyze data from the first year of an ongoing nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal. The analysis is based on 1097 samples collected at health facilities during passive malaria case detection in 2019; it provides a baseline for analyzing parasite genetic metrics as they vary over time and geographic space. The study's goal was to identify genetic metrics that were informative about transmission intensity and other aspects of transmission dynamics, focusing on measures of genetic relatedness between parasites. We found the best genetic proxy for local malaria incidence to be the proportion of polygenomic infections (those with multiple genetically distinct parasites), although this relationship broke down at low incidence. The proportion of related parasites was less correlated with incidence while local genetic diversity was uninformative. The type of relatedness could discriminate local transmission patterns: two nearby areas had similarly high fractions of relatives, but one was dominated by clones and the other by outcrossed relatives. Throughout Senegal, 58% of related parasites belonged to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci and at one novel locus, reflective of ongoing selection pressure.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Senegal/epidemiología , Malaria/epidemiología , Plasmodium falciparum/genética
6.
medRxiv ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37662407

RESUMEN

The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata from febrile patients and healthy controls in a low malaria burden area. Using 16S and unbiased sequencing, we detected viral, bacterial, or eukaryotic pathogens in 29% of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15% and 3.7% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model to distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs. These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance.

7.
Malar J ; 22(1): 167, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237307

RESUMEN

BACKGROUND: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapy (ACT), the current frontline malaria curative treatment. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in sub-Saharan Africa, where most malaria deaths occur. METHODS: Here, ex vivo susceptibility to dihydroartemisinin (DHA) was evaluated from 38 Plasmodium falciparum isolates collected in 2017 in Thiès (Senegal) expressed in the Ring-stage Survival Assay (RSA). Both major and minor variants were explored in the three conserved-encoding domains of the pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS: All samples tested in the ex vivo RSA were found to be susceptible to DHA (parasite survival rate < 1%). The non-synonymous mutations K189T and K248R in pfkelch13 were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION: The results suggest that ART is still fully effective in the Thiès region of Senegal in 2017. Investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Parásitos , Animales , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Falciparum/parasitología , Senegal , Resistencia a Medicamentos/genética , Artemisininas/farmacología , Artemisininas/uso terapéutico , Plasmodium falciparum , Uganda , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación
8.
medRxiv ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37163114

RESUMEN

Drug resistance in Plasmodium falciparum is a major threat to malaria control efforts. We analyzed data from two decades (2000-2020) of continuous molecular surveillance of P. falciparum parasite strains in Senegal to determine how historical changes in drug administration policy may have affected parasite evolution. We profiled several known drug resistance markers and their surrounding haplotypes using a combination of single nucleotide polymorphism (SNP) molecular surveillance and whole-genome sequence (WGS) based population genomics. We observed rapid changes in drug resistance markers associated with the withdrawal of chloroquine and introduction of sulfadoxine-pyrimethamine in 2003. We also observed a rapid increase in Pfcrt K76T and decline in Pfdhps A437G starting in 2014, which we hypothesize may reflect changes in resistance or fitness caused by seasonal malaria chemoprevention (SMC). Parasite populations evolve rapidly in response to drug use, and SMC preventive efficacy should be closely monitored.

9.
medRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37131838

RESUMEN

Parasite genetic surveillance has the potential to play an important role in malaria control. We describe here an analysis of data from the first year of an ongoing, nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal, intended to provide actionable information for malaria control efforts. Looking for a good proxy for local malaria incidence, we found that the best predictor was the proportion of polygenomic infections (those with multiple genetically distinct parasites), although that relationship broke down in very low incidence settings (r = 0.77 overall). The proportion of closely related parasites in a site was more weakly correlated ( r = -0.44) with incidence while the local genetic diversity was uninformative. Study of related parasites indicated their potential for discriminating local transmission patterns: two nearby study areas had similarly high fractions of relatives, but one area was dominated by clones and the other by outcrossed relatives. Throughout the country, 58% of related parasites proved to belong to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci as well as at one novel locus, reflective of ongoing selection pressure.

10.
Res Sq ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36798264

RESUMEN

INTRODUCTION: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapies (ACTs), the current frontline malaria curative treatments. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in Sub-Saharan Africa where most malaria deaths occur. METHODS: Here, we evaluated ex vivo susceptibility to dihydroartemisinin (DHA) from 38 P. falciparum isolates collected in 2017 in Thiès (Senegal) expressed with the Ring-stage Survival Assay (RSA). We explored major and minor variants in the full Pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS: All samples tested in the ex vivo RSA were found to be susceptible to DHA. Both non-synonymous mutations K189T and K248R were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION: Altogether, investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.

11.
Viruses ; 13(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34452470

RESUMEN

While investigating a signal of adaptive evolution in humans at the gene LARGE, we encountered an intriguing finding by Dr. Stefan Kunz that the gene plays a critical role in Lassa virus binding and entry. This led us to pursue field work to test our hypothesis that natural selection acting on LARGE-detected in the Yoruba population of Nigeria-conferred resistance to Lassa Fever in some West African populations. As we delved further, we conjectured that the "emerging" nature of recently discovered diseases like Lassa fever is related to a newfound capacity for detection, rather than a novel viral presence, and that humans have in fact been exposed to the viruses that cause such diseases for much longer than previously suspected. Dr. Stefan Kunz's critical efforts not only laid the groundwork for this discovery, but also inspired and catalyzed a series of events that birthed Sentinel, an ambitious and large-scale pandemic prevention effort in West Africa. Sentinel aims to detect and characterize deadly pathogens before they spread across the globe, through implementation of its three fundamental pillars: Detect, Connect, and Empower. More specifically, Sentinel is designed to detect known and novel infections rapidly, connect and share information in real time to identify emerging threats, and empower the public health community to improve pandemic preparedness and response anywhere in the world. We are proud to dedicate this work to Stefan Kunz, and eagerly invite new collaborators, experts, and others to join us in our efforts.


Asunto(s)
Planificación en Desastres , Fiebre de Lassa/epidemiología , Virus Lassa/fisiología , África Occidental/epidemiología , Planificación en Desastres/métodos , Humanos , Fiebre de Lassa/genética , Fiebre de Lassa/prevención & control , Fiebre de Lassa/virología , Virus Lassa/genética , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/inmunología , Nigeria/epidemiología , Pandemias , Polimorfismo Genético , Receptores Virales/genética , Receptores Virales/inmunología
12.
Sci Rep ; 11(1): 10321, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990632

RESUMEN

Dengue virus is a major and rapidly growing public health concern in tropic and subtropic regions across the globe. In late 2018, Senegal experienced its largest dengue virus outbreak to date, covering several regions. However, little is known about the genetic diversity of dengue virus (DENV) in Senegal. Here we report complete viral genomes from 17 previously undetected DENV cases from the city of Thiès. In total we identified 19 cases of DENV in a cohort of 198 individuals with fever collected in October and November 2018. We detected 3 co-circulating serotypes; DENV 3 was the most frequent accounting for 11/17 sequences (65%), 4 (23%) were DENV2 and 2 (12%) were DENV1. Sequences were most similar to recent sequences from West Africa, suggesting ongoing local circulation of viral populations; however, detailed inference is limited by the scarcity of available genomic data. We did not find clear associations with reported clinical signs or symptoms, highlighting the importance of testing for diagnosing febrile diseases. Overall, these findings expand the known range of DENV in Senegal, and underscore the need for better genomic characterization of DENV in West Africa.


Asunto(s)
Virus del Dengue/genética , Dengue/virología , Brotes de Enfermedades/estadística & datos numéricos , Adolescente , Adulto , Anciano , Niño , Preescolar , ADN Viral/aislamiento & purificación , Dengue/sangre , Dengue/diagnóstico , Dengue/epidemiología , Virus del Dengue/aislamiento & purificación , Femenino , Genoma Viral , Humanos , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Filogenia , Senegal/epidemiología , Serogrupo , Adulto Joven
13.
Malar J ; 20(1): 103, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608006

RESUMEN

BACKGROUND: The diagnosis of malaria cases in regions where the malaria burden has decreased significantly and prevalence is very low is more challenging, in part because of reduced clinical presumption of malaria. The appearance of a cluster of malaria cases with atypical symptoms in Mbounguiel, a village in northern Senegal where malaria transmission is low, in September 2018 exemplifies this scenario. The collaboration between the National Malaria Control Programme (NMCP) at the Senegal Ministry of Health and the Laboratory of Parasitology and Mycology at Cheikh Anta Diop University worked together to evaluate this cluster of malaria cases using molecular and serological tools. METHODS: Malaria cases were diagnosed primarily by rapid diagnostic test (RDT), and confirmed by photo-induced electron transfer-polymerase chain reaction (PET-PCR). 24 single nucleotide polymorphisms (SNPs) barcoding was used for Plasmodium falciparum genotyping. Unbiased metagenomic sequencing and Luminex-based multi-pathogen antibody and antigen profiling were used to assess exposure to other pathogens. RESULTS: Nine patients, of 15 suspected cases, were evaluated, and all nine samples were found to be positive for P. falciparum only. The 24 SNPs molecular barcode showed the predominance of polygenomic infections, with identifiable strains being different from one another. All patients tested positive for the P. falciparum antigens. No other pathogenic infection was detected by either the serological panel or metagenomic sequencing. CONCLUSIONS: This work, undertaken locally within Senegal as a collaboration between the NMCP and a research laboratory at University of Cheikh Anta Diop (UCAD) revealed that a cluster of malaria cases were caused by different strains of P. falciparum. The public health response in real time demonstrates the value of local molecular and genomics capacity in affected countries for disease control and elimination.


Asunto(s)
Genoma de Protozoos , Malaria Falciparum/clasificación , Plasmodium falciparum/genética , Adolescente , Niño , Preescolar , Femenino , Humanos , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Masculino , Senegal , Adulto Joven
14.
Malar J ; 19(1): 403, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33172455

RESUMEN

BACKGROUND: Molecular epidemiology can provide important information regarding the genetic diversity and transmission of Plasmodium falciparum, which can assist in designing and monitoring elimination efforts. However, malaria molecular epidemiology including understanding the genetic diversity of the parasite and performing molecular surveillance of transmission has been poorly documented in Senegal. Next Generation Sequencing (NGS) offers a practical, fast and high-throughput approach to understand malaria population genetics. This study aims to unravel the population structure of P. falciparum and to estimate the allelic diversity, multiplicity of infection (MOI), and evolutionary patterns of the malaria parasite using the NGS platform. METHODS: Multiplex amplicon deep sequencing of merozoite surface protein 1 (PfMSP1) and merozoite surface protein 2 (PfMSP2) in fifty-three P. falciparum isolates from two epidemiologically different areas in the South and North of Senegal, was carried out. RESULTS: A total of 76 Pfmsp1 and 116 Pfmsp2 clones were identified and 135 different alleles were found, 56 and 79 belonged to the pfmsp1 and pfmsp2 genes, respectively. K1 and IC3D7 allelic families were most predominant in both sites. The local haplotype diversity (Hd) and nucleotide diversity (π) were higher in the South than in the North for both genes. For pfmsp1, a high positive Tajima's D (TD) value was observed in the South (D = 2.0453) while negative TD value was recorded in the North (D = - 1.46045) and F-Statistic (Fst) was 0.19505. For pfmsp2, non-directional selection was found with a highly positive TD test in both areas and Fst was 0.02111. The mean MOI for both genes was 3.07 and 1.76 for the South and the North, respectively, with a statistically significant difference between areas (p = 0.001). CONCLUSION: This study revealed a high genetic diversity of pfmsp1 and pfmsp2 genes and low genetic differentiation in P. falciparum population in Senegal. The MOI means were significantly different between the Southern and Northern areas. Findings also showed that multiplexed amplicon deep sequencing is a useful technique to investigate genetic diversity and molecular epidemiology of P. falciparum infections.


Asunto(s)
Antígenos de Protozoos/genética , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Senegal , Adulto Joven
15.
Malar J ; 19(1): 134, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228566

RESUMEN

BACKGROUND: In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) with artemether-lumefantrine as the first-line treatment for uncomplicated Plasmodium falciparum malaria. To date, multiple mutations associated with artemisinin delayed parasite clearance have been described in Southeast Asia in the Pfk13 gene, such as Y493H, R539T, I543T and C580Y. Even though ACT remains clinically and parasitologically efficacious in Senegal, the spread of resistance is possible as shown by the earlier emergence of resistance to chloroquine in Southeast Asia that subsequently spread to Africa. Therefore, surveillance of artemisinin resistance in malaria endemic regions is crucial and requires the implementation of sensitive tools, such as next-generation sequencing (NGS) which can detect novel mutations at low frequency. METHODS: Here, an amplicon sequencing approach was used to identify mutations in the Pfk13 gene in eighty-one P. falciparum isolates collected from three different regions of Senegal. RESULTS: In total, 10 SNPs around the propeller domain were identified; one synonymous SNP and nine non-synonymous SNPs, and two insertions. Three of these SNPs (T478T, A578S and V637I) were located in the propeller domain. A578S, is the most frequent mutation observed in Africa, but has not previously been reported in Senegal. A previous study has suggested that A578S could disrupt the function of the Pfk13 propeller region. CONCLUSION: As the genetic basis of possible artemisinin resistance may be distinct in Africa and Southeast Asia, further studies are necessary to assess the new SNPs reported in this study.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Mutación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Plasmodium falciparum/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Senegal
16.
Afr Health Sci ; 19(3): 2446-2456, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32127816

RESUMEN

INTRODUCTION: Despite a significant decline in Senegal, malaria remains a burden in various parts of the country. Assessment of multiplicity of Plasmodium falciparum infection and genetic diversity of parasites population could help in monitoring of malaria control. OBJECTIVE: To assess genetic diversity and multiplicity of infection in P. falciparum isolates from three areas in Senegal with different malaria transmissions. METHODS: 136 blood samples were collected from patients with uncomplicated P. falciparum malaria in Pikine, Kedougou and Thies. Polymorphic loci of msp1 and 2 (Merozoite surface protein-1 and 2) genes were amplified by nested PCR. RESULTS: For msp1gene, K1 allelic family was predominant with frequency of 71%. Concerning msp2 gene, IC3D7 allelic family was the most represented with frequency of 83%. Multiclonal isolates found were 36% and 31% for msp1et msp2 genes respectively. The MOI found in all areas was 2.56 and was statistically different between areas (P=0.024). Low to intermediate genetic diversity were found with heterozygosity range (He=0,394-0,637) and low genetic differentiation (Fst msp1= 0.011; Fst msp2=0.017) were observed between P. falciparum population within the country. CONCLUSION: Low to moderate genetic diversity of P.falciparum strains and MOI disparities were found in Senegal.


Asunto(s)
Malaria Falciparum/epidemiología , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Senegal/epidemiología , Adulto Joven
17.
N Engl J Med ; 379(18): 1745-1753, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30332564

RESUMEN

During 2018, an unusual increase in Lassa fever cases occurred in Nigeria, raising concern among national and international public health agencies. We analyzed 220 Lassa virus genomes from infected patients, including 129 from the 2017-2018 transmission season, to understand the viral populations underpinning the increase. A total of 14 initial genomes from 2018 samples were generated at Redeemer's University in Nigeria, and the findings were shared with the Nigerian Center for Disease Control in real time. We found that the increase in cases was not attributable to a particular Lassa virus strain or sustained by human-to-human transmission. Instead, the data were consistent with ongoing cross-species transmission from local rodent populations. Phylogenetic analysis also revealed extensive viral diversity that was structured according to geography, with major rivers appearing to act as barriers to migration of the rodent reservoir.


Asunto(s)
Genoma Viral , Fiebre de Lassa/virología , Virus Lassa/genética , ARN Viral/análisis , Adolescente , Adulto , Animales , Teorema de Bayes , Reservorios de Enfermedades , Femenino , Variación Genética , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/transmisión , Masculino , Cadenas de Markov , Persona de Mediana Edad , Nigeria/epidemiología , Filogenia , Filogeografía , Roedores , Análisis de Secuencia de ARN , Zoonosis/transmisión
18.
Malar J ; 16(1): 328, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28797261

RESUMEN

BACKGROUND: This study was initiated from the observation that prevalence of malaria obtained with rapid diagnostic test (RDT) (CareStart™Malaria HRP2/pLDH Combo Test) was higher than in microscopy in a malaria low transmission area of Senegal. PCR was then performed to evaluate the performance of the RDT compared to microscopy in clinical settings. METHODS: The study included 215 patients suspected of malaria in two peri-urban area of Dakar. Finger-pick blood samples were tested using RDT (CareStart™Malaria HRP2/pLDH Combo Test). Venous blood samples were collected for light microscopy and PCR (gold standard). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated as performance characteristics. RESULTS: Considering PCR as the gold standard, CareStart™RDT showed high sensitivity (97.3%) and specificity (94.1%) with PPV and NPV of 97.3 and 94.1%, respectively, while microscopy had a sensitivity and specificity of 93.2 and 100%, respectively, and PPV and NPV of 100 and 87.2%, respectively. CONCLUSIONS: Malaria CareStart™RDT test demonstrated a superior sensitivity compared to microscopy, which is the gold standard for malaria diagnosis. CareStart™RDT could be a useful tool in individuals suspected of malaria even in areas where prevalence is low.


Asunto(s)
Pruebas Diagnósticas de Rutina/normas , Malaria Falciparum/diagnóstico , Adolescente , Adulto , Anciano , Niño , Femenino , Humanos , Malaria Falciparum/epidemiología , Masculino , Microscopía/normas , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/normas , Valor Predictivo de las Pruebas , Prevalencia , Proteínas Protozoarias/análisis , Senegal/epidemiología , Sensibilidad y Especificidad , Adulto Joven
19.
Malar J ; 16(1): 250, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28615016

RESUMEN

BACKGROUND: The monitoring of Plasmodium falciparum sensitivity to anti-malarial drugs is a necessity for effective case management of malaria. This species is characterized by a strong resistance to anti-malarial drugs. In Senegal, the first cases of chloroquine resistance were reported in the Dakar region in 1988 with nearly 7% population prevalence, reaching 47% by 1990. It is in this context that sulfadoxine-pyrimethamine temporarily replaced chloroquine as first line treatment in 2003, pending the introduction of artemisinin-based combination therapy in 2006. The purpose of this study is to assess the ex vivo sensitivity to different anti-malarial drugs of the P. falciparum population from Pikine. METHODS: Fifty-four samples were collected from patients with non-complicated malaria and aged between 2 and 20 years in the Deggo health centre in Pikine in 2014. An assay in which parasites are stained with 4', 6-di-amidino-2-phenylindole (DAPI), was used to study the ex vivo sensitivity of isolates to chloroquine, amodiaquine, piperaquine, pyrimethamine, and dihydroartemisinin. High resolution melting was used for genotyping of pfdhps, pfdhfr, pfmdr1, and pfcrt genes. RESULTS: The mean IC50s of chloroquine, amodiaquine, piperaquine, dihydroartemisinin, and pyrimethamine were, respectively, 39.44, 54.02, 15.28, 2.23, and 64.70 nM. Resistance mutations in pfdhfr gene, in codon 437 of pfdhps gene, and an absence of mutation at position 540 of pfdhps were observed. Mutations in codons K76T of pfcrt and N86Y of pfmdr1 were observed at 51 and 11% population prevalence, respectively. A relationship was found between the K76T and N86Y mutations and ex vivo resistance to chloroquine. CONCLUSION: An increase in sensitivity of isolates to chloroquine was observed. A high sensitivity to dihydroartemisinin was observed; whereas, a decrease in sensitivity to pyrimethamine was observed in the parasite population from Pikine.


Asunto(s)
Antimaláricos/farmacología , Malaria/parasitología , Plasmodium falciparum/efectos de los fármacos , Adolescente , Amodiaquina/farmacología , Artemisininas/farmacología , Niño , Preescolar , Cloroquina/farmacología , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , Resistencia a Medicamentos/genética , Colorantes Fluorescentes , Genotipo , Técnicas de Genotipaje , Humanos , Indoles , Concentración 50 Inhibidora , Mutación , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Pirimetamina/farmacología , Quinolinas/farmacología , Senegal , Adulto Joven
20.
Malar J ; 16(1): 153, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28420422

RESUMEN

BACKGROUND: Emergence and spread of drug resistance to every anti-malarial used to date, creates an urgent need for development of sensitive, specific and field-deployable molecular tools for detection and surveillance of validated drug resistance markers. Such tools would allow early detection of mutations in resistance loci. The aim of this study was to compare common population signatures and drug resistance marker frequencies between two populations with different levels of malaria endemicity and history of anti-malarial drug use: Tanzania and Sénégal. This was accomplished by implementing a high resolution melting assay to study molecular markers of drug resistance as compared to polymerase chain reaction-restriction fragment length polymorphism (PCR/RFLP) methodology. METHODS: Fifty blood samples were collected each from a lowly malaria endemic site (Sénégal), and a highly malaria endemic site (Tanzania) from patients presenting with uncomplicated Plasmodium falciparum malaria at clinic. Data representing the DHFR were derived using both PCR-RFLP and HRM assay; while genotyping data representing the DHPS were evaluated in Senegal and Tanzania using HRM. Msp genotyping analysis was used to characterize the multiplicity of infection in both countries. RESULTS: A high prevalence of samples harbouring mutant DHFR alleles was observed in both population using both genotyping techniques. HRM was better able to detect mixed alleles compared to PCR/RFLP for DHFR codon 51 in Tanzania; and only HRM was able to detect mixed infections from Senegal. A high prevalence of mutant alleles in DHFR (codons 51, 59, 108) and DHPS (codon 437) were found among samples from Sénégal while no mutations were observed at DHPS codons 540 and 581, from both countries. Overall, the frequency of samples harbouring either a single DHFR mutation (S108N) or double mutation in DHFR (C59R/S108N) was greater in Sénégal compared to Tanzania. CONCLUSION: Here the results demonstrate that HRM is a rapid, sensitive, and field-deployable alternative technique to PCR-RFLP genotyping that is useful in populations harbouring more than one parasite genome (polygenomic infections). In this study, a high levels of resistance polymorphisms was observed in both dhfr and dhps, among samples from Tanzania and Sénégal. A routine monitoring by molecular markers can be a way to detect emergence of resistance involving a change in the treatment policy.


Asunto(s)
Dihidropteroato Sintasa/genética , Resistencia a Medicamentos , Técnicas de Diagnóstico Molecular/métodos , Plasmodium/enzimología , Sistemas de Atención de Punto , Tetrahidrofolato Deshidrogenasa/genética , Temperatura de Transición , Adolescente , Niño , Preescolar , Genotipo , Técnicas de Genotipaje/métodos , Humanos , Malaria Falciparum/parasitología , Plasmodium/efectos de los fármacos , Plasmodium/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Senegal , Tanzanía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...