Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Neurol Genet ; 10(1): e200126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38716325
2.
Neuromuscul Disord ; 38: 26-41, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554696

RESUMEN

LMNA-related congenital muscular dystrophy (L-CMD) is caused by mutations in the LMNA gene, encoding lamin A/C. To further understand the molecular mechanisms of L-CMD, proteomic profiling using DIA mass spectrometry was conducted on immortalized myoblasts and myotubes from controls and L-CMD donors each harbouring a different LMNA mutation (R249W, del.32 K and L380S). Compared to controls, 124 and 228 differentially abundant proteins were detected in L-CMD myoblasts and myotubes, respectively, and were associated with enriched canonical pathways including synaptogenesis and necroptosis in myoblasts, and Huntington's disease and insulin secretion in myotubes. Abnormal nuclear morphology and reduced lamin A/C and emerin abundance was evident in all L-CMD cell lines compared to controls, while nucleoplasmic aggregation of lamin A/C was restricted to del.32 K cells, and mislocalization of emerin was restricted to R249W cells. Abnormal nuclear morphology indicates loss of nuclear lamina integrity as a common feature of L-CMD, likely rendering muscle cells vulnerable to mechanically induced stress, while differences between L-CMD cell lines in emerin and lamin A localization suggests that some molecular alterations in L-CMD are mutation specific. Nonetheless, identifying common proteomic alterations and molecular pathways across all three L-CMD lines has highlighted potential targets for the development of non-mutation specific therapies.


Asunto(s)
Lamina Tipo A , Distrofias Musculares , Proteómica , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mutación , Mioblastos/metabolismo , Masculino , Línea Celular , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
3.
Trends Pharmacol Sci ; 45(3): 225-242, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38402076

RESUMEN

High levels of pathogenic mitochondrial DNA (mtDNA) variants lead to severe genetic diseases, and the accumulation of such mutants may also contribute to common disorders. Thus, selecting against these mutants is a major goal in mitochondrial medicine. Although mutant mtDNA can drift randomly, mounting evidence indicates that active forces play a role in the selection for and against mtDNA variants. The underlying mechanisms are beginning to be clarified, and recent studies suggest that metabolic cues, including fuel availability, contribute to shaping mtDNA heteroplasmy. In the context of pathological mtDNAs, remodeling of nutrient metabolism supports mitochondria with deleterious mtDNAs and enables them to outcompete functional variants owing to a replicative advantage. The elevated nutrient requirement represents a mutant Achilles' heel because small molecules that restrict nutrient consumption or interfere with nutrient sensing can purge cells of deleterious mtDNAs and restore mitochondrial respiration. These advances herald the dawn of a new era of small-molecule therapies to counteract pathological mtDNAs.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo
4.
Brain ; 147(5): 1899-1913, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38242545

RESUMEN

Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Colesterol , Lisosomas , Proteínas de la Membrana , Mutación , Animales , Colesterol/metabolismo , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Drosophila , Membrana Celular/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
5.
Cells ; 11(17)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36078032

RESUMEN

Most research to characterise the molecular consequences of spinal muscular atrophy (SMA) has focused on SMA I. Here, proteomic profiling of skin fibroblasts from severe (SMA I), intermediate (SMA II), and mild (SMA III) patients, alongside age-matched controls, was conducted using SWATH mass spectrometry analysis. Differentially expressed proteomic profiles showed limited overlap across each SMA type, and variability was greatest within SMA II fibroblasts, which was not explained by SMN2 copy number. Despite limited proteomic overlap, enriched canonical pathways common to two of three SMA severities with at least one differentially expressed protein from the third included mTOR signalling, regulation of eIF2 and eIF4 signalling, and protein ubiquitination. Network expression clustering analysis identified protein profiles that may discriminate or correlate with SMA severity. From these clusters, the differential expression of PYGB (SMA I), RAB3B (SMA II), and IMP1 and STAT1 (SMA III) was verified by Western blot. All SMA fibroblasts were transfected with an SMN-enhanced construct, but only RAB3B expression in SMA II fibroblasts demonstrated an SMN-dependent response. The diverse proteomic profiles and pathways identified here pave the way for studies to determine their utility as biomarkers for patient stratification or monitoring treatment efficacy and for the identification of severity-specific treatments.


Asunto(s)
Atrofia Muscular Espinal , Proteoma , Western Blotting , Fibroblastos/metabolismo , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteoma/metabolismo , Proteómica
6.
Methods Mol Biol ; 2528: 173-202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35704192

RESUMEN

R-loops forming inadvertently during transcription can threaten genome stability, but R-loops are also formed intentionally, as a means of regulating transcription and other aspects of DNA metabolism. The study of R-loops in mitochondria is in its infancy, and yet there is already clear evidence that they are predominantly located in the major regulatory region of the mammalian mitochondrial genome. Here, we describe how mitochondrial R-loops have been characterized to date, with the emphasis on the problems of their being extremely labile, and how to minimize their loss during extraction. The oft-overlooked issues of RNA-DNA hybrids not being synonymous with R-loops, and adventitious RNA hybridization to DNA, are tackled head on; and possible new approaches are described and placed in the context of future research lines that could reveal the detailed roles of R-loops in the metabolism of mitochondrial DNA.


Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , Animales , Replicación del ADN , ADN Mitocondrial/genética , Mamíferos/genética , ARN/genética , Transcripción Genética
7.
Sci Rep ; 12(1): 6890, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35478201

RESUMEN

2-Deoxy-D-glucose (2DG) has recently received emergency approval for the treatment of COVID-19 in India, after a successful clinical trial. SARS-CoV-2 infection of cultured cells is accompanied by elevated glycolysis and decreased mitochondrial function, whereas 2DG represses glycolysis and stimulates respiration, and restricts viral replication. While 2DG has pleiotropic effects on cell metabolism in cultured cells it is not known which of these manifests in vivo. On the other hand, it is known that 2DG given continuously can have severe detrimental effects on the rodent heart. Here, we show that the principal effect of an extended, intermittent 2DG treatment on mice is to augment the mitochondrial respiratory chain proteome in the heart; importantly, this occurs without vacuolization, hypertrophy or fibrosis. The increase in the heart respiratory chain proteome suggests an increase in mitochondrial oxidative capacity, which could compensate for the energy deficit caused by the inhibition of glycolysis. Thus, 2DG in the murine heart appears to induce a metabolic configuration that is the opposite of SARS-CoV-2 infected cells, which could explain the compound's ability to restrict the propagation of the virus to the benefit of patients with COVID-19 disease.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glucosa , Animales , Desoxiglucosa/farmacología , Transporte de Electrón , Glucosa/metabolismo , Humanos , Ratones , Proteoma/metabolismo , SARS-CoV-2
8.
Front Cell Dev Biol ; 10: 836196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419363

RESUMEN

Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of new organelles and molecules, neurotransmission and to the maintenance of redox homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but it is also essential to balance nutritional needs through the mobilization of internal energy stores. A delicate crosstalk between the pathways that sense nutritional status of the cell and the autophagic processes to recycle organelles and macronutrients is fundamental to guarantee the proper functioning of the neuron in times of energy scarcity. This review provides a detailed overview of the pathways and processes involved in the balance of cellular energy mediated by autophagy, which when defective, precipitate the neurodegenerative cascade of Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis or Alzheimer's disease.

9.
Nat Commun ; 12(1): 6997, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873176

RESUMEN

Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication.


Asunto(s)
Replicación del ADN/efectos de los fármacos , ADN Mitocondrial/genética , Desoxiglucosa/farmacología , Mitocondrias/efectos de los fármacos , Mutación Puntual , Células A549 , Autofagia/efectos de los fármacos , Autofagia/genética , Línea Celular Tumoral , Células Cultivadas , ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucosa/análogos & derivados , Glucosa/farmacología , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos
10.
Skin Pharmacol Physiol ; 34(3): 162-166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33794540

RESUMEN

Bradykinin increases skin blood flow via a cGMP mechanism but its role in sweating in vivo is unclear. There is a current need to translate cell culture and nonhuman paw pad studies into in vivo human preparations to test for therapeutic viability for disorders affecting sweat glands. Protocol 1: physiological sweating was induced in 10 healthy subjects via perfusing warm (46-48°C) water through a tube-lined suit while bradykinin type 2 receptor (B2R) antagonist (HOE-140; 40 µM) and only the vehicle (lactated Ringer's) were perfused intradermally via microdialysis. Heat stress increased sweat rate (HOE-140 = +0.79 ± 0.12 and vehicle = +0.64 ± 0.10 mg/cm2/min), but no differences were noted with B2R antagonism. Protocol 2: pharmacological sweating was induced in 6 healthy subjects via intradermally perfusing pilocarpine (1.67 mg/mL) followed by the same B2R antagonist approach. Pilocarpine increased sweating (HOE-140 = +0.38 ± 0.16 and vehicle = +0.32 ± 0.12 mg/cm2/min); again no differences were observed with B2R antagonism. Last, 5 additional subjects were recruited for various control experiments which identified that a functional dose of HOE-140 was utilized and it was not sudorific during normothermic conditions. These data indicate B2R antagonists do not modulate physiologically or pharmacologically induced eccrine secretion volumes. Thus, B2R agonist/antagonist development as a potential therapeutic target for hypo- and hyperhidrosis appears unwarranted.


Asunto(s)
Antagonistas del Receptor de Bradiquinina B2/farmacología , Bradiquinina/análogos & derivados , Sudoración/efectos de los fármacos , Bradiquinina/farmacología , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/fisiología , Humanos , Pilocarpina/farmacología , Receptor de Bradiquinina B2/metabolismo , Piel/metabolismo , Sudoración/fisiología
11.
Mol Biol Rep ; 48(3): 2093-2104, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33742325

RESUMEN

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T > G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T > G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.


Asunto(s)
Cromosomas Humanos Par 2/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Disomía Uniparental/genética , Adolescente , Secuencia de Bases , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Preescolar , Femenino , Fibroblastos/patología , Homocigoto , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Enfermedades Mitocondriales/patología , Músculo Esquelético/metabolismo , Mutación/genética , Fosforilación Oxidativa , Biosíntesis de Proteínas , Adulto Joven
12.
BMC Mol Cell Biol ; 21(1): 88, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261556

RESUMEN

BACKGROUND: Popeye domain-containing proteins 1 and 2 (POPDC1 and POPDC2) are transmembrane proteins involved in cyclic AMP-mediated signalling processes and are required for normal cardiac pacemaking and conduction. In order to identify novel protein interaction partners, POPDC1 and 2 proteins were attached to beads and compared by proteomic analysis with control beads in the pull-down of proteins from cultured human skeletal myotubes. RESULTS: There were highly-significant interactions of both POPDC1 and POPDC2 with XIRP1 (Xin actin binding repeat-containing protein 1), actin and, to a lesser degree, annexin A5. In adult human skeletal muscle, both XIRP1 and POPDC1/2 were present at the sarcolemma and in T-tubules. The interaction of POPDC1 with XIRP1 was confirmed in adult rat heart extracts. Using new monoclonal antibodies specific for POPDC1 and POPDC2, both proteins, together with XIRP1, were found mainly at intercalated discs but also at T-tubules in adult rat and human heart. CONCLUSIONS: Mutations in human POPDC1, POPDC2 and in human XIRP1, all cause pathological cardiac arrhythmias, suggesting a possible role for POPDC1/2 and XIRP1 interaction in normal cardiac conduction.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Cardiopatías/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Sarcolema/metabolismo , Actinas/metabolismo , Adulto , Animales , Anexina A5/metabolismo , Anticuerpos Monoclonales/metabolismo , Células COS , Chlorocebus aethiops , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Unión Proteica , Ratas Sprague-Dawley
13.
Neuromuscul Disord ; 30(6): 443-456, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32522500

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a rare genetic disorder characterised by the early development of muscle contractures, progressive muscle weakness, and heart abnormalities. The latter may result in serious complications, or in severe cases, sudden death. Currently, there are very few effective treatment options available for EDMD and so there is a high clinical need for new therapies. Various genetic mutations have been identified in the development and causation of EDMD, each encoding proteins that are components of the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, which spans the nuclear envelope and serves to connect the nuclear lamina to the cytoskeleton. Within this review, we examine how mutations in the genes encoding these proteins, including lamins A/C, emerin, nesprins 1/2, FHL1, and SUN1/2 lead to muscle cell differentiation and development pathway defects. Further work to identify conserved molecular pathways downstream of these defective proteins may reveal potential targets for therapy design.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de la Membrana/genética , Células Musculares/fisiología , Proteínas Musculares/genética , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/fisiopatología , Proteínas Nucleares/genética , Transducción de Señal/genética , Animales , Humanos
14.
Am J Hum Genet ; 106(2): 272-279, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004445

RESUMEN

Recent studies have identified both recessive and dominant forms of mitochondrial disease that result from ATAD3A variants. The recessive form includes subjects with biallelic deletions mediated by non-allelic homologous recombination. We report five unrelated neonates with a lethal metabolic disorder characterized by cardiomyopathy, corneal opacities, encephalopathy, hypotonia, and seizures in whom a monoallelic reciprocal duplication at the ATAD3 locus was identified. Analysis of the breakpoint junction fragment indicated that these 67 kb heterozygous duplications were likely mediated by non-allelic homologous recombination at regions of high sequence identity in ATAD3A exon 11 and ATAD3C exon 7. At the recombinant junction, the duplication allele produces a fusion gene derived from ATAD3A and ATAD3C, the protein product of which lacks key functional residues. Analysis of fibroblasts derived from two affected individuals shows that the fusion gene product is expressed and stable. These cells display perturbed cholesterol and mitochondrial DNA organization similar to that observed for individuals with severe ATAD3A deficiency. We hypothesize that the fusion protein acts through a dominant-negative mechanism to cause this fatal mitochondrial disorder. Our data delineate a molecular diagnosis for this disorder, extend the clinical spectrum associated with structural variation at the ATAD3 locus, and identify a third mutational mechanism for ATAD3 gene cluster variants. These results further affirm structural variant mutagenesis mechanisms in sporadic disease traits, emphasize the importance of copy number analysis in molecular genomic diagnosis, and highlight some of the challenges of detecting and interpreting clinically relevant rare gene rearrangements from next-generation sequencing data.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Colesterol/metabolismo , Duplicación de Gen , Recombinación Homóloga , Proteínas de la Membrana/genética , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , ATPasas Asociadas con Actividades Celulares Diversas/química , Secuencia de Aminoácidos , Encefalopatías/etiología , Encefalopatías/metabolismo , Encefalopatías/patología , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Opacidad de la Córnea/etiología , Opacidad de la Córnea/metabolismo , Opacidad de la Córnea/patología , Variaciones en el Número de Copia de ADN , Femenino , Reordenamiento Génico , Humanos , Lactante , Recién Nacido , Masculino , Proteínas de la Membrana/química , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Hipotonía Muscular/etiología , Hipotonía Muscular/metabolismo , Hipotonía Muscular/patología , Mutación , Conformación Proteica , Convulsiones/etiología , Convulsiones/metabolismo , Convulsiones/patología , Homología de Secuencia
16.
Sci Rep ; 9(1): 14202, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578382

RESUMEN

Nesprins, nuclear envelope spectrin-repeat proteins encoded by the SYNE1 and SYNE2 genes, are involved in localization of nuclei. The short isoform, nesprin-1-alpha2, is required for relocation of the microtubule organizer function from centromeres to the nuclear rim during myogenesis. Using specific antibodies, we now show that both nesprin-1-alpha2 and nesprin-1-giant co-localize with kinesin at the junctions of concatenated nuclei and at the outer poles of nuclear chains in human skeletal myotubes. In adult muscle, nesprin-1-alpha2 was found, together with kinesin, only on nuclei associated with neuromuscular junctions, whereas all adult cardiomyocyte nuclei expressed nesprin-1-alpha2. In a proteomics study, kinesin heavy and light chains were the only significant proteins in myotube extracts pulled down by nesprin-1-alpha2, but not by a mutant lacking the highly-conserved STAR domain (18 amino-acids, including the LEWD motif). The results support a function for nesprin-1-alpha2 in the specific localization of skeletal muscle nuclei mediated by kinesins and suggest that its primary role is at the outer nuclear membrane.


Asunto(s)
Núcleo Celular/genética , Proteínas del Citoesqueleto/genética , Cinesinas/genética , Proteínas de Microfilamentos/genética , Desarrollo de Músculos/genética , Proteínas del Tejido Nervioso/genética , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Cinesinas/química , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Mutación/genética , Unión Neuromuscular/genética , Unión Neuromuscular/crecimiento & desarrollo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Isoformas de Proteínas/genética , Proteómica
17.
Mov Disord ; 34(10): 1547-1561, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31433872

RESUMEN

BACKGROUND: Pathogenic variants in the spastic paraplegia type 7 gene cause a complicated hereditary spastic paraplegia phenotype associated with classical features of mitochondrial diseases, including ataxia, progressive external ophthalmoplegia, and deletions of mitochondrial DNA. OBJECTIVES: To better characterize spastic paraplegia type 7 disease with a clinical, genetic, and functional analysis of a Spanish cohort of spastic paraplegia type 7 patients. METHODS: Genetic analysis was performed in patients suspecting hereditary spastic paraplegia and in 1 patient with parkinsonism and Pisa syndrome, through next-generation sequencing, whole-exome sequencing, targeted Sanger sequencing, and multiplex ligation-dependent probe analysis, and blood mitochondrial DNA levels determined by quantitative polymerase chain reaction. RESULTS: Thirty-five patients were found to carry homozygous or compound heterozygous pathogenic variants in the spastic paraplegia type 7 gene. Mean age at onset was 40 years (range, 12-63); 63% of spastic paraplegia type 7 patients were male, and three-quarters of all patients had at least one allele with the c.1529C>T (p.Ala510Val) mutation. Eighty percent of the cohort showed a complicated phenotype, combining ataxia and progressive external ophthalmoplegia (65% and 26%, respectively). Parkinsonism was observed in 21% of cases. Analysis of blood mitochondrial DNA indicated that both patients and carriers of spastic paraplegia type 7 pathogenic variants had markedly lower levels of mitochondrial DNA than control subjects (228 per haploid nuclear DNA vs. 176 vs. 573, respectively; P < 0.001). CONCLUSIONS: Parkinsonism is a frequent finding in spastic paraplegia type 7 patients. Spastic paraplegia type 7 pathogenic variants impair mitochondrial DNA homeostasis irrespective of the number of mutant alleles, type of variant, and patient or carrier status. Thus, spastic paraplegia type 7 supports mitochondrial DNA maintenance, and variants in the gene may cause parkinsonism owing to mitochondrial DNA abnormalities. Moreover, mitochondrial DNA blood analysis could be a useful biomarker to detect at risk families. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Paraplejía/genética , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Trastornos Parkinsonianos/genética , Fenotipo , Adulto Joven
18.
Hum Mol Genet ; 28(21): 3515-3527, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31397869

RESUMEN

Cardiac pathology is emerging as a prominent systemic feature of spinal muscular atrophy (SMA), but little is known about the underlying molecular pathways. Using quantitative proteomics analysis, we demonstrate widespread molecular defects in heart tissue from the Taiwanese mouse model of severe SMA. We identify increased levels of lamin A/C as a robust molecular phenotype in the heart of SMA mice and show that lamin A/C dysregulation is also apparent in SMA patient fibroblast cells and other tissues from SMA mice. Lamin A/C expression was regulated in vitro by knockdown of the E1 ubiquitination factor ubiquitin-like modifier activating enzyme 1, a key downstream mediator of SMN-dependent disease pathways, converging on ß-catenin signaling. Increased levels of lamin A are known to increase the rigidity of nuclei, inevitably disrupting contractile activity in cardiomyocytes. The increased lamin A/C levels in the hearts of SMA mice therefore provide a likely mechanism explaining morphological and functional cardiac defects, leading to blood pooling. Therapeutic strategies directed at lamin A/C may therefore offer a new approach to target cardiac pathology in SMA.


Asunto(s)
Lamina Tipo A/metabolismo , Atrofia Muscular Espinal/metabolismo , Miocardio/patología , Animales , Modelos Animales de Enfermedad , Humanos , Lamina Tipo A/genética , Masculino , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Miocardio/metabolismo
19.
Alcohol Clin Exp Res ; 43(9): 1937-1948, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31329298

RESUMEN

BACKGROUND: Although not legally allowed to consume alcohol, adolescents account for 11% of all alcohol use in the United States and approximately 90% of adolescent intake is in the form of an alcohol binge. The adolescent intermittent ethanol (AIE) model developed by the NADIA consortium produces binge-like EtOH exposure episodes. The current experiment examined the effects of AIE on the reinforcing properties of EtOH and genetic expression of cholinergic and dopaminergic factors within the posterior ventral tegmental area (pVTA) in Wistar male and female rats and in male alcohol-preferring (P) rats. METHODS: Rats were exposed to the AIE or water during adolescence, and all testing occurred during adulthood. Wistar control and AIE rats were randomly assigned to groups that self-administered 0 to 200 mg% EtOH. Male P rats self-administered 0 to 100 mg%. RESULTS: The data indicated that exposure to AIE in both Wistar male and female rats (and male P rats) resulted in a significant leftward shift in dose-response curve for EtOH self-administration into the pVTA. TaqMan array indicated that AIE exposure had divergent effects on the expression of nicotinic receptors (increased a7, reduction in a4 and a5). There were also sex-specific effects of AIE on gene expression; male only reduction in D3 receptors. CONCLUSION: Binge-like EtOH exposure during adolescence enhances the sensitivity to the reinforcing properties of EtOH during adulthood which could be part of biological sequelae that are the basis for the deleterious effects of adolescent alcohol consumption on the rate of alcoholism during adulthood.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/psicología , Depresores del Sistema Nervioso Central/efectos adversos , Etanol/efectos adversos , Refuerzo en Psicología , Área Tegmental Ventral/efectos de los fármacos , Animales , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Distribución Aleatoria , Ratas Wistar , Receptores Colinérgicos/metabolismo , Consumo de Alcohol en Menores , Área Tegmental Ventral/metabolismo
20.
DNA Repair (Amst) ; 84: 102630, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31178343

RESUMEN

The activity and specificity of ribonuclease H1, RNase H1, has been known for over half a century; like all enzymes in its class, it degrades RNA only when it is hybridized to DNA. However, the essential role of RNase H1 in mitochondrial DNA maintenance was not recognized until 2003, and empirical evidence that it is required to process RNA primers of mitochondrial DNA had to wait until 2015. In the same year, mutations in the RNASEH1 gene were linked to human mitochondrial diseases. The most recent studies suggest that in addition to primer-processing, RNase H1 determines the fate of R-loops, although not primarily those that might present an obstacle to DNA replication, but ones that contribute to the organization of mitochondrial DNA and the unusual mechanism of replication in mitochondria that utilizes transcripts for the strand-asynchronous mechanism of mitochondrial DNA replication. A full understanding of the role of RNase H1 in mtDNA metabolism will depend on further study, including careful consideration of its ability to stabilize, as well as to degrade RNA/DNA hybrids, and its regulation by oxidation or other mechanisms. Nevertheless, RNase H1 is already staking a strong claim to be the most versatile factor involved in propagating the DNA in the mitochondria.


Asunto(s)
ADN Mitocondrial/genética , Ribonucleasa H/metabolismo , Animales , ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , Humanos , Enfermedades Mitocondriales/genética , Estructuras R-Loop , Ribonucleasa H/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA