Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 358: 142126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677612

RESUMEN

Microplastics (MPs) existing extensively in various ecosystems can be ingested by marine organisms and enter the food chain, resulting the health risks from the presence of MPs in aquatic and terrestrial ecosystems. In the present study, an ideal model for Lepidoptera, the silkworm, Bombyx mori, was exposed to environmental concentrations (0.125 µg, 0.25 µg or 0.5 µg/diet) of MPs for 5 days, and the global changes in gut microbes and metabolites were subsequently examined via 16S rDNA sequencing and GC‒MS-based metabolomics. The results showed that MPs exposure did not seriously threaten survival but may regulate signaling pathways involved in development and cocoon production. MPs exposure induced gut microbiota perturbation according to the indices of α-diversity and ß-diversity, and the functional prediction of the altered microbiome and associated metabolites demonstrated the potential roles of the altered microbiome following MPs exposure in the metabolic and physiological states of silkworm. The metabolites markedly altered following MPs exposure may play vital biological roles in energy metabolism, lipid metabolism, xenobiotic detoxification and the immune system by directly or indirectly affecting the physiological state of silkworms. These findings contribute to assessing the health risks of MPs exposure in model insects and provide novel insight into the toxicity mechanism of MPs.


Asunto(s)
Bombyx , Microbioma Gastrointestinal , Microplásticos , Animales , Bombyx/microbiología , Bombyx/efectos de los fármacos , Bombyx/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
2.
Int J Biol Macromol ; 256(Pt 2): 128466, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38035957

RESUMEN

Spider silks with excellent mechanical properties attract more attention from scientists worldwide, and the dragline silk that serves as the framework of the spider's web is considered one of the strongest fibers. However, it is unfeasible for large-scale production of spider silk due to its highly territorial, cannibalistic, predatory, and solitary behavior. Herein, to alleviate some of these problems and explore aneasy way to produce spider fibers, we constructed recombinant baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) simultaneously expressing Trichonephila clavipes native ampullate spidroin 2 (MaSp-G) and spidroin 1 (MaSp-C) driven by the promoters of silkworm fibroin genes, to infect the nonpermissive Bombyx mori larvae at the fifth instar. MaSp-G and MaSp-C were co-expressed in the posterior silk glands (PSGs) of infected silkworms and successfully secreted into the lumen of the silk gland for fibroin globule assembly. The integration of MaSp-G and MaSp-C into silkworm silk fibers significantly improved the mechanical properties of these chimeric silk fibers, especially the strength and extensibility, which may be caused by the increment of ß-sheet in the chimeric silkworm/spider silk fiber. These results demonstrated that silkworms could be developed as the nonpermissive heterologous host for the mass production of chimeric silkworm/spider silk fibers via the recombinant baculovirus AcMNPV.


Asunto(s)
Bombyx , Fibroínas , Nucleopoliedrovirus , Arañas , Animales , Seda/genética , Bombyx/genética , Fibroínas/genética , Animales Modificados Genéticamente , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa
3.
PLoS Pathog ; 19(12): e1011184, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048361

RESUMEN

Polymerases encoded by segmented negative-strand RNA viruses cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching") to generate chimeric RNA, and trans-splicing occurs between viral and cellular transcripts. Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), an RNA virus belonging to Reoviridae, is a major pathogen of silkworm (B. mori). The genome of BmCPV consists of 10 segmented double-stranded RNAs (S1-S10) from which viral RNAs encoding a protein are transcribed. In this study, chimeric silkworm-BmCPV RNAs, in which the sequence derived from the silkworm transcript could fuse with both the 5' end and the 3' end of viral RNA, were identified in the midgut of BmCPV-infected silkworms by RNA_seq and further confirmed by RT-PCR and Sanger sequencing. A novel chimeric RNA, HDAC11-S4 RNA 4, derived from silkworm histone deacetylase 11 (HDAC11) and the BmCPV S4 transcript encoding viral structural protein 4 (VP4), was selected for validation by in situ hybridization and Northern blotting. Interestingly, our results indicated that HDAC11-S4 RNA 4 was generated in a BmCPV RNA-dependent RNA polymerase (RdRp)-independent manner and could be translated into a truncated BmCPV VP4 with a silkworm HDAC11-derived N-terminal extension. Moreover, it was confirmed that HDAC11-S4 RNA 4 inhibited BmCPV proliferation, decreased the level of H3K9me3 and increased the level of H3K9ac. These results indicated that during infection with BmCPV, a novel mechanism, different from that described in previous reports, allows the genesis of chimeric silkworm-BmCPV RNAs with biological functions.


Asunto(s)
Bombyx , Reoviridae , Animales , Bombyx/genética , Interacciones Huésped-Patógeno , Reoviridae/genética , ARN Viral/genética , ARN Viral/metabolismo , Proliferación Celular
4.
Microbiol Spectr ; 11(4): e0493822, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37341621

RESUMEN

Some insect viruses encode suppressors of RNA interference (RNAi) to counteract the antiviral RNAi pathway. However, it is unknown whether Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) encodes an RNAi suppressor. In this study, the presence of viral small interfering RNA (vsiRNA) in BmN cells infected with BmCPV was confirmed by small RNA sequencing. The Dual-Luciferase reporter test demonstrated that BmCPV infection may prevent firefly luciferase (Luc) gene silencing caused by particular short RNA. It was also established that the inhibition relied on the nonstructural protein NSP8, which suggests that NSP8 was a possible RNAi suppressor. In cultured BmN cells, the expressions of viral structural protein 1 (vp1) and NSP9 were triggered by overexpression of nsp8, suggesting that BmCPV proliferation was enhanced by NSP8. A pulldown assay was conducted with BmCPV genomic double-stranded RNA (dsRNA) labeled with biotin. The mass spectral detection of NSP8 in the pulldown complex suggests that NSP8 is capable of direct binding to BmCPV genomic dsRNA. The colocalization of NSP8 and B. mori Argonaute 2 (BmAgo2) was detected by an immunofluorescence assay, leading to the hypothesis that NSP8 interacts with BmAgo2. Coimmunoprecipitation further supported the present investigation. Moreover, vasa intronic protein, a component of RNA-induced silencing complex (RISC), could be detected in the coprecipitation complex of NSP8 by mass spectrum analysis. NSP8 and the mRNA decapping protein (Dcp2) were also discovered to colocalize to processing bodies (P bodies) for RNAi-mediated gene silencing in Saccharomyces cerevisiae. These findings revealed that by interacting with BmAgo2 and suppressing RNAi, NSP8 promoted BmCPV growth. IMPORTANCE It has been reported that the RNAi pathway is inhibited by binding RNAi suppressors encoded by some insect-specific viruses belonging to Dicistroviridae, Nodaviridae, or Birnaviridae to dsRNAs to protect dsRNAs from being cut by Dicer-2. However, it is unknown whether BmCPV, belonging to Spinareoviridae, encodes an RNAi suppressor. In this study, we found that nonstructural protein NSP8 encoded by BmCPV inhibits small interfering RNA (siRNA)-induced RNAi and that NSP8, as an RNAi suppressor, can bind to viral dsRNAs and interact with BmAgo2. Moreover, vasa intronic protein, a component of RISC, was found to interact with NSP8. Heterologously expressed NSP8 and Dcp2 were colocalized to P bodies in yeast. These results indicated that NSP8 promoted BmCPV proliferation by binding itself to BmCPV genomic dsRNAs and interacting with BmAgo2 through suppression of siRNA-induced RNAi. Our findings deepen our understanding of the game between BmCPV and silkworm in regulating viral infection.


Asunto(s)
Reoviridae , Interferencia de ARN , ARN Interferente Pequeño/genética , Reoviridae/metabolismo , ARN Bicatenario/metabolismo , Proliferación Celular
5.
Insect Biochem Mol Biol ; 156: 103947, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37086910

RESUMEN

Bombyx mori cypovirus (BmCPV), a typical double-stranded RNA virus, was demonstrated to generate a viral circRNA, vcircRNA_000048, which encodes a vsp21 with 21 amino acid residues to suppress viral replication. However, the regulatory mechanism of vsp21 on virus infection remained unclear. This study discovered that vsp21 induces reactive oxygen species (ROS) generation, activates autophagy, and attenuates virus replication by inducing autophagy. Then we confirmed that the effect of vsp21-induced autophagy on viral replication was attributed to the activation of the NF-κB signaling pathway. Furthermore, we clarified that vsp21 interacted with ubiquitin carboxyl-terminal hydrolase (UCH) and that ubiquitination and degradation of phospho-IκB-α were enhanced by vsp21 via competitive binding to UCH. Finally, we validated that vsp21 activates the NF-κB/autophagy pathway to suppress viral replication by interacting with UCH. These findings provided new insights into regulating viral multiplication and reovirus-host interaction.


Asunto(s)
Bombyx , Reoviridae , Animales , FN-kappa B/metabolismo , Reoviridae/genética , Reoviridae/metabolismo , Bombyx/genética , Bombyx/metabolismo , Autofagia , Hidrolasas/metabolismo , Ubiquitinas/metabolismo , Replicación Viral
6.
Insect Sci ; 30(6): 1565-1578, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36826848

RESUMEN

The silk gland cells of silkworm are special cells which only replicate DNA in the nucleus without cell division throughout the larval stage. The extrachromosomal circular DNAs (eccDNAs) have not yet been reported in the silk gland of silkworms. Herein, we have explored the characterization of eccDNAs in the posterior silk gland of silkworms. A total of 35 346 eccDNAs were identified with sizes ranging from 30 to 13 569 549 bp. Motif analysis revealed that dual direct repeats are flanking the 5' and 3' breaking points of eccDNA. The sequences exceeding 1 kb length in eccDNAs present palindromic sequence characteristics flanking the 5' and 3' breaking points of the eccDNA. These motifs might support possible models for eccDNA generation. Genomic annotation of the eccDNA population revealed that most eccDNAs (58.6%) were derived from intergenic regions, whereas full or partial genes were carried by 41.4% of eccDNAs. It was found that silk protein genes fib-H, fib-L, and P25, as well as the transcription factors SGF and sage, which play an important regulatory role in silk protein synthesis, could be carried by eccDNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the genes carried by eccDNAs were mainly associated with the development and metabolism-related signaling pathways. Moreover, it was found that eccDNAfib-L could promote the transcription of fib-L gene. Overall, the results of the present study not only provide a novel perspective on the mechanism of silk gland development and silk protein synthesis but also complement previously reported genome-scale eccDNA data supporting that eccDNAs are common in eukaryotes.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Bombyx/metabolismo , Seda/genética , ADN/metabolismo , Factores de Transcripción/genética , ADN Circular/genética , ADN Circular/metabolismo
7.
Int J Biol Macromol ; 228: 299-310, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36563818

RESUMEN

CircRNAs are covalently closed single-stranded circular RNA molecules, which are not easily degraded by endonucleases and play vital roles in many biological processes. Currently, most studies on circRNAs focus on endogenous circRNAs in cells, and there are few studies on virus-encoded circRNAs. In this study, a viral circRNA (circRNA-000010) derived from the region (-/bp: 114514-115,319) of the complementary strand of Bombyx mori Nucleopolyhedrovirus (BmNPV) genome was identified with the circRNA-sequencing. The authenticity of viral circRNA-000010 was further confirmed by reverse transcription PCR, reverse transcription-rolling circle amplification (TCA), in situ hybridization, immunofluorescent staining, and Northern blotting. The results of overexpression and knockdown experiments showed that circRNA-000010 promoted viral replication. Furthermore, a viral small peptide VSP39 with 39 amino acid residues translated by circRNA-000010 but not its linear molecule was confirmed. Finally, VSP39 was found to promote viral replication. Our findings indicated that a viral circRNA encoded by BmNPV promoted viral replication. These findings will provide new clues for further understanding coding information of the BmNPV genome and open a new insight for investigating host-virus interactions.


Asunto(s)
Bombyx , ARN , Animales , ARN/genética , ARN Circular/genética , Péptidos Cíclicos , Bombyx/metabolismo , Replicación Viral/genética
8.
J Fish Dis ; 46(2): 165-176, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36423261

RESUMEN

The infectious spleen and kidney necrosis virus (ISKNV) is a highly lethal virus, which has brought significant losses to aquaculture. Therefore, a new vaccine against ISKNV with high efficiency, safety and convenience must be developed. While baculoviruses are more commonly used as protein expression systems for vaccine antigen production, this paper used baculovirus technology to develop a live-vector vaccine, BacMCP, which contains the coding sequence of the major capsid protein (MCP) (GenBank accession no. AF371960) of ISKNV and is driven by a CMV promoter. Real-time PCR and immunofluorescence showed that the MCP gene was successfully delivered to and expressed in fish cells and tissues inoculated with BacMCP. Immune-related gene (IgM, TGF-ß, IL-1, IL-8, TNF-α) expression was induced in BacMCP-treated groups of largemouth bass compared with control groups. Specific antibodies could be detected in the serum of BacMCP injection-vaccinated largemouth bass by ELISA. After injection or immersion vaccination with BacMCP for 21 days, largemouth bass were infected with ISKNV. The immune effect of the injected immunization on fish in different sizes was evaluated. The vaccine efficacy of injection-vaccinated bass was 100% in small bass and 85.7% in large bass. The vaccine efficacy of immersion-vaccinated small bass was 77.3%. This study suggested that BacMCP can be used as a vector-based vaccine candidate to prevent the diseases caused by ISKNV infection.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Iridoviridae , Vacunas Virales , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Vacunas Sintéticas , Proteínas de la Cápside/genética , Infecciones por Virus ADN/prevención & control , Infecciones por Virus ADN/veterinaria
9.
Fish Shellfish Immunol ; 128: 148-156, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35921937

RESUMEN

Autophagy impacts the replication cycle of many viruses. Grass Carp Reovirus (GCRV) is an agent that seriously affects the development of the grass carp aquaculture industry. The role of autophagy in GCRV infection is not clearly understood. In this study, we identified that GCRV infection triggered autophagy in CIK cells, which was demonstrated by transmission electron microscopy, the conversion of LC3B I to LC3B II and the level of autophagy substrate p62. Furthermore, we found that GCRV infection activated Akt-mTOR signaling pathway, and the conversion of LC3B I to LC3B II was increased by inhibiting mTOR with rapamycin (Rap) but decreased by activating Akt with insulin. We then assessed the effects of autophagy on GCRV replication. We found that inducing autophagy with Rap promoted GCRV proliferation but inhibiting autophagy with 3 MA or CQ inhibited GCRV replication in CIK cells. Moreover, it was found that enhancing Akt-mTOR activity by insulin, GCRV VP7 protein and viral titers of GCRV were decreased. Collectively, these results indicated that GCRV infection induced autophagy involved in GCRV replication via the Akt-mTOR signal pathway. Thus, new insights into GCRV pathogenesis and antiviral treatment strategies are provided.


Asunto(s)
Carpas , Enfermedades de los Peces , Insulinas , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Animales , Antivirales/farmacología , Autofagia , Insulinas/farmacología , Insulinas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Infecciones por Reoviridae/metabolismo , Infecciones por Reoviridae/veterinaria , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Replicación Viral
10.
Front Immunol ; 13: 939768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784275

RESUMEN

Circular RNAs (circRNAs) as novel regulatory molecules have been recognized in diverse species, including viruses. The virus-derived circRNAs play various roles in the host biological process and the life cycle of the viruses. This review summarized the circRNAs from the DNA and RNA viruses and discussed the biogenesis of viral and host circRNAs, the potential roles of viral circRNAs, and their future perspective. This review will elaborate on new insights gained on viruses encoded circRNAs during virus infection.


Asunto(s)
Interacciones Microbiota-Huesped , ARN Circular , Interacciones Microbiota-Huesped/genética , ARN Circular/genética
11.
Microbiol Spectr ; 10(4): e0094322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35770986

RESUMEN

Cyprinid herpesvirus 2 (CyHV-2) has caused great losses to the gibel carp (Carassius auratus gibelio) industry. Previous studies showed that certain DNA viruses can encode circular RNAs (circRNAs) to regulate virus infection, which provides new clues for the treatment of viral disease. Whether CyHV-2 can encode circRNAs is still unknown. Here, 10 CyHV-2-derived circRNAs were identified, and the function of circ-udg, a circRNA derived from the CyHV-2 uracil DNA glycosylase (udg) gene, was studied. Although the expression level of circ-udg was lower than that of the parental gene, udg, its expression level was elevated in tandem with the proliferation of CyHV-2 and udg. In vitro experiments confirmed that circ-udg could promote the proliferation of CyHV-2. Moreover, circ-udg could encode a truncated UDG protein consisting of 147-amino-acid residues (termed circ-udg-P147). Both UDG and circ-udg-P147 were found to promote CyHV-2 proliferation, but the promoting effect of circ-udg on CyHV-2 proliferation was attenuated after circ-udg lost the ability to encode circ-udg-P147. Also, circ-udg-P147 could not change the transcription level of the udg gene. Interestingly, the UDG protein level was increased by circ-udg-P147. These results deepen the understanding of the genetic information carried by the genome of CyHV-2 and provide a new target for the treatment of gibel carp bleeding disease caused by CyHV-2. IMPORTANCE The outbreak of C. auratus gibelio gill hemorrhagic disease caused by CyHV-2 brought great losses to the gibel carp industry. Therefore, exploring the interaction between CyHV-2 and host and the molecular mechanism of viral infection is of great significance in preventing and treating the gibel carp gill hemorrhagic disease. Although some progress has been made in the study of CyHV-2, the mechanism of interaction between CyHV-2 and crucian carp is still unclear. In this study, we found that CyHV-2 can encode circRNA to regulate virus replication. Our study provides novel information on CyHV-2 functional genomics, a reference for research into the circRNA of other viruses, and theoretical guidance for preventing and treating gibel carp bleeding disease.


Asunto(s)
Enfermedades de los Peces , Infecciones por Herpesviridae , Animales , Enfermedades de los Peces/prevención & control , Herpesviridae , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/veterinaria , Inmunidad Innata , ARN Circular/genética , Replicación Viral
12.
Int J Biol Macromol ; 209(Pt A): 1179-1187, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35461859

RESUMEN

To date, some DNA viruses and single-stranded RNA viruses have been found to generate circRNAs. However, the reports on circRNAs produced by double-stranded RNA viruses are very limited. In this study, Bombyx mori cypovirus (BmCPV), a typical double-stranded RNA virus belonging to the Reoviridae, was demonstrated to generate viral circRNAs (vcircRNAs) and a vcircRNA_000048 whose sequence corresponds with the region 164-1245 nt on the BmCPV genomic dsRNA S5 segment (GQ294468.1) was validated by PCR, Sanger sequencing, reverse transcription-rolling circle amplification, and Northern blotting. Furthermore, we verified that vcircRNA_000048 translates a micropeptide vsp21 with 21 amino acid residues in an IRES-dependent manner, and vsp21 attenuates the viral replication. These findings provided a novel clue to understanding the regulation of viral multiplication and interaction of reovirus with the host.


Asunto(s)
Bombyx , Reoviridae , Animales , Bombyx/genética , Interacciones Huésped-Patógeno , ARN Circular/genética , ARN Bicatenario/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Reoviridae/genética , Reoviridae/metabolismo , Replicación Viral/genética
13.
Int J Biol Macromol ; 208: 1009-1018, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35381288

RESUMEN

ß-Arrestin 2 is known to be a widely distributed adaptor protein in mammals but its function has never been reported in Lepidoptera insects. Herein, the ß-Arrestin 2 (BmArrestin 2) gene from silkworm was cloned and characterized. The spatiotemporal expression level of BmArrestin 2 was highest in the gonads at the 3rd day of 5th instar, whereas the highest and lowest abundance of BmArrestin 2 were identified in the tracheal and testis, respectively. BmArrestin 2 is mainly distributed in the cytoplasm. Furthermore, in BmN cells,overexpression of BmArrestin 2 promoted Bombyx mori nucleopolyhedrovirus (BmNPV) and B. mori cytoplasmic polyhedrosis virus (BmCPV) replication as the increment of the concentration of plasmid transfection, whereas silencing the gene with specific siRNA inhibited viral replication. Replication of BmNPV and BmCPV also was weakened using BmArrestin 2 antiserum as the increment of the concentration. Immunofluorescent staining revealed the invasion of recombinant BmNPV or BmCPV was decreased after blocking endogenous BmArrestin 2. On the other hand, BmArrestin 2 co-localizes with recombinant BmNPV and BmCPV virions in BmN cells. These results suggest that BmArrestin 2 may represent a novel target for antiviral strategies, as it is an adaptor protein that plays a key role in virus replication.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Reoviridae , Animales , Bombyx/metabolismo , Mamíferos/metabolismo , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/metabolismo , Reoviridae/metabolismo , Replicación Viral , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
14.
Front Immunol ; 13: 861007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371040

RESUMEN

Circular DNAs derived from single-stranded RNA viruses play important roles in counteracting viral infection. However, whether double-stranded RNA viruses generate functional circular DNAs is still unknown. Using circDNA sequencing, divergent PCR, DNA in situ hybridization and rolling circular amplification, we presently confirmed that in silkworm, Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), a double-stranded RNA virus belonging to cypovirus, is prone to produce a BmCPV-derived circular DNA termed as vcDNA-S7. We have also found that vcDNA-S7 formation is mediated by endogenous reverse transcriptase (RT), and the proliferation of BmCPV can be inhibited by vcDNA-S7 in vitro and in vivo. Moreover, we have discovered that the silkworm RNAi immune pathway is activated by vcDNA-S7, while viral small interfering RNAs (vsiRNAs) derived from transcribed RNA by vcDNA-S7 can be detected by small RNA deep sequencing. These results suggest that BmCPV-derived vcDNA-S7, mediated by RT, can serve as a template for the biogenesis of antiviral siRNAs, which may lead to the repression of BmCPV infection. To our knowledge, this is the first demonstration that a circular DNA, produced by double stranded RNA viruses, is capable of regulating virus infection.


Asunto(s)
Bombyx , Reoviridae , Animales , ADN Circular , Interacciones Huésped-Patógeno , ARN Bicatenario/metabolismo , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Reoviridae/fisiología
15.
Front Immunol ; 13: 869313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371067

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most serious pathogens and causes serious economic losses in sericulture. At present, there is no epigenetic modification of BmNPV transcripts, especially of m6A, and this modification mediates diverse cellular and viral functions. This study showed that m6A modifications are widespread in BmNPV transcripts in virally infected cells and the identified m6A peaks with a conserved RRACH sequence. m6A sites predominantly appear in the coding sequences (CDS) and the 3'-end of CDS. About 37% of viral genes with m6A sites deleted from the viral genome did not produce any infectious virions in KOV-transfected cells. Among the viral genes related to replication and proliferation, ie-1 mRNA was identified with a higher m6A level than other viral genes. The m6A sites in the ie-1 mRNA may be negatively related to the protein expression. Viral replication was markedly inhibited in cells overexpressed with BmYTHDF3 in a dose-dependent manner, and a contrary effect was found in si-BmYTHDF3-transfected cells. Collectively, the identification of putative m6A modification in BmNPV transcripts provides a foundation for comprehensively understanding the viral infection, replication, and pathobiology in silkworms.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Virosis , Animales , Nucleopoliedrovirus/genética , ARN Mensajero/metabolismo
16.
Dev Comp Immunol ; 126: 104244, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34450127

RESUMEN

The mechanism by which infection by Bombyx mori cytoplasmic nucleopolyhedrosis virus (BmCPV) causes autophagy has not been studied in detail. Herein we have observed by electron microscopy that infection with BmCPV causes autophagosome and mitochondrial structure damage in Bombyx mori midgut. In BmN cells infected with BmCPV and expressing eGFP-LC3, fluorescence spots and LC3-II levels increased, suggesting that BmCPV infection causes autophagy. Autophagy inducer rapamycin (Rap) and autophagy inhibitor 3-methyladenine (3-MA) were used to monitor the effects of mitophagy on BmCPV proliferation. It was found BmCPV proliferation to be promoted by mitophagy. Transient transfection experiments in cultured BmN cells showed that mitophagy can be triggered by expression of BmCPV structural protein VP4. Moreover, VP4 caused upregulation of p-Drp1, PINK1 and Parkin proteins in the mitophagy pathway and downregulation of mitochondrial membrane protein Tom20. Furthermore, interaction between VP4 with Tom40 was confirmed by Co-IP, western blot and colocalization experiment, and overexpression of Tom40 reduce the level of mitochondrial autophagy induced by VP4. These results suggested that VP4 induced PINK1-Parkin-mediated mitophagy interacting with Tom40. These findings deepen our understanding of the interaction between BmCPV and silkworm and also provide a molecular target for screening anti-BmCPV drugs.


Asunto(s)
Bombyx , Reoviridae , Animales , Interacciones Huésped-Patógeno , Mitofagia , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Reoviridae/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
Int J Biol Macromol ; 194: 223-232, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34875309

RESUMEN

Bombyx mori cypovirus (BmCPV), a member of the family Reoviridae, is a model of Cypovirus, has a 10 segmented double-stranded RNA genome. However, so far, only one viral small peptide vSP27 with negative regulation on viral infection was identified; the mechanisms underlying host-BmCPV interaction are still unknown. Here, we identified that vSP27 was translated from a BmCPV derived circular RNA (circRNA-vSP27). Subsequently, results showed that vSP27 induced generation of ROS activated the NF-κB signaling pathway, induced the expression of antimicrobial peptides, and suppressed BmCPV infection. On the other hand, we identified a nuclear protein Akirin that could hijack vSP27, positively regulate the NF-κB pathway, and lead to inhibiting the viral infection. Altogether, our data suggested that BmCPV derived circRNA-vSP27 with small peptide translation activity may be employed by the host immunity in defense against the BmCPV infection.


Asunto(s)
Bombyx/virología , Interacciones Huésped-Patógeno , FN-kappa B/metabolismo , Péptidos/genética , ARN Circular , Reoviridae/fisiología , Proteínas Virales/genética , Animales , Resistencia a la Enfermedad/genética , Regulación Viral de la Expresión Génica , Péptidos/metabolismo , Unión Proteica , Especies Reactivas de Oxígeno , Transducción de Señal , Proteínas Virales/metabolismo , Virosis/veterinaria
18.
Mol Ther Nucleic Acids ; 25: 668-682, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34589285

RESUMEN

Hepatitis B virus (HBV) produces circular RNA (circRNA), whose functions have not yet been clearly elucidated. In this study, a novel circRNA HBV_circ_1 produced by HBV was identified in HBV-positive HepG2.2.15 cells and HBV-related hepatocellular carcinoma (HCC) tissue (HCCT). Microarray analysis of 68 HCCT samples showed that HBV_circ_1 abundance was significantly higher than that in paracancerous tissues. In addition, survival rate of HBV_circ_1-positive patients was significantly lower compared with HBV_circ_1-negative patients. Transient expression indicated that HBV_circ_1 enhanced cell proliferation, migration, and invasion and inhibited apoptosis in vitro. Furthermore, ectopical HBV_circ_1 expression increased tumor size in vivo. HBV_circ_1 was confirmed to interact with cyclin-dependent kinase 1 (CDK1) to regulate cell proliferation. These results suggest that HCC progression may be promoted by interaction of HBV_circ_1 with CDK1. Our data not only showed a novel clue to understand carcinogenesis and progress of HBV-related HCC but also provided a new target for the development of therapeutic drugs.

19.
Dev Comp Immunol ; 125: 104227, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34363835

RESUMEN

The diversity of microbiota and metabolites in the digestive tract gut is important in physiology and homeostasis, nutrient uptake and virus infection. In lepidopteran insect model silkworms, little is known about how microbiota and metabolites are altered after oral infection with BmNPV. Herein, we used 16S rDNA sequencing and metabolomics to show that the gut microbiota and metabolites of silkworm midgut are significantly altered after BmNPV infection. Kyoto Encyclopedia of Genes and Genomes analysis revealed enrichment of flavone and flavonol biosynthesis, glycosyltransferases, and electron transfer carriers signaling pathways, suggesting potential roles in viral infection. Infection also changed the abundance of metabolites in the digestive tract gut, where most pathways were related to metabolism of amino acids, fatty acids and other pathways (e.g., citrate cycle). In addition, a correlation was observed between digestive tract gut microbiota and metabolites. These results shed light on the interaction between digestive tract gut microbiota, metabolites and host-virus interaction, and enhance our understanding of viral infection links to midgut microbiota and metabolic activity in the silkworm.


Asunto(s)
Bombyx/virología , Animales , Sistema Digestivo/metabolismo , Interacciones Microbiota-Huesped , Interacciones Huésped-Patógeno , Proteínas de Insectos/metabolismo , Metabolómica , Microbiota , Nucleopoliedrovirus , Proteómica/métodos , Virosis/metabolismo
20.
Appl Microbiol Biotechnol ; 105(14-15): 6019-6031, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34324010

RESUMEN

Claudin-2 is a major component of tight junctions (TJs), which play an important role in reovirus entry into host cells. The Bombyx mori cytoplasmic polyhedosis virus (BmCPV) relates to the cypovirus strain of the reovirus family. So far, the role of claudin-2 in the process of BmCPV infection is not known. In the present study, it was observed that increasing expression of the claudin-2 gene (CLDN2) may concomitantly elevate BmCPV infection. Contrarily, knockdown of CLDN2 expression by siRNAs can reduce BmCPV infection. Similarly, antibody-based blockage of claudin-2 could also decrease BmCPV cell entry. These results suggest that claudin-2 can promote BmCPV infection in vitro. Moreover, immunofluorescence (IF) assays showed that claudin-2 can interact with BmCPV during viral infection. Specifically, co-immunoprecipitation experiments indicated that claudin-2 binds the BmCPV VP7 (instead of VP3 proteins). The interaction between VP7 and claudin-2 was further confirmed by bimolecular fluorescence complementation (BIFC). Altogether, our results suggest that BmCPV cell entry can be promoted upon interaction of VP7 with claudin-2. These findings provide new mechanistic insights related to BmCPV infection. KEY POINTS: •Claudin-2 could promote BmCPV infection of cells. •Claudin-2 interacted with BmCPV during BmCPV infection. •Claudin-2 could interact with BmCPV VP7 protein, but not with VP3 proteins.


Asunto(s)
Bombyx , Reoviridae , Animales , Claudina-2 , Claudinas/genética , Interacciones Huésped-Patógeno , Proteínas de Insectos , Internalización del Virus , Proteína de la Zonula Occludens-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA