Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 592, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844753

RESUMEN

The 'Red Fuji' apple (Malus domestica), is one of the most important and popular economic crops worldwide in the fruit industry. Using PacBio HiFi long reads and Hi-C reads, we assembled a high-quality haplotype-resolved genome of 'Red Fuji', with sizes of 668.7 and 668.8 Mb, and N50 sizes of 34.1 and 31.4 Mb. About 97.2% of sequences were anchored in 34 chromosomes. We annotated both haploid genomes, identifying a total of 95,439 protein-coding genes in the two haplotype genomes, with 98% functional annotation. The haplotype-resolved genome of 'Red Fuji' apple stands as a precise benchmark for an array of analyses, such as comparative genomics, transcriptomics, and allelic expression studies. This comprehensive resource is paramount in unraveling variations in allelic expression, advancing quality improvements, and refining breeding efforts.


Asunto(s)
Genoma de Planta , Haplotipos , Malus , Malus/genética
2.
Adv Mater ; : e2405930, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924191

RESUMEN

The elevated levels of lactate in tumor tissue play a pivotal role in fostering an immunosuppressive microenvironment. Therefore, efficiently reducing lactate levels to reprogram tumor immune microenvironment (TIM) is considered a crucial step for boosted immunotherapy. Here, a high-lactate-metabolizing photosynthetic bacteria (LAB-1) is selectively screened for TIM reprogramming, which then improves the efficacy of tumor immunotherapy. The culture medium for LAB-1 screening is initially developed through an orthogonal experiment, simulating the tumor microenvironment (TME) and utilizing lactate as the sole organic carbon source. As demonstrated in a murine 4T1 model, LAB-1 colonizes the TME selectively, resulting in a significant reduction in lactate levels and a subsequent increase in pH values within the tumor tissue. Furthermore, single-cell RNA sequencing analysis reveals that LAB-1 effectively reprograms the TIM, thereby enhancing the effectiveness of antitumor immune therapy. This approach of utilizing lactate-consuming bacteria represents a potent tool for augmenting tumor immunotherapy efficiency.

3.
Sci Data ; 11(1): 552, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811578

RESUMEN

Malus hybrid 'SH6' (M. honanensis × M. domestica)is a commonly used apple interstock in China, known for its excellent dwarfing characteristics and cold tolerance. In this study, a combined strategy utilizing PacBio HiFi, Hi-C and parental resequencing data were employed to assemble two haploid genomes for 'SH6'. After chromosome anchoring, the final hapH genome size was 596.63 Mb, with a contig N50 of 34.38 Mb. The hapR genome was 649.37 Mb, with a contig N50 of 36.84 Mb. Further analysis predicted that repeated sequences made up 59.69% and 62.52% of the entire genome, respectively. Gene annotations revealed 45,435 genes for hapH and 48,261 genes for hapR. Combined with genomic synteny we suggest that the hapR genome originates from its maternal parent M. domestica cv. Ralls Janet, while the hapH genome comes from its paternal parent, M. honanensis. The assembled genome significantly contributes to the discovery of genes associated with apple dwarfing and the molecular mechanisms governing them.


Asunto(s)
Genoma de Planta , Malus , Malus/genética , Cromosomas de las Plantas/genética
4.
Sci Data ; 11(1): 201, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351118

RESUMEN

Malus hybrid 'Flame' and Malus hybrid 'Royalty' are representative ornamental crabapples, rich in flavonoids and serving as the preferred materials for studying the coloration mechanism. We generated two sets of high-quality chromosome-level and haplotype-resolved genome of 'Flame' with sizes of 688.2 Mb and 675.7 Mb, and those of 'Royalty' with sizes of 674.1 Mb and 663.6 Mb, all anchored to 17 chromosomes and with a high BUSCO completeness score nearly 99.0%. A total of 47,833 and 47,307 protein-coding genes were annotated in the two haplotype genomes of 'Flame', and the numbers of 'Royalty' were 46,305 and 46,920 individually. The assembled high-quality genomes offer new resources for studying the origin and adaptive evolution of crabapples and the molecular basis of the accumulation of flavonoids and anthocyanins, facilitating molecular breeding of Malus plants.


Asunto(s)
Genoma de Planta , Malus , Antocianinas , Cromosomas , Flavonoides , Malus/genética
5.
Food Sci Nutr ; 11(10): 6231-6240, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37823167

RESUMEN

The Lentinula edodes stipe (LES), a by-product of L. edodes fruiting body processing, is rich in dietary fiber, protein, and polysaccharides, which can be served as the functional ingredient in dairy products. In this study, stirred yogurts fortified with 1%, 2%, and 3% LES were prepared, and the effects of LES on the changes in color, pH, titratable acidity (TA), viable lactic acid bacteria (LAB) cells, syneresis, viscosity, texture, and antioxidant activity of the flavored yogurt were monitored at the beginning and the end of storage. The LES decreased the lightness, increased the red-green color values and yellow-blue color values, decreased the pH values, and increased the contents of TA, the viable LAB cells, and the antioxidant activity of yogurt samples in a dose-dependent manner. The addition of LES showed double-edged effects on the texture of yogurt, which significantly reduced firmness and viscosity but decreased the syneresis. Compared with plain yogurt, the 2% LES-fortified yogurt exhibited similar index values of texture parameters and higher scores of the appearance, fermented odor, taste quality, and overall acceptance, suggesting that this might be the optimal dose for industrial production. After cold storage for 28 days, pH values of all yogurt samples further decreased with increasing of TA. Interestingly, syneresis of LES-fortified yogurt decreased and the viable LAB cells and antioxidant activity of 3% LES-fortified yogurt slightly decreased. Therefore, LES is beneficial to improve physicochemical, sensory, and antioxidant properties of yogurt, which has the potential to be used in functional dairy products.

6.
Food Res Int ; 173(Pt 1): 113358, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803660

RESUMEN

An unrecorded wild mushroom Lactarius hatsudake from Nanyue mountainous region in China was identified. Subsequently, comparative investigation on the nutritional value, elemental bioaccumulation, and antioxidant activity was performed in the fruiting body (FB) and mycelium (MY) samples of this species. It revealed that the contents of moisture (87.66 ± 0.16 g/100 g fw) and ash (6.97 ± 0.16 g/100 g dw) were significantly higher in FB, and the total carbohydrate, fat, and protein concentrations of FB were similar to those in MY. Among nutritionally important elements, FB possessed higher concentrations of potassium (37808.61 ± 1237.38 mg/kg dw), iron (470.69 ± 85.54 mg/kg dw), and zinc (136.13 ± 5.16 mg/kg dw), whereas MY was a better source of magnesium (1481.76 ± 18.03 mg/kg dw), calcium (2203.87 ± 69.61 mg/kg dw), and sodium (277.44 ± 22.93 mg/kg dw). According to the health risk estimation, FB might pose an aluminum-related health problem when a prolonged period of exposure, while MY was risk-free for consumers. The results of antioxidant capacity (1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays) in FB and MY were within the range of 104.19 ± 5.70 mg ascorbic acid equivalents (AAE)/g to 169.50 ± 4.94 mg AAE/g, and half maximal effective concentration EC50 values ranged from 0.23 ± 0.01 mg/mL to 0.62 ± 0.05 mg/mL. The aqueous extracts of MY demonstrated a strong ABTS radical scavenging capacity with the highest AAE value.


Asunto(s)
Antioxidantes , Ascomicetos , Antioxidantes/análisis , Bioacumulación , Ácido Ascórbico , Cuerpos Fructíferos de los Hongos/química , Micelio , Valor Nutritivo
7.
BMC Med Imaging ; 23(1): 84, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328753

RESUMEN

BACKGROUND: This study aimed to develop and validate an AI (artificial intelligence)-aid method in myocardial perfusion imaging (MPI) to differentiate ischemia in coronary artery disease. METHODS: We retrospectively selected 599 patients who had received gated-MPI protocol. Images were acquired using hybrid SPECT-CT systems. A training set was used to train and develop the neural network and a validation set was used to test the predictive ability of the neural network. We used a learning technique named "YOLO" to carry out the training process. We compared the predictive accuracy of AI with that of physician interpreters (beginner, inexperienced, and experienced interpreters). RESULTS: Training performance showed that the accuracy ranged from 66.20% to 94.64%, the recall rate ranged from 76.96% to 98.76%, and the average precision ranged from 80.17% to 98.15%. In the ROC analysis of the validation set, the sensitivity range was 88.9 ~ 93.8%, the specificity range was 93.0 ~ 97.6%, and the AUC range was 94.1 ~ 96.1%. In the comparison between AI and different interpreters, AI outperformed the other interpreters (most P-value < 0.05). CONCLUSION: The AI system of our study showed excellent predictive accuracy in the diagnosis of MPI protocols, and therefore might be potentially helpful to aid radiologists in clinical practice and develop more sophisticated models.


Asunto(s)
Enfermedad de la Arteria Coronaria , Imagen de Perfusión Miocárdica , Humanos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Estudios Retrospectivos , Imagen de Perfusión Miocárdica/métodos , Inteligencia Artificial , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Angiografía Coronaria/métodos
8.
J Adv Res ; 51: 27-44, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36371057

RESUMEN

INTRODUCTION: The expression of miR408 is affected by copper (Cu) conditions and positively regulates anthocyanin biosynthesis in Arabidopsis. However, the underlying mechanisms by which miR408 regulates anthocyanin biosynthesis mediated by Cu homeostasis and reactive oxygen species (ROS) homeostasis remain unclear in Malus plants. OBJECTIVES: Our study aims to elucidate how miR408a and its target, basic blue protein (BBP) regulate Cu homeostasis and ROS homeostasis, and anthocyanin biosynthesis in Malus plants. METHODS: The roles of miR408a and its target BBP in regulating anthocyanin biosynthesis, Cu homeostasis, and ROS homeostasis were mainly identified in Malus plants. RESULTS: We found that the BBP protein interacted with the copper-binding proteins LAC3 (laccase) and CSD1 (Cu/Zn SOD superoxide dismutase), indicating a potential crosstalk between Cu homeostasis and ROS homeostasis might be mediated by miR408 to regulate the anthocyanin accumulation. Further studies showed that overexpressing miR408a or suppressing BBP transiently significantly increased the expression of genes related to Cu binding and Cu transport, leading to anthocyanin accumulation under light induction in apple fruit and Malus plantlets. Consistently, opposite results were obtained when repressing miR408a or overexpressing BBP. Moreover, light induction significantly increased the expression of miR408a, CSD1, and LAC3, but significantly reduced the BBP expression, resulting in increased Cu content and anthocyanin accumulation. Furthermore, excessive Cu significantly increased the anthocyanin accumulation, accompanied by reduced expression of miR408a and Cu transport genes, and upregulated expression of Cu binding proteins including BBP, LAC3, and CSD1 to maintain the Cu homeostasis and ROS homeostasis in Malus plantlets. CONCLUSION: Our findings provide new insights into the mechanism by which the miR408a-BBP-LAC3/CSD1 module perceives light and Cu signals regulating Cu and ROS homeostasis, ultimately affecting anthocyanin biosynthesis in Malus plants.


Asunto(s)
Arabidopsis , Malus , Malus/genética , Malus/metabolismo , Cobre/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antocianinas/metabolismo , Homeostasis , Arabidopsis/genética
9.
Front Med (Lausanne) ; 10: 1327295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259858

RESUMEN

Background: Peritoneal dialysis (PD) is a common treatment method for patients with renal failure. While peritonitis and tube floating migration are commonly observed complications, visceral perforation caused by PD is relatively rare. We present a case report of a patient undergoing PD due to renal failure, who encountered two instances of visceral perforation. In both occurrences, Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) played a pivotal role in providing accurate diagnoses and precise localization of the perforation sites. This report underscores the paramount significance of SPECT/CT in diagnosing visceral perforations in the context of PD. Case presentation: A 73-year-old elderly male has been undergoing PD for 1 year due to renal failure. Recently, there has been impaired drainage of the PD catheter. The clinical team suspected the occurrence of peritonitis. The patient underwent a 99mTc Sodium Pertechnetate (99mTc-NaTcO4) SPECT/CT examination, which identified intestinal perforation. After 20 days of conservative treatment, a SPECT/CT follow-up examination revealed the resolution of the intestinal perforation, but a new bladder perforation emerged. The dialysis catheter was methodically and gradually withdrawn in stages while simultaneously performing bladder decompression. Following these interventions, the patient remained free from peritonitis and cystitis. Conclusion: The utilization of SPECT/CT proved to be highly valuable in the accurate diagnosis of visceral perforation, a relatively rare complication observed in PD patients.

10.
Artículo en Inglés | MEDLINE | ID: mdl-36342812

RESUMEN

Objective: The aim of this study was to develop an F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic model for predicting mediastinal lymph node metastasis (LNM) in presurgical patients with lung adenocarcinoma. Methods: The study enrolled 320 patients with lung adenocarcinoma (288 internal and 32 external cases) and extracted 190 radiomic features using the LIFEx package. Optimal radiomic features to build a radiomic model were selected using the least absolute shrinkage and selection operator algorithm. Logistic regression was used to build the clinical and complex (combined radiomic and clinical variables) models. Results: Ten radiomic features were selected. In the training group, the area under the receiver operating characteristic curve of the complex model was significantly higher than that of the radiomic and clinical models [0.924 (95% CI: 0.887-0.961) vs. 0.863 (95% CI: 0.814-0.912; p = 0.001) and 0.838 (95% CI: 0.783-0.894; p = 0.000), respectively]. The sensitivity, specificity, accuracy, and positive and negative predictive values of the radiomic model were 0.857, 0.790, 0.811, and 0.651 and 0.924, respectively, which were better than that of visual evaluation (0.539, 0.724, 0.667, and 0.472 and 0.775, respectively) and PET semiquantitative analyses (0.619, 0.732, 0.697, and 0.513 and 0.808, respectively). Conclusions: 18F-FDG PET/CT radiomics showed good predictive performance for LNM and improved the N-stage accuracy of lung adenocarcinoma.

11.
Medicine (Baltimore) ; 101(43): e31374, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36316948

RESUMEN

RATIONALE: Disseminated cryptococcosis is extremely rare and is easily misdiagnosed as a malignant lymphoma. 18F-Fluorodeoxyglucose Positron Emission Tomography (PET)/ computed tomography (CT) may be useful to assess the involvement of disseminated cryptococcosis and to evaluate residual disease after treatment. PATIENT CONCERNS: A 21-years-old man presented with fever and cough for a month, with multiple red nodules scattered on the skin. 18F- Fluorodeoxyglucose PET/CT revealed multiple hypermetabolic lymph nodes in the upper and lower parts of the diaphragmatic region and hypermetabolic nodules in the skin. According to the PET/CT results, malignant lymphoma was considered a possibility, especially T-cell lymphoma involving the skin. DIAGNOSIS: Cryptococcosis was diagnosed using inguinal lymph node biopsy and blood culture. INTERVENTIONS: The patient received two months of amphotericin B, fluconazole, and half a month of meropenem. OUTCOMES: The patient's body temperature returned to normal and the red nodules on the skin disappeared. Most of the hypermetabolic enlarged lymph nodes disappeared, which was confirmed by reexamination with PET/CT. LESSONS: Disseminated cryptococcosis is easily misdiagnosed as malignant lymphoma, especially when the lymph nodes are more involved. When multiple hypermetabolic enlarged lymph nodes appear on PET/CT, except for lymphoma, specific infections should also be considered.


Asunto(s)
Criptococosis , Linfoma , Masculino , Humanos , Adulto Joven , Adulto , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Linfoma/diagnóstico por imagen , Linfoma/patología , Ganglios Linfáticos/patología , Criptococosis/diagnóstico por imagen , Criptococosis/tratamiento farmacológico , Radiofármacos , Tomografía de Emisión de Positrones/métodos
12.
Angew Chem Int Ed Engl ; 61(50): e202211199, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36259313

RESUMEN

The development of mild, efficient, and enantioselective methods for preparing chiral fluorinated compounds has been a long-standing challenge. Herein, we report a promiscuous cyclohexanone monooxygenase (CHMO) for the photoinduced synthesis of chiral α-fluoroketones via enantioselective reductive dehalogenation of α,α-halofluoroketones. Wild-type CHMO from Acinetobacter sp. possesses this promiscuous ability innately; however, the yield and stereoselectivity are low. A structure-guided rational design of CHMO improved the yield and stereoselectivity remarkably. Mechanistic studies and molecular simulations demonstrated that this photoinduced CHMO catalyzes the reductive dehalogenation via a novel electron transfer (ET)/proton transfer (PT) mechanism, distinct from that of previously reported reductases with similar promiscuity. This methodology was expanded to various substrates, and desirable chiral α-fluoroketones were obtained in high yields (up to 99 %) and e.r. values (up to 99:1).


Asunto(s)
Acinetobacter , Oxigenasas , Estereoisomerismo , Oxigenasas/química , Oxidorreductasas
13.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3551-3562, 2022 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-36151821

RESUMEN

The aim of this study was to construct a recombinant adenovirus expressing extracellular domain gene of human epidermal growth factor receptor variant Ⅲ (EGFRvIII ECD), and to prepare single domain antibody targeting EGFRvIII ECD by immunizing camels and constructing phage display antibody library. Total RNA was extracted from human prostate cancer cell line PC-3 cells and reversely transcribed into cDNA. EGFRvIII ECD gene was amplified using cDNA as template, and ligated into pAdTrack-CMV plasmid vector and transformed into E. coli BJ5183 competent cells containing pAdEasy-1 plasmid for homologous recombination. The recombinant adenovirus expressing EGFRvIII ECD was obtained through transfecting the plasmid into HEK293A cells. The recombinant adenovirus was used to immunize Bactrian camel to construct EGFRvIII ECD specific single domain antibody library. The single domain antibody was obtained by screening the library with EGFRvIII protein and the antibody was expressed, purified and identified. The results showed that recombinant adenovirus expressing EGFRvIII ECD was obtained. The capacity of EGFRvIII specific phage single domain antibody library was 1.4×109. After three rounds of enrichment and screening, thirty-one positive clones binding to EGFRvIII ECD were obtained by phage-ELISA, and the recombinant single domain antibody E14 with highest OD450 value was expressed and purified. The recombinant E14 antibody can react with EGFRvIII ECD with high affinity in ELISA assessment. The results indicated that the EGFRvIII specific single domain antibody library with high capacity and diversity was constructed and the single domain antibody with binding activity to EGFRvIII was obtained by screening the library. This study may facilitate the diagnosis and treatment of EGFRvIII targeted malignant tumors in the future.


Asunto(s)
Adenoviridae , Anticuerpos de Dominio Único , Adenoviridae/genética , ADN Complementario , Receptores ErbB , Escherichia coli/genética , Vectores Genéticos/genética , Humanos , ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Org Chem ; 87(13): 8445-8457, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35678323

RESUMEN

A metal- and oxidant-free route for affording azaspiro[4.5]deca-6,9-diene-3,8-dione via photomediated iodinated spirocyclization of N-(4-methoxybenzyl) propiolamide has been developed. The reaction underwent a radical addition/ipso-cyclization/dearomatization process at room temperature and successfully constructed C-C and C-I bonds. This green and convenient approach could be generally expanded to produce a range of iodinated spirocyclization products in moderate to good yields.


Asunto(s)
Compuestos de Espiro , Ciclización , Compuestos de Espiro/química , Succinimidas
15.
Front Microbiol ; 12: 666982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733241

RESUMEN

In order to increase O2 concentration in the rhizosphere and reduce the continuous cropping obstacles under high-density cultivation, ventilation is often used to increase soil aeration. Yet, the effect of ventilation on soil microbial communities and nutrient cycling and, further, the extent to which they influence strawberry growth under greenhouse conditions are still poorly understood. Thus, four treatments-no ventilation + low planting density (LD), ventilation + LD, no ventilation + high planting density (HD), and ventilation + HD-of strawberry "Red cheeks" (Fragaria × ananassa Duch. cv. "Benihopp") were studied in a greenhouse for 3 years. The ventilation pipe (diameter = 10 cm) was buried in the soil at a depth of 15 cm from the surface and fresh air was sent to the root zone through the pipe by a blower. Ten pipes (one pipeline in a row) were attached to a blower. Soil samples were collected using a stainless-steel corer (five-point intra-row sampling) for the nutrient and microbial analyses. The composition and structure of the soil bacterial and fungal communities were analyzed by high-throughput sequencing of the 16S and 18S rRNA genes, and functional profiles were predicted using PICRUSt and FUNGuild, respectively. The results showed that soil ventilation increased the net photosynthetic rate (Pn), transpiration rate (Tr), and water use efficiency (WUE) of strawberry plants across two growth stages [vegetative growth stage (VGS) and fruit development stage (FDS)]. Soil ventilation increased its available nutrient contents, but the available nutrient contents were reduced under the high planting density compared with low planting density. Both the O2 concentration and O2:CO2 ratio were increased by ventilation; these were positively correlated with the relative abundance of Bacilli, Gamma-proteobacteria, Blastocatella, as well as Chytridiomycota and Pezizomycetes. Conversely, ventilation decreased soil CO2 concentration and the abundance of Beta-proteobacteria and Gemmatimonadetes. The greater planting density increased the relative abundance of Acidobacteria (oligotrophic group). Ventilation altered soil temperature and pH along with carbon and nitrogen functional profiles in the VGS (more nitrogen components) and FDS (more carbon components), which benefited strawberry plant growth under high planting density. The practice of soil ventilation provides a strategy to alleviate hypoxia stress and continuous cropping obstacles for improving crop production in greenhouse settings.

16.
New Phytol ; 231(3): 1105-1122, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33908060

RESUMEN

Light induces anthocyanin accumulation and hence decides the coloration of apple fruit. It also plays a key role in regulating the biosynthesis of other secondary metabolites. However, the crosstalk between anthocyanin and lignin metabolism during light induction, which affects the edible quality and visual quality of apple fruit, respectively, have rarely been characterized. In this study, we identified and functionally elucidated the roles of miR7125 and its target, cinnamoyl-coenzyme A reductase gene (CCR), in regulating the homeostasis between anthocyanin and lignin biosynthesis during light induction. Overexpressing miR7125 or inhibiting CCR transiently in apple fruit promoted anthocyanin biosynthesis but reduced lignin production under light-induced conditions. Consistently, opposite results were observed under the background of repressed miR7125 or overexpressed CCR. We found that the repressor MdMYB16 and the activator MdMYB1 bound to the miR7125 promoter. Transient repression of MdMYB16 upregulated miR7125 expression significantly, accompanied by decreased levels of MdCCR transcript, resulting in a reduction in the lignin biosynthesis and an increase in anthocyanin accumulation. However, transient overexpression of MdMYB16 produced the opposite effects to MdMYB16-RNAi. The results reveal a novel mechanism by which the MdMYB16/MdMYB1-miR7125-MdCCR module collaboratively regulates homeostasis between anthocyanin and lignin biosynthesis under light induction in apple.


Asunto(s)
Malus , Antocianinas , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Lignina , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Front Microbiol ; 12: 616932, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643243

RESUMEN

Intercropping influences the soil microbiota via litter and root exudate inputs, but the mechanisms by which root exudates mediate the soil microbial community and soil organic matter (SOM) are still unclear. In this study, we selected three aromatic plants (Ocimum basilicum, Tr1; Satureja hortensis, Tr2; Ageratum houstonianum, Tr3) as intercrops that separately grew between rows of pear trees, and no plants were grown as the control in a pear orchard during the spring-summer season for 3 years. The soil from each plot was collected using a stainless-steel corer by five-point sampling between rows of pear trees. The bacterial and fungal communities of the different aromatic intercrops were analyzed by 16S and ITS rRNA gene amplicon sequencing; their functional profiles were predicted by PICRUSt and FUNGuild analyses. The root exudates of the aromatic plants were analyzed by a liquid chromatography-tandem mass spectrometry (LC-MS) system. Compared with the control treatment, all intercropping treatments with aromatic plants significantly increased SOM and soil water content and decreased pH values. The contents of total nitrogen and alkali-hydrolyzable nitrogen in Tr1 and Tr2 were higher than those in Tr3. In Tr3 soil, the relative content of saccharides increased little, whereas the changes in amine (increases) and alcohols (decreases) were rapid. Ageratum houstonianum intercropping decreased the microbial community diversity and significantly influenced the relative abundances of the dominant microbiota (Actinobacteria, Verrucomicrobia, Gemmatimonadetes, Cyanobacteria, Ascomycota, and Basidiomycota) at the phylum, class, and order levels, which increased the assemblage of functional groups (nitrite ammonification, nitrate ammonification, and ureolysis groups). Our study suggested that the main root exudates from aromatic plants shaped the microbial diversity, structure, and functional groups related to the N cycle during SOM mineralization and that intercropping with aromatic plants (especially basil and summer savory) increased N release in the orchard soil.

18.
Eur J Nucl Med Mol Imaging ; 48(1): 231-240, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32588088

RESUMEN

PURPOSE: To develop a predictive model by 18F-FDG PET/CT radiomic features and to validate the predictive value of the model for distinguishing solitary lung adenocarcinoma from tuberculosis. METHODS: A total of 235 18F-FDG PET/CT patients with pathologically or follow-up confirmed lung adenocarcinoma (n = 131) or tuberculosis (n = 104) were retrospectively and randomly divided into a training (n = 163) and validation (n = 72) cohort. Based on the Transparent Reporting of Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD), this work was belonged to TRIPOD type 2a study. The Mann-Whitney U test and least absolute shrinkage and selection operator (LASSO) algorithm were used to select the optimal predictors from 92 radiomic features that were extracted from PET/CT, and the optimal predictors were used to build the radiomic model in the training cohort. The meaningful clinical variables comprised the clinical model, and the combination of the radiomic model and clinical model was a complex model. The performances of the models were assessed by the area under the receiver operating characteristic curve (AUC) in the training and validation cohorts. RESULTS: In the training cohort, 9 radiomic features were selected as optimal predictors to build the radiomic model. The AUC of the radiomic model was significantly higher than that of the clinical model in the training cohort (0.861 versus 0.686, p < 0.01), and this was similar in the validation cohort (0.889 versus 0.644, p < 0.01). The AUC of the radiomic model was slightly lower than that of the complex model in the training cohort (0.861 versus 0.884, p > 0.05) and validation cohort (0.889 versus 0.909, p > 0.05), but there was no significant difference. CONCLUSION: 18F-FDG PET/CT radiomic features have a significant value in differentiating solitary lung adenocarcinoma from tuberculosis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Tuberculosis , Adenocarcinoma del Pulmón/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos
19.
Am J Transl Res ; 12(11): 7287-7296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312367

RESUMEN

OBJECTIVE: Gestational diabetes mellitus (GDM) is one of the common complications of pregnant women, with serious threatening to pregnant women and newborns. The pathogenesis of GDM remains unclear now. This study aims to explore the effects of miR-22-3p targeted regulation of suppressors of cytokine signaling 3 (Socs3) on the hepatic insulin resistance (HIR) in mice with GDM. METHODS: Healthy SPF C57BL/6J mice were selected to establish GDM model and divided into 7 groups: Normal group, Model group, NC-(negative control) mimic group, miR-22-3p mimic group, NC-pcDNA3.0 group, pcDNA3.0-Socs3 group, and miR-22-3p mimic + pcDNA3.0-Socs3 group. The islet morphology, and the expressions of miR-22-3p, Socs3 mRNA and Socs3 protein in the islet tissues were detected by HE staining, qRT-PCR and Western blot. Fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) were measured. Oral glucose tolerance test (OGTT) was performed to detect FBG and fasting insulin (FINS) contents, and insulin resistance (HOMA-IR) was calculated. RESULTS: Compared with the Normal group, the model group had decreased levels of miR-22-3p and HDL-C, while increased levels of Socs3 mRNA and protein expressions, OGTT, FBG, FINS, and HOMA-IR, TG and TC (all P < 0.05). Compared with the Model group, the above indicators (OGTT, FBG, FINS, HOMA-IR, TG, TC and HDL-C) were improved in the miR-22-3p mimic group, but worsened in the pcDNA3.0-Socs3 group (all P < 0.05). CONCLUSION: miR-22-3p can down-regulate the expression of Socs3, thereby inhibiting HIR in GDM mice.

20.
Chem Commun (Camb) ; 56(65): 9356-9359, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32672300

RESUMEN

The mutagenesis of a "second sphere" switch residue of CHMOAcineto could control its enantio- and regiopreference. Replacing phenylalanine (F) at position 277 of CHMOAcineto into larger tryptophan (W) enabled a significant enhancement of enantio- or regioselectivity toward structurally diverse substrates, moreover, a complete reversal of enantio- or regiopreference was realized by mutating F277 into a range of smaller amino acids (A/C/D/E/G/H/I/K/L/M/N/P/Q/R/S/T/V).


Asunto(s)
Oxigenasas/química , Cetonas/química , Cetonas/metabolismo , Estructura Molecular , Mutagénesis , Oxigenasas/genética , Oxigenasas/metabolismo , Sulfuros/química , Sulfuros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...