Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36917621

RESUMEN

The beta rhythm (13-30 Hz) is a prominent brain rhythm. Recordings in primates during instructed-delay reaching tasks have shown that different types of traveling waves of oscillatory activity are associated with episodes of beta oscillations in motor cortex during movement preparation. We propose here a simple model of motor cortex based on local excitatory-inhibitory neuronal populations coupled by long-range excitation, where additionally inputs to the motor cortex from other neural structures are represented by stochastic inputs on the different model populations. We show that the model accurately reproduces the statistics of recording data when these external inputs are correlated on a short time scale (25 ms) and have two different components, one that targets the motor cortex locally and another one that targets it in a global and synchronized way. The model reproduces the distribution of beta burst durations, the proportion of the different observed wave types, and wave speeds, which we show not to be linked to axonal propagation speed. When the long-range connectivity or the local input targets are anisotropic, traveling waves are found to preferentially propagate along the axis where connectivity decays the fastest. Different from previously proposed mechanistic explanations, the model suggests that traveling waves in motor cortex are the reflection of the dephasing by external inputs, putatively of thalamic origin, of an oscillatory activity that would otherwise be spatially synchronized by recurrent connectivity.


Asunto(s)
Corteza Motora , Animales , Corteza Motora/fisiología , Neuronas/fisiología , Axones , Movimiento
2.
Biophys J ; 120(5): 805-817, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33539789

RESUMEN

Postsynaptic scaffold proteins immobilize neurotransmitter receptors in the synaptic membrane opposite to presynaptic vesicle release sites, thus ensuring efficient synaptic transmission. At inhibitory synapses in the spinal cord, the main scaffold protein gephyrin assembles in dense molecule clusters that provide binding sites for glycine receptors (GlyRs). Gephyrin and GlyRs can also interact outside of synapses, where they form receptor-scaffold complexes. Although several models for the formation of postsynaptic scaffold domains in the presence of receptor-scaffold interactions have been advanced, a clear picture of the coupled dynamics of receptors and scaffold proteins at synapses is lacking. To characterize the GlyR and gephyrin dynamics at inhibitory synapses, we performed fluorescence time-lapse imaging after photoconversion to directly visualize the exchange kinetics of recombinant Dendra2-gephyrin in cultured spinal cord neurons. Immuno-immobilization of endogenous GlyRs with specific antibodies abolished their lateral diffusion in the plasma membrane, as judged by the lack of fluorescence recovery after photobleaching. Moreover, the cross-linking of GlyRs significantly reduced the exchange of Dendra2-gephyrin compared with control conditions, suggesting that the kinetics of the synaptic gephyrin pool is strongly dependent on GlyR-gephyrin interactions. We did not observe any change in the total synaptic gephyrin levels after GlyR cross-linking, however, indicating that the number of gephyrin molecules at synapses is not primarily dependent on the exchange of GlyR-gephyrin complexes. We further show that our experimental data can be quantitatively accounted for by a model of receptor-scaffold dynamics that includes a tightly interacting receptor-scaffold domain, as well as more loosely bound receptor and scaffold populations that exchange with extrasynaptic pools. The model can make predictions for single-molecule data such as typical dwell times of synaptic proteins. Taken together, our data demonstrate the reciprocal stabilization of GlyRs and gephyrin at inhibitory synapses and provide a quantitative understanding of their dynamic organization.


Asunto(s)
Proteínas de la Membrana , Receptores de Glicina , Células Cultivadas , Proteínas de la Membrana/metabolismo , Receptores de GABA-A , Sinapsis/metabolismo
3.
Front Comput Neurosci ; 14: 569644, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192427

RESUMEN

Oscillations in the beta/low gamma range (10-45 Hz) are recorded in diverse neural structures. They have successfully been modeled as sparsely synchronized oscillations arising from reciprocal interactions between randomly connected excitatory (E) pyramidal cells and local interneurons (I). The synchronization of spatially distant oscillatory spiking E-I modules has been well-studied in the rate model framework but less so for modules of spiking neurons. Here, we first show that previously proposed modifications of rate models provide a quantitative description of spiking E-I modules of Exponential Integrate-and-Fire (EIF) neurons. This allows us to analyze the dynamical regimes of sparsely synchronized oscillatory E-I modules connected by long-range excitatory interactions, for two modules, as well as for a chain of such modules. For modules with a large number of neurons (> 105), we obtain results similar to previously obtained ones based on the classic deterministic Wilson-Cowan rate model, with the added bonus that the results quantitatively describe simulations of spiking EIF neurons. However, for modules with a moderate (~ 104) number of neurons, stochastic variations in the spike emission of neurons are important and need to be taken into account. On the one hand, they modify the oscillations in a way that tends to promote synchronization between different modules. On the other hand, independent fluctuations on different modules tend to disrupt synchronization. The correlations between distant oscillatory modules can be described by stochastic equations for the oscillator phases that have been intensely studied in other contexts. On shorter distances, we develop a description that also takes into account amplitude modes and that quantitatively accounts for our simulation data. Stochastic dephasing of neighboring modules produces transient phase gradients and the transient appearance of phase waves. We propose that these stochastically-induced phase waves provide an explanative framework for the observations of traveling waves in the cortex during beta oscillations.

4.
Phys Rev E ; 101(1-1): 012411, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32069640

RESUMEN

The dynamics of several mesoscopic biological structures depend on the interplay of growth through the incorporation of components of different sizes laterally diffusing along the cell membrane, and loss by component turnover. In particular, a model of such an out-of-equilibrium dynamics has recently been proposed for postsynaptic scaffold domains, which are key structures of neuronal synapses. It is of interest to estimate the lifetime of these mesoscopic structures, especially in the context of synapses where this time is related to memory retention. The lifetime of a structure can be very long as compared to the turnover time of its components and it can be difficult to estimate it by direct numerical simulations. Here, in the context of the model proposed for postsynaptic scaffold domains, we approximate the aggregation-turnover dynamics by a shot-noise process. This enables us to analytically compute the quasistationary distribution describing the sizes of the surviving structures as well as their characteristic lifetime. We show that our analytical estimate agrees with numerical simulations of a full spatial model, in a regime of parameters where a direct assessment is computationally feasible. We then use our approach to estimate the lifetime of mesoscopic structures in parameter regimes where computer simulations would be prohibitively long. For gephyrin, the scaffolding protein specific to inhibitory synapses, we estimate a lifetime longer than several months for a scaffold domain when the single gephyrin protein turnover time is about half an hour, as experimentally measured. While our focus is on postsynaptic domains, our formalism and techniques should be applicable to other biological structures that are also formed by a balance of condensation and turnover.


Asunto(s)
Modelos Neurológicos , Sinapsis/metabolismo , Difusión , Proteínas de la Membrana/metabolismo
5.
Elife ; 72018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30418871

RESUMEN

The cerebellum aids the learning of fast, coordinated movements. According to current consensus, erroneously active parallel fibre synapses are depressed by complex spikes signalling movement errors. However, this theory cannot solve the credit assignment problem of processing a global movement evaluation into multiple cell-specific error signals. We identify a possible implementation of an algorithm solving this problem, whereby spontaneous complex spikes perturb ongoing movements, create eligibility traces and signal error changes guiding plasticity. Error changes are extracted by adaptively cancelling the average error. This framework, stochastic gradient descent with estimated global errors (SGDEGE), predicts synaptic plasticity rules that apparently contradict the current consensus but were supported by plasticity experiments in slices from mice under conditions designed to be physiological, highlighting the sensitivity of plasticity studies to experimental conditions. We analyse the algorithm's convergence and capacity. Finally, we suggest SGDEGE may also operate in the basal ganglia.


Asunto(s)
Cerebelo/fisiología , Aprendizaje , Potenciales de Acción/fisiología , Algoritmos , Animales , Simulación por Computador , Femenino , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Redes Neurales de la Computación , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Factores de Tiempo
6.
PLoS Comput Biol ; 13(4): e1005516, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28437460

RESUMEN

The formation and stability of synapses are key questions in neuroscience. Post-synaptic domains have been classically conceived as resulting from local insertion and turnover of proteins at the synapse. However, insertion is likely to occur outside the post-synaptic domains and advances in single-molecule imaging have shown that proteins diffuse in the plane of the membrane prior to their accumulation at synapses. We quantitatively investigated this scenario using computer simulations and mathematical analysis, taking for definiteness the specific case of inhibitory synapse components, i.e., the glycine receptor (GlyR) and the associated gephyrin scaffolding protein. The observed domain sizes of scaffold clusters can be explained by a dynamic balance between the aggregation of gephyrin proteins diffusing while bound to GlyR and their turnover at the neuron membrane. We also predict the existence of extrasynaptic clusters with a characteristic size distribution that significantly contribute to the size fluctuations of synaptic domains. New super-resolution data for gephyrin proteins established the existence of extrasynaptic clusters the sizes of which are consistent with the model predictions in a range of model parameters. At a general level, our results highlight aggregation with removal as a non-equilibrium phase separation which produces structures of tunable size.


Asunto(s)
Modelos Neurológicos , Neuronas/metabolismo , Sinapsis/química , Sinapsis/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Simulación por Computador , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Tamaño de la Partícula , Ratas Sprague-Dawley , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Médula Espinal/citología
7.
Rep Prog Phys ; 80(7): 076601, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28282028

RESUMEN

Cells have traditionally been viewed either as independently moving entities or as somewhat static parts of tissues. However, it is now clear that in many cases, multiple cells coordinate their motions and move as collective entities. Well-studied examples comprise development events, as well as physiological and pathological situations. Different ex vivo model systems have also been investigated. Several recent advances have taken place at the interface between biology and physics, and have benefitted from progress in imaging and microscopy, from the use of microfabrication techniques, as well as from the introduction of quantitative tools and models. We review these interesting developments in quantitative cell biology that also provide rich examples of collective out-of-equilibrium motion.


Asunto(s)
Biofisica/métodos , Movimiento Celular , Animales , Humanos , Modelos Biológicos , Cicatrización de Heridas
9.
Cell Rep ; 17(4): 1098-1112, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27760314

RESUMEN

Following moving visual stimuli (conditioning stimuli, CS), many organisms perceive, in the absence of physical stimuli, illusory motion in the opposite direction. This phenomenon is known as the motion aftereffect (MAE). Here, we use MAE as a tool to study the neuronal basis of visual motion perception in zebrafish larvae. Using zebrafish eye movements as an indicator of visual motion perception, we find that larvae perceive MAE. Blocking eye movements using optogenetics during CS presentation did not affect MAE, but tectal ablation significantly weakened it. Using two-photon calcium imaging of behaving GCaMP3 larvae, we find post-stimulation sustained rhythmic activity among direction-selective tectal neurons associated with the perception of MAE. In addition, tectal neurons tuned to the CS direction habituated, but neurons in the retina did not. Finally, a model based on competition between direction-selective neurons reproduced MAE, suggesting a neuronal circuit capable of generating perception of visual motion.


Asunto(s)
Encéfalo/fisiología , Percepción de Movimiento/fisiología , Percepción Visual/fisiología , Pez Cebra/fisiología , Animales , Condicionamiento Psicológico , Movimientos Oculares/fisiología , Efecto Tardío Figurativo/fisiología , Habituación Psicofisiológica , Larva/fisiología , Modelos Biológicos , Modelos Neurológicos , Movimiento , Neuronas/fisiología , Optogenética , Colículos Superiores/fisiología , Cola (estructura animal)
10.
Nucleic Acids Res ; 44(18): 8621-8640, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27302134

RESUMEN

Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD. Using MyoD ChIPseq data and a genome-wide search for Six1/4 MEF3 binding sites, we found significant co-localization of binding sites for MyoD and Six proteins on over a thousand mouse genomic DNA regions. The combination of both datasets yielded 82 genes which are synergistically activated by Six and MyoD, with 96 associated MyoD+MEF3 putative cis-regulatory modules (CRMs). Fourteen out of 19 of the CRMs that we tested demonstrated in Luciferase assays a synergistic action also observed for their cognate gene. We searched putative binding sites on these CRMs using available databases and de novo search of conserved motifs and demonstrated that the Six/MyoD synergistic activation takes place in a feedforward way. It involves the recruitment of these two families of transcription factors to their targets, together with partner transcription factors, encoded by genes that are themselves activated by Six and MyoD, including Mef2, Pbx-Meis and EBF.


Asunto(s)
Reprogramación Celular/genética , Genoma , Proteínas de Homeodominio/metabolismo , Proteína MioD/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transactivadores/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Células Cultivadas , Inmunoprecipitación de Cromatina , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Proteínas de Homeodominio/genética , Humanos , Luciferasas/metabolismo , Ratones Noqueados , Desarrollo de Músculos/genética , Mutación/genética , Proteínas Nucleares/metabolismo , Motivos de Nucleótidos/genética , Reproducibilidad de los Resultados , Transactivadores/genética , Factores de Transcripción/metabolismo
11.
J Physiol ; 594(10): 2729-49, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26918702

RESUMEN

KEY POINTS: We performed extracellular recording of pairs of interneuron-Purkinje cells in vivo. A single interneuron produces a substantial, short-lasting, inhibition of Purkinje cells. Feed-forward inhibition is associated with characteristic asymmetric cross-correlograms. In vivo, Purkinje cell spikes only depend on the most recent synaptic activity. ABSTRACT: Cerebellar molecular layer interneurons are considered to control the firing rate and spike timing of Purkinje cells. However, interactions between these cell types are largely unexplored in vivo. Using tetrodes, we performed simultaneous extracellular recordings of neighbouring Purkinje cells and molecular layer interneurons, presumably basket cells, in adult rats in vivo. The high levels of afferent synaptic activity encountered in vivo yield irregular spiking and reveal discharge patterns characteristic of feed-forward inhibition, thus suggesting an overlap of the afferent excitatory inputs between Purkinje cells and basket cells. Under conditions of intense background synaptic inputs, interneuron spikes exert a short-lasting inhibitory effect, delaying the following Purkinje cell spike by an amount remarkably independent of the Purkinje cell firing cycle. This effect can be explained by the short memory time of the Purkinje cell potential as a result of the intense incoming synaptic activity. Finally, we found little evidence for any involvement of the interneurons that we recorded with the cerebellar high-frequency oscillations promoting Purkinje cell synchrony. The rapid interactions between interneurons and Purkinje cells might be of particular importance in fine motor control because the inhibitory action of interneurons on Purkinje cells leads to deep cerebellar nuclear disinhibition and hence increased cerebellar output.


Asunto(s)
Corteza Cerebelosa/fisiología , Interneuronas/fisiología , Inhibición Neural/fisiología , Células de Purkinje/fisiología , Potenciales de Acción/fisiología , Animales , Corteza Cerebelosa/citología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Factores de Tiempo
12.
Biophys J ; 109(1): 154-63, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26153712

RESUMEN

Epithelial tissue, in which cells adhere tightly to each other and to the underlying substrate, is one of the four major tissue types in adult organisms. In embryos, epithelial sheets serve as versatile substrates during the formation of developing organs. Some aspects of epithelial morphogenesis can be adequately described using vertex models, in which the two-dimensional arrangement of epithelial cells is approximated by a polygonal lattice with an energy that has contributions reflecting the properties of individual cells and their interactions. Previous studies with such models have largely focused on dynamics confined to two spatial dimensions and analyzed them numerically. We show how these models can be extended to account for three-dimensional deformations and studied analytically. Starting from the extended model, we derive a continuum plate description of cell sheets, in which the effective tissue properties, such as bending rigidity, are related explicitly to the parameters of the vertex model. To derive the continuum plate model, we duly take into account a microscopic shift between the two sublattices of the hexagonal network, which has been ignored in previous work. As an application of the continuum model, we analyze tissue buckling by a line tension applied along a circular contour, a simplified set-up relevant to several situations in the developmental contexts. The buckling thresholds predicted by the continuum description are in good agreement with the results of stability calculations based on the vertex model. Our results establish a direct connection between discrete and continuum descriptions of cell sheets and can be used to probe a wide range of morphogenetic processes in epithelial tissues.


Asunto(s)
Epitelio/fisiología , Modelos Biológicos , Simulación por Computador , Elasticidad , Células Epiteliales/fisiología
13.
Integr Biol (Camb) ; 7(10): 1218-27, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26099063

RESUMEN

Collective motion occurs in many biological processes, such as wound healing, tumor invasion and embryogenesis. Experiments of cell monolayer migration have revealed the spontaneous formation of finger-like instabilities, with leader cells at their tips. We present a particle-based model for collective cell migration, based on several elements that have been found experimentally to influence cellular movement. Inside the bulk we include velocity alignment interactions between neighboring cells. At the border contour of the layer we introduce the following additional forces: surface-elasticity restoring force, curvature-dependent positive feedback, and contractile acto-myosin cables. We find that the curvature-driven instability at the layer edge is necessary and sufficient for the formation of cellular fingers, which are in good agreement with experimental observations.


Asunto(s)
Movimiento Celular/fisiología , Extensiones de la Superficie Celular/fisiología , Modelos Biológicos , Actomiosina/fisiología , Animales , Fenómenos Biomecánicos , Técnicas de Cultivo de Célula , Proliferación Celular , Simulación por Computador , Elasticidad , Desarrollo Embrionario/fisiología , Humanos , Invasividad Neoplásica/fisiopatología , Cicatrización de Heridas/fisiología
14.
J Neurosci ; 35(18): 7056-68, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25948257

RESUMEN

The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/fisiología , Células de Purkinje/fisiología , Animales , Cerebelo/citología , Cerebelo/fisiología , Masculino , Ratas , Ratas Wistar
15.
PLoS One ; 9(6): e99015, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24926895

RESUMEN

The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond PWMs.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Modelos Teóricos , Elementos de Respuesta , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Células Cultivadas , Drosophila melanogaster , Ratones , Datos de Secuencia Molecular , Posición Específica de Matrices de Puntuación , Unión Proteica
16.
PLoS Genet ; 10(5): e1004386, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24852826

RESUMEN

Thousands of long intergenic non-coding RNAs (lincRNAs) are encoded by the mammalian genome. However, the function of most of these lincRNAs has not been identified in vivo. Here, we demonstrate a role for a novel lincRNA, linc-MYH, in adult fast-type myofiber specialization. Fast myosin heavy chain (MYH) genes and linc-MYH share a common enhancer, located in the fast MYH gene locus and regulated by Six1 homeoproteins. linc-MYH in nuclei of fast-type myofibers prevents slow-type and enhances fast-type gene expression. Functional fast-sarcomeric unit formation is achieved by the coordinate expression of fast MYHs and linc-MYH, under the control of a common Six-bound enhancer.


Asunto(s)
Proteínas de Homeodominio/genética , Contracción Muscular/genética , Cadenas Pesadas de Miosina/genética , ARN Largo no Codificante/genética , Animales , Clonación Molecular , Elementos de Facilitación Genéticos , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones Noqueados , Músculo Esquelético/crecimiento & desarrollo , Proteína-Lisina 6-Oxidasa/genética
17.
Nucleic Acids Res ; 42(10): 6128-45, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24682824

RESUMEN

Cis-regulatory modules (CRMs) and motifs play a central role in tissue and condition-specific gene expression. Here we present Imogene, an ensemble of statistical tools that we have developed to facilitate their identification and implemented in a publicly available software. Starting from a small training set of mammalian or fly CRMs that drive similar gene expression profiles, Imogene determines de novo cis-regulatory motifs that underlie this co-expression. It can then predict on a genome-wide scale other CRMs with a regulatory potential similar to the training set. Imogene bypasses the need of large datasets for statistical analyses by making central use of the information provided by the sequenced genomes of multiple species, based on the developed statistical tools and explicit models for transcription factor binding site evolution. We test Imogene on characterized tissue-specific mouse developmental CRMs. Its ability to identify CRMs with the same specificity based on its de novo created motifs is comparable to that of previously evaluated 'motif-blind' methods. We further show, both in flies and in mammals, that Imogene de novo generated motifs are sufficient to discriminate CRMs related to different developmental programs. Notably, purely relying on sequence data, Imogene performs as well in this discrimination task as a previously reported learning algorithm based on Chromatin Immunoprecipitation (ChIP) data for multiple transcription factors at multiple developmental stages.


Asunto(s)
Regulación de la Expresión Génica , Elementos Reguladores de la Transcripción , Programas Informáticos , Algoritmos , Animales , Sitios de Unión , Interpretación Estadística de Datos , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Motivos de Nucleótidos , Ratas , Factores de Transcripción/metabolismo
18.
Curr Opin Neurobiol ; 25: 149-55, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24492069

RESUMEN

At the single neuron level, information processing involves the transformation of input spike trains into an appropriate output spike train. Building upon the classical view of a neuron as a threshold device, models have been developed in recent years that take into account the diverse electrophysiological make-up of neurons and accurately describe their input-output relations. Here, we review these recent advances and survey the computational roles that they have uncovered for various electrophysiological properties, for dendritic arbor anatomy as well as for short-term synaptic plasticity.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Humanos
19.
Genome Biol ; 14(8): R86, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23972280

RESUMEN

BACKGROUND: Developmental programs are implemented by regulatory interactions between Transcription Factors (TFs) and their target genes, which remain poorly understood. While recent studies have focused on regulatory cascades of TFs that govern early development, little is known about how the ultimate effectors of cell differentiation are selected and controlled. We addressed this question during late Drosophila embryogenesis, when the finely tuned expression of the TF Ovo/Shavenbaby (Svb) triggers the morphological differentiation of epidermal trichomes. RESULTS: We defined a sizeable set of genes downstream of Svb and used in vivo assays to delineate 14 enhancers driving their specific expression in trichome cells. Coupling computational modeling to functional dissection, we investigated the regulatory logic of these enhancers. Extending the repertoire of epidermal effectors using genome-wide approaches showed that the regulatory models learned from this first sample are representative of the whole set of trichome enhancers. These enhancers harbor remarkable features with respect to their functional architectures, including a weak or non-existent clustering of Svb binding sites. The in vivo function of each site relies on its intimate context, notably the flanking nucleotides. Two additional cis-regulatory motifs, present in a broad diversity of composition and positioning among trichome enhancers, critically contribute to enhancer activity. CONCLUSIONS: Our results show that Svb directly regulates a large set of terminal effectors of the remodeling of epidermal cells. Further, these data reveal that trichome formation is underpinned by unexpectedly diverse modes of regulation, providing fresh insights into the functional architecture of enhancers governing a terminal differentiation program.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Genoma , Factores de Transcripción/genética , Tricomas/genética , Animales , Sitios de Unión , Biología Computacional , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Motivos de Nucleótidos , Unión Proteica , Factores de Transcripción/metabolismo , Tricomas/crecimiento & desarrollo , Tricomas/metabolismo
20.
PLoS Comput Biol ; 9(3): e1002944, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505356

RESUMEN

Modelling the displacement of thousands of cells that move in a collective way is required for the simulation and the theoretical analysis of various biological processes. Here, we tackle this question in the controlled setting where the motion of Madin-Darby Canine Kidney (MDCK) cells in a confluent epithelium is triggered by the unmasking of free surface. We develop a simple model in which cells are described as point particles with a dynamic based on the two premises that, first, cells move in a stochastic manner and, second, tend to adapt their motion to that of their neighbors. Detailed comparison to experimental data show that the model provides a quantitatively accurate description of cell motion in the epithelium bulk at early times. In addition, inclusion of model "leader" cells with modified characteristics, accounts for the digitated shape of the interface which develops over the subsequent hours, providing that leader cells invade free surface more easily than other cells and coordinate their motion with their followers. The previously-described progression of the epithelium border is reproduced by the model and quantitatively explained.


Asunto(s)
Movimiento Celular/fisiología , Células Epiteliales/fisiología , Epitelio/fisiología , Modelos Biológicos , Animales , Simulación por Computador , Perros , Células Epiteliales/citología , Células de Riñón Canino Madin Darby , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...