Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ISME J ; 16(12): 2680-2690, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36123523

RESUMEN

Soil and rhizosphere microbiomes play important roles in suppression of plant pathogens through production of antagonistic secondary metabolites, yet mechanisms that determine the strength of pathogen control are not well understood. Many Pseudomonas species are associated with soil and rhizosphere microbiomes, and their ability to suppress pathogens is well documented. Here, we investigate how interactions within the Pseudomonas genus affect their production of antimicrobial metabolites. From a biosensor-based screen, we identify P. capeferrum species as capable of modulating secondary metabolite production in P. protegens. We show that P. capeferrum alters production of pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) in P. protegens via two distinct and sequential mechanisms that depends on spatial proximity of the two species. Specifically, P. capeferrum secretes a diffusible signal that induce pyoluteorin production up to 100-fold in neighboring P. protegens colonies. In contrast, the interaction results in reduced DAPG production, but only within mixed-species colonies. Additionally, we found that increased pyoluteorin production and cell lysis of P. capeferrum is required for inhibition of DAPG production, suggesting that pyoluteorin-facilitated antibiosis of P. protegens on P. capeferrum leads to release of cell-associated metabolites and subsequent inhibition of DAPG production in P. protegens. As the interaction modulates in vitro bioactivity of the species, genus-specific interactions may assist in improving efficacy of biocontrol strains and consortia.


Asunto(s)
Antiinfecciosos , Floroglucinol , Floroglucinol/metabolismo , Floroglucinol/farmacología , Pseudomonas/metabolismo , Antiinfecciosos/metabolismo , Antibacterianos/metabolismo , Suelo
2.
mSystems ; 6(4): e0070421, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34342531

RESUMEN

Species of the genus Pseudomonas are used for several biotechnological purposes, including plant biocontrol and bioremediation. To exploit the Pseudomonas genus in environmental, agricultural, or industrial settings, the organisms must be profiled at the species level as their bioactivity potential differs markedly between species. Standard 16S rRNA gene amplicon profiling does not allow for accurate species differentiation. Thus, the purpose of this study was to develop an amplicon-based high-resolution method targeting a 760-nucleotide (nt) region of the rpoD gene enabling taxonomic differentiation of Pseudomonas species in soil samples. The method was benchmarked on a 16-member Pseudomonas species mock community. All 16 species were correctly and semiquantitatively identified using rpoD gene amplicons, whereas 16S rRNA V3-V4 amplicon sequencing only correctly identified one species. We analyzed the Pseudomonas profiles in 13 soil samples in northern Zealand, Denmark, where samples were collected from grassland (3 samples) and agriculture soil (10 samples). Pseudomonas species represented up to 0.7% of the 16S rRNA gene abundance, of which each sampling site contained a unique Pseudomonas composition. Thirty culturable Pseudomonas strains were isolated from each grassland site and 10 from each agriculture site and identified by Sanger sequencing of the rpoD gene. In all cases, the rpoD amplicon approach identified more species than were found by cultivation, including hard-to-culture nonfluorescent pseudomonads, as well as more than were found by 16S rRNA V3-V4 amplicon sequencing. Thus, rpoD profiling can be used for species profiling of Pseudomonas, and large-scale prospecting of bioactive Pseudomonas may be guided by initial screening using this method. IMPORTANCE A high-throughput sequencing-based method for profiling of Pseudomonas species in soil microbiomes was developed and identified more species than 16S rRNA gene sequencing or cultivation. Pseudomonas species are used as biocontrol organisms and plant growth-promoting agents, and the method will allow tracing of specific species of Pseudomonas as well as enable screening of environmental samples for further isolation and exploitation.

3.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33218996

RESUMEN

Fluorescent Pseudomonas spp. producing the antibiotic 2,4-diacetylphloroglucinol (DAPG) are ecologically important in the rhizosphere, as they can control phytopathogens and contribute to disease suppression. DAPG can also trigger a systemic resistance response in plants and stimulate root exudation and branching as well as induce plant-beneficial activities in other rhizobacteria. While studies of DAPG-producing Pseudomonas have predominantly focused on rhizosphere niches, the ecological role of DAPG as well as the distribution and dynamics of DAPG-producing bacteria remains less well understood for other environments, such as bulk soil and grassland, where the level of DAPG producers are predicted to be low. In this study, we constructed a whole-cell biosensor for detection of DAPG and DAPG-producing bacteria from environmental samples. The constructed biosensor contains a phlF response module and either lacZ or lux genes as output modules assembled on a pSEVA plasmid backbone for easy transfer to different host species and to enable easy future genetic modifications. We show that the sensor is highly specific toward DAPG, with a sensitivity in the low nanomolar range (>20 nM). This sensitivity is comparable to the DAPG levels identified in rhizosphere samples by chemical analysis. The biosensor enables guided isolation of DAPG-producing Pseudomonas Using the biosensor, we probed the same grassland soil sampling site to isolate genetically related DAPG-producing Pseudomonas kilonensis strains over a period of 12 months. Next, we used the biosensor to determine the frequency of DAPG-producing pseudomonads within three different grassland soil sites and showed that DAPG producers can constitute part of the Pseudomonas population in the range of 0.35 to 17% at these sites. Finally, we showed that the biosensor enables detection of DAPG produced by non-Pseudomonas species. Our study shows that a whole-cell biosensor for DAPG detection can facilitate isolation of bacteria that produce this important secondary metabolite and provide insight into the population dynamics of DAPG producers in natural grassland soil.IMPORTANCE The interest in bacterial biocontrol agents as biosustainable alternatives to pesticides to increase crop yields has grown. To date, we have a broad knowledge of antimicrobial compounds, such as DAPG, produced by bacteria growing in the rhizosphere surrounding plant roots. However, compared to the rhizosphere niches, the ecological role of DAPG as well as the distribution and dynamics of DAPG-producing bacteria remains less well understood for other environments, such as bulk and grassland soil. Currently, we are restricted to chemical methods with detection limits and time-consuming PCR-based and probe hybridization approaches to detect DAPG and its respective producer. In this study, we developed a whole-cell biosensor, which can circumvent the labor-intensive screening process as well as increase the sensitivity at which DAPG can be detected. This enables quantification of relative amounts of DAPG producers, which, in turn, increases our understanding of the dynamics and ecology of these producers in natural soil environments.


Asunto(s)
Técnicas Biosensibles , Floroglucinol/análogos & derivados , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo , Pradera , Control Biológico de Vectores , Floroglucinol/metabolismo , Suelo , Microbiología del Suelo
4.
Genome Biol Evol ; 11(12): 3529-3533, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800028

RESUMEN

Many of the soil-dwelling Pseudomonas species are known to produce secondary metabolite compounds, which can have antagonistic activity against other microorganisms, including important plant pathogens. It is thus of importance to isolate new strains of Pseudomonas and discover novel or rare gene clusters encoding bioactive products. In an effort to accomplish this, we have isolated a bioactive Pseudomonas strain DTU12.1 from leaf-covered soil in Denmark. Following genome sequencing with Illumina and Oxford Nanopore technologies, we generated a complete genome sequence with the length of 5,943,629 base pairs. The DTU12.1 strain contained a complete gene cluster for a rare thioquinolobactin siderophore, which was previously described as possessing bioactivity against oomycetes and several fungal species. We placed the DTU12.1 strain within Pseudomonas gessardii subgroup of fluorescent pseudomonads, where it formed a distinct clade with other Pseudomonas strains, most of which also contained a complete thioquinolobactin gene cluster. Only two other Pseudomonas strains were found to contain the gene cluster, though they were present in a different phylogenetic clade and were missing a transcriptional regulator of the whole cluster. We show that having the complete genome sequence and establishing phylogenetic relationships with other strains can enable us to start evaluating the distribution and evolutionary origins of secondary metabolite clusters.


Asunto(s)
Vías Biosintéticas , Pseudomonas/genética , Pseudomonas/metabolismo , Quinolinas/metabolismo , Metabolómica , Filogenia , Pseudomonas/clasificación , Pseudomonas/enzimología , Microbiología del Suelo , Secuenciación Completa del Genoma
5.
Microbiology (Reading) ; 164(8): 1038-1047, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29969091

RESUMEN

Regulating intracellular levels of biological metal ions is essential for all bacterial species, as they are needed for virulence and a range of metabolic processes. Zinc is the second most abundant metal ion in Pseudomonas aeruginosa, but little is known about its regulation. Recent studies have identified a novel operon, zrmABCD (also called cntOLMI), encoding a metallophore system (pseudopaline) involved in zinc acquisition. Expression of this operon has been implicated in human infections and is regulated by the transcriptional regulator Zur (Zn2+ uptake regulator). In this study, we show that the intergenic promoter region in front of zrmABCD is a target for recurrent adaptive mutations during chronic infection of cystic fibrosis (CF) patients. We characterize the inter- and intraclonal sequence polymorphisms found in the promoter region of the metallophore system and find that most alterations increase promoter activity. One of the evolved promoters displays a more than 10-fold increase compared to the ancestral strain due to the combined effect of an altered binding site of Zur and changes to the RpoD-binding motif. This specific evolved promoter responds differently to changes in metal ion concentrations in chelated medium. We have previously shown that P. aeruginosa evolves toward iron acquisition from haemoglobin during long-term CF infections. We hereby provide the second example of adaptive mutations targeting intergenic regions that affect metal ion uptake systems during CF infections, and the first involving zinc uptake. Our results suggest that the scarcity of metal ions (including iron and zinc) is an important evolutionary driver in CF host adaptation.


Asunto(s)
Transporte Iónico/genética , Oligopéptidos/biosíntesis , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Zinc/metabolismo , Adaptación Fisiológica/genética , Sitios de Unión/genética , Fibrosis Quística/patología , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Oligopéptidos/genética , Polimorfismo Genético/genética , Regiones Promotoras Genéticas/genética , Infecciones por Pseudomonas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...