Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Talanta ; 281: 126806, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39277937

RESUMEN

As the most abundant modification in eukaryotic messenger RNA (mRNA) and long noncoding RNA (lncRA), N6-methyladenosine (m6A) has been shown to play essential roles in various significant biological processes and attracted growing attention in recent years. To investigate its functions and dynamics, there is a critical need to quantitatively determine the m6A modification fractions at a precise location. Here, we report a deoxyribozyme mediated CRISPR-Cas12a platform (termed "DCAS") that can directly quantify m6A fractions at single-base resolution. DCAS employs a deoxyribozyme (VMC10) to selectively cleave the unmodified adenine (A) in the RNA, allowing only m6A-modified RNA amplified by RT-PCR. Leveraging the CRISPR-Cas12a quantify the PCR amplification products, DCAS can directly determine the presence of m6A at target sites and its fractions. The combination of CRISPR-Cas12a with RT-PCR has greatly improved the sensitivity and accuracy, enabling the detection of m6A-modified RNA as low as 100 aM in 2 fM total target RNA. This robustly represents an improvement of 2-3 orders of magnitude of sensitivity and selectivity compared to traditional standard methods, such as SCARLET and primer extension methods. Therefore, this method can be successfully employed to accurately determine m6A fractions in real biological samples, even in low abundance RNA biomarkers.

2.
Sensors (Basel) ; 24(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39275516

RESUMEN

Assessing the olfactory preferences of consumers is an important aspect of fragrance product development and marketing. With the advancement of wearable device technologies, physiological signals hold great potential for evaluating olfactory preferences. However, there is currently a lack of relevant studies and specific explanatory procedures for preference assessment methods that are based on physiological signals. In response to this gap, a synchronous data acquisition system was established using the ErgoLAB multi-channel physiology instrument and olfactory experience tester. Thirty-three participants were recruited for the olfactory preference experiments, and three types of autonomic response data (skin conductance, respiration, and heart rate) were collected. The results of both individual and overall analyses indicated that olfactory preferences can lead to changes in skin conductance (SC), respiration (RESP), and heart rate (HR). The trends of change in both RESP and HR showed significant differences (with the HR being more easily distinguishable), while the SC did not exhibit significant differences across different olfactory perception preferences. Additionally, gender differences did not result in significant variations. Therefore, HR is more suitable for evaluating olfactory perception preferences, followed by RESP, while SC shows the least effect. Moreover, a logistic regression model with a high accuracy (84.1%) in predicting olfactory perception preferences was developed using the changes in the RESP and HR features. This study has significant implications for advancing the assessment of consumer olfactory preferences.


Asunto(s)
Comportamiento del Consumidor , Frecuencia Cardíaca , Perfumes , Humanos , Masculino , Frecuencia Cardíaca/fisiología , Femenino , Adulto , Respiración , Respuesta Galvánica de la Piel/fisiología , Adulto Joven , Sistema Nervioso Autónomo/fisiología , Odorantes/análisis , Percepción Olfatoria/fisiología , Olfato/fisiología
3.
Geriatr Nurs ; 59: 498-506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39146640

RESUMEN

The objective of the study was to explore the association between basic vital signs and consciousness status in patients with primary brainstem hemorrhage (PBH). Patients with PBH were categorized into two groups based on Glasgow Coma Scale (GCS) scores: disturbance of consciousness (DOC) group (GCS=3-8) and non-DOC group (GCS=15). Within DOC group, patients were further divided into behavioral (GCS=4-8) and non-behavioral (GCS=3) subgroups. Basic vital signs, such as body temperature, heart rate, and respiratory rate, were monitored every 3 hours during the acute bleeding phase (1st day) and the bleeding stable phase (7th day) of hospitalization. The findings revealed a negative correlation between body temperature and heart rate with GCS scores in DOC group at both time points. Moreover, basic vital signs were notably higher in the DOC group compared to non-DOC group. Specifically, the non-behavioral subgroup within DOC group exhibited significantly elevated heart rates on the 1st day of hospitalization and moderately increased respiratory rates on the 7th day compared to the control group. Scatter plots illustrated a significant relationship between body temperature and heart rate with consciousness status, while no significant correlation was observed with respiratory rate. In conclusion, the study suggests that monitoring basic vital signs, particularly body temperature and heart rate, can serve as valuable indicators for evaluating consciousness status in PBH patients. These basic vital signs demonstrated variations corresponding to lower GCS scores. Furthermore, integrating basic vital sign monitoring with behavioral assessment could enhance the assessment of consciousness status in PBH patients.


Asunto(s)
Estado de Conciencia , Escala de Coma de Glasgow , Signos Vitales , Humanos , Masculino , Femenino , Anciano , Estado de Conciencia/fisiología , Temperatura Corporal , Frecuencia Cardíaca/fisiología , Tronco Encefálico/fisiopatología , Monitoreo Fisiológico/métodos , Trastornos de la Conciencia/fisiopatología , Persona de Mediana Edad , Frecuencia Respiratoria
4.
Curr Biol ; 34(16): 3792-3803.e5, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39096908

RESUMEN

Melatonin (MLT) is an important circadian signal for sleep regulation, but the neural circuitries underlying the sleep-promoting effects of MLT are poorly understood. The paraventricular thalamus (PVT) is a critical thalamic area for wakefulness control and expresses MLT receptors, raising a possibility that PVT neurons may mediate the sleep-promoting effects of MLT. Here, we found that MLT receptors were densely expressed on PVT neurons and exhibited circadian-dependent variations in C3H/HeJ mice. Application of exogenous MLT decreased the excitability of PVT neurons, resulting in hyperpolarization of membrane potential and reduction of action potential firing. MLT also inhibited the spontaneous activity of PVT neurons at both population and single-neuron levels in freely behaving mice. Furthermore, pharmacological manipulations revealed that local infusion of exogeneous MLT into the PVT promoted non-rapid eye movement (NREM) sleep and increased NREM sleep duration, whereas MLT receptor antagonists decreased NREM sleep. Moreover, we found that selectively knocking down endogenous MLT receptors in the PVT decreased NREM sleep and correspondingly increased wakefulness, with particular changes shortly after the onset of the dark or light phase. Taken together, these results demonstrate that PVT is an important target of MLT for promoting NREM sleep.


Asunto(s)
Melatonina , Ratones Endogámicos C3H , Núcleos Talámicos de la Línea Media , Animales , Ratones , Núcleos Talámicos de la Línea Media/fisiología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Melatonina/farmacología , Melatonina/metabolismo , Vigilia/fisiología , Vigilia/efectos de los fármacos , Masculino , Receptores de Melatonina/metabolismo , Receptores de Melatonina/genética , Sueño/fisiología , Sueño/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Neuronas/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Sueño de Onda Lenta/fisiología
5.
Adv Sci (Weinh) ; : e2400253, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119847

RESUMEN

High-frequency oscillatory activity in cognition-related neural circuits during wakefulness consistently induces the growth of dendritic spines and axonal terminals. Although these structural changes are essential for cognitive functions, it is hypothesized that if these newly expanded structures fail to establish functional connections, they may become superfluous. Sleep is believed to facilitate the reduction of such redundant structures to maintain neural homeostasis. However, the mechanisms underlying this pruning process during sleep remain poorly understood. In this study, that melatonin type 3 receptors (MT3Rs) are selectively expressed in the stellate neurons of the medial entorhinal cortex (MEC) is demonstrated, an area where high melatonin levels are detected during sleep. Activation of MT3Rs during sleep initiates the shrinkage of dendritic spines in stellate neurons by downregulating neural network activity and dephosphorylating synaptic proteins in the MEC. This process is disrupted when MT3R expression is knocked down or when MT3Rs are blocked during sleep. Notably, interference with MT3Rs in the MEC during sleep impairs the acquisition of spatial memory but does not affect object memory acquisition following sleep. These findings reveal novel molecular mechanisms involving melatonin and MT3Rs in the regulation of dendritic spine shrinkage during sleep, which is crucial for the acquisition and consolidation of spatial memory.

6.
Brain Sci ; 14(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39061446

RESUMEN

Lack of sleep has been found to be associated with cognitive impairment in children, yet the neural mechanism underlying this relationship remains poorly understood. To address this issue, this study utilized the data from the Adolescent Brain Cognitive Development (ABCD) study (n = 4930, aged 9-10), involving their sleep assessments, cognitive measures, and functional magnetic resonance imaging (fMRI) during an emotional n-back task. Using partial correlations analysis, we found that the out-of-scanner cognitive performance was positively correlated with sleep duration. Additionally, the activation of regions of interest (ROIs) in frontal and parietal cortices for the 2-back versus 0-back contrast was positively correlated with both sleep duration and cognitive performance. Mediation analysis revealed that this activation significantly mediated the relationship between sleep duration and cognitive function at both individual ROI level and network level. After performing analyses separately for different sexes, it was revealed that the mediation effect of the task-related activation was present in girls (n = 2546). These findings suggest that short sleep duration may lead to deficit in cognitive function of children, particularly in girls, through the modulation of frontoparietal activation during working memory load.

7.
Curr Biol ; 34(15): 3287-3300.e6, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38944036

RESUMEN

Psychiatric disorders with dysfunction of the lateral habenula (LHb) show sleep disturbance, especially a disinhibition of rapid eye movement (REM) sleep in major depression. However, the role of LHb in physiological sleep control and how LHb contributes to sleep disturbance in major depression remain elusive. Here, we found that functional manipulations of LHb glutamatergic neurons bidirectionally modulated both non-REM (NREM) sleep and REM sleep. Activity recording revealed heterogeneous activity patterns of LHb neurons across sleep/wakefulness cycles, but LHb neurons were preferentially active during REM sleep. Using an activity-dependent tagging method, we selectively labeled a population of REM sleep-active LHb neurons and demonstrated that these neurons specifically promoted REM sleep. Neural circuit studies showed that LHb neurons regulated REM sleep via projections to the ventral tegmental area but not to the rostromedial tegmental nucleus. Furthermore, we found that the increased REM sleep in a depression mouse model was associated with a potentiation of REM sleep-active LHb neurons, including an increased proportion, elevated spike firing, and altered activity mode. Importantly, inhibition of REM sleep-active LHb neurons not only attenuated the increased REM sleep but also alleviated depressive-like behaviors in a depression mouse model. Thus, our results demonstrated that REM sleep-active LHb neurons selectively promoted REM sleep, and a potentiation of these neurons contributed to depression-associated sleep disturbance.


Asunto(s)
Habénula , Neuronas , Sueño REM , Animales , Habénula/fisiología , Habénula/fisiopatología , Sueño REM/fisiología , Ratones , Neuronas/fisiología , Masculino , Ratones Endogámicos C57BL , Trastornos del Sueño-Vigilia/fisiopatología , Depresión/fisiopatología
8.
Research (Wash D C) ; 7: 0355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694202

RESUMEN

Proper timing of vigilance states serves fundamental brain functions. Although disturbance of sleep onset rapid eye movement (SOREM) sleep is frequently reported after orexin deficiency, their causal relationship still remains elusive. Here, we further study a specific subgroup of orexin neurons with convergent projection to the REM sleep promoting sublaterodorsal tegmental nucleus (OXSLD neurons). Intriguingly, although OXSLD and other projection-labeled orexin neurons exhibit similar activity dynamics during REM sleep, only the activation level of OXSLD neurons exhibits a significant positive correlation with the post-inter-REM sleep interval duration, revealing an essential role for the orexin-sublaterodorsal tegmental nucleus (SLD) neural pathway in relieving REM sleep pressure. Monosynaptic tracing reveals that multiple inputs may help shape this REM sleep-related dynamics of OXSLD neurons. Genetic ablation further shows that the homeostatic architecture of sleep/wakefulness cycles, especially avoidance of SOREM sleep-like transition, is dependent on this activity. A positive correlation between the SOREM sleep occurrence probability and depression states of narcoleptic patients further demonstrates the possible significance of the orexin-SLD pathway on REM sleep homeostasis.

9.
Nat Commun ; 15(1): 2722, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548744

RESUMEN

Enhancement of wakefulness is a prerequisite for adaptive behaviors to cope with acute stress, but hyperarousal is associated with impaired behavioral performance. Although the neural circuitries promoting wakefulness in acute stress conditions have been extensively identified, less is known about the circuit mechanisms constraining wakefulness to prevent hyperarousal. Here, we found that chemogenetic or optogenetic activation of GAD2-positive GABAergic neurons in the midbrain dorsal raphe nucleus (DRNGAD2) decreased wakefulness, while inhibition or ablation of these neurons produced an increase in wakefulness along with hyperactivity. Surprisingly, DRNGAD2 neurons were paradoxically wakefulness-active and were further activated by acute stress. Bidirectional manipulations revealed that DRNGAD2 neurons constrained the increase of wakefulness and arousal level in a mouse model of stress. Circuit-specific investigations demonstrated that DRNGAD2 neurons constrained wakefulness via inhibition of the wakefulness-promoting paraventricular thalamus. Therefore, the present study identified a wakefulness-constraining role DRNGAD2 neurons in acute stress conditions.


Asunto(s)
Núcleo Dorsal del Rafe , Vigilia , Ratones , Animales , Vigilia/fisiología , Núcleo Dorsal del Rafe/fisiología , Nivel de Alerta/fisiología , Mesencéfalo , Neuronas GABAérgicas/fisiología
10.
Anal Chem ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334074

RESUMEN

Chemoresistance to triple-negative breast cancer (TNBC) is a critical issue in clinical practice. Lipid metabolism takes a unique role in breast cancer cells; especially, unsaturated lipids involving cell membrane fluidity and peroxidation are highly remarked. At present, for the lack of a high-resolution molecular recognition platform at the single-cell level, it is still hard to systematically study chemoresistance heterogeneity based on lipid unsaturation proportion. By designing a single-cell mass spectrometry workflow based on CyESI-MS, we profiled the unsaturated lipids of TNBC cells to evaluate lipidomic remodeling under platinum stress. Profiling revealed the heterogeneity of the polyunsaturated lipid proportion of TNBC cells under cisplatin treatment. A cluster of cells identified by polyunsaturated lipid accumulation was found to be involved in platinum sensitivity. Furthermore, we found that the chemoresistance of TNBC cells could be regulated by fatty acid supplementation, which determinates the composition of unsaturated lipids. These discoveries provide insights for monitoring and controlling cellular unsaturated lipid proportions to overcome chemoresistance in breast cancer.

11.
Neuron ; 112(1): 155-173.e8, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37944520

RESUMEN

The hypocretin (Hcrt) (also known as orexin) neuropeptidic wakefulness-promoting system is implicated in the regulation of spatial memory, but its specific role and mechanisms remain poorly understood. In this study, we revealed the innervation of the medial entorhinal cortex (MEC) by Hcrt neurons in mice. Using the genetically encoded G-protein-coupled receptor activation-based Hcrt sensor, we observed a significant increase in Hcrt levels in the MEC during novel object-place exploration. We identified the function of Hcrt at presynaptic glutamatergic terminals, where it recruits fast-spiking parvalbumin-positive neurons and promotes gamma oscillations. Bidirectional manipulations of Hcrt neurons' projections from the lateral hypothalamus (LHHcrt) to MEC revealed the essential role of this pathway in regulating object-place memory encoding, but not recall, through the modulation of gamma oscillations. Our findings highlight the significance of the LHHcrt-MEC circuitry in supporting spatial memory and reveal a unique neural basis for the hypothalamic regulation of spatial memory.


Asunto(s)
Hipotálamo , Memoria Espacial , Ratones , Animales , Orexinas/metabolismo , Hipotálamo/metabolismo , Neuronas/fisiología , Área Hipotalámica Lateral/fisiología
13.
Hum Brain Mapp ; 44(16): 5387-5401, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37605831

RESUMEN

Gene expression plays a critical role in the pathogenesis of Parkinson's disease (PD). How gene expression profiles are correlated with functional-metabolic architecture remains obscure. We enrolled 34 PD patients and 25 age-and-sex-matched healthy controls for simultaneous 18 F-FDG-PET/functional MRI scanning during resting state. We investigated the functional gradients and the ratio of standard uptake value. Principal component analysis was used to further combine the functional gradients and glucose metabolism into functional-metabolic architecture. Using partial least squares (PLS) regression, we introduced the transcriptomic data from the Allen Institute of Brain Sciences to identify gene expression patterns underlying the affected functional-metabolic architecture in PD. Between-group comparisons revealed significantly higher gradient variation in the visual, somatomotor, dorsal attention, frontoparietal, default mode, and subcortical network (pFDR < .048) in PD. Increased FDG-uptake was found in the somatomotor and ventral attention network while decreased FDG-uptake was found in the visual network (pFDR < .008). Spatial correlation analysis showed consistently affected patterns of functional gradients and metabolism (p = 2.47 × 10-8 ). PLS analysis and gene ontological analyses further revealed that genes were mainly enriched for metabolic, catabolic, cellular response to ions, and regulation of DNA transcription and RNA biosynthesis. In conclusion, our study provided genetic pathological mechanism to explain imaging-defined brain functional-metabolic architecture of PD.


Asunto(s)
Fluorodesoxiglucosa F18 , Enfermedad de Parkinson , Humanos , Fluorodesoxiglucosa F18/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Encéfalo/patología , Neuroimagen , Imagen por Resonancia Magnética , Expresión Génica
14.
Chem Sci ; 14(22): 5945-5955, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293662

RESUMEN

Chemical modifications of CRISPR-Cas nucleases help decrease off-target editing and expand the biomedical applications of CRISPR-based gene manipulation tools. Here, we found that epigenetic modifications of guide RNA, such as m6A and m1A methylation, can effectively inhibit both the cis- and trans-DNA cleavage activities of CRISPR-Cas12a. The underlying mechanism is that methylations destabilize the secondary and tertiary structure of gRNA which prevents the assembly of the Cas12a-gRNA nuclease complex, leading to decreased DNA targeting ability. A minimum of three adenine methylated nucleotides are required to completely inhibit the nuclease activity. We also demonstrate that these effects are reversible through the demethylation of gRNA by demethylases. This strategy has been used in the regulation of gene expression, demethylase imaging in living cells and controllable gene editing. The results demonstrate that the methylation-deactivated and demethylase-activated strategy is a promising tool for regulation of the CRISPR-Cas12a system.

15.
Front Neurol ; 14: 1116382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051055

RESUMEN

Background: For patients of primary brainstem hemorrhage (PBH), it is crucial to find a method that can quickly and accurately predict the correlation between status of consciousness and PBH. Objective: To analyze the value of computer tomography (CT) signs in combination with artificial intelligence (AI) technique in predicting the correlation between status of consciousness and PBH. Methods: A total of 120 patients with PBH were enrolled from August 2011 to March 2021 according to the criteria. Patients were divided into three groups [consciousness, minimally conscious state (MCS) and coma] based on the status of consciousness. Then, first, Mann-Whitney U test and Spearman rank correlation test were used on the factors: gender, age, stages of intracerebral hemorrhage, CT signs with AI or radiology physicians, hemorrhage involving the midbrain or ventricular system. We collected hemorrhage volumes and mean CT values with AI. Second, those significant factors were screened out by the Mann-Whitney U test and those highly or moderately correlated by Spearman's rank correlation test, and a further ordinal multinomial logistic regression analysis was performed to find independent predictors of the status of consciousness. At last, receiver operating characteristic (ROC) curves were drawn to calculate the hemorrhage volume for predictively assessing the status of consciousness. Results: Preliminary meaningful variables include hemorrhage involving the midbrain or ventricular system, hemorrhage volume, grade of hematoma shape and density, and CT value from Mann-Whitney U test and Spearman rank correlation test. It is further shown by ordinal multinomial logistic regression analysis that hemorrhage volume and hemorrhage involving the ventricular system are two major predictors of the status of consciousness. It showed from ROC that the hemorrhage volumes of <3.040 mL, 3.040 ~ 6.225 mL and >6.225 mL correspond to consciousness, MCS or coma, respectively. If the hemorrhage volume is the same, hemorrhage involving the ventricular system should be correlated with more severe disorders of consciousness (DOC). Conclusion: CT signs combined with AI can predict the correlation between status of consciousness and PBH. Hemorrhage volume and hemorrhage involving the ventricular system are two independent factors, with hemorrhage volume in particular reaching quantitative predictions.

16.
Adv Sci (Weinh) ; 10(15): e2300189, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961096

RESUMEN

Sevoflurane has been the most widely used inhaled anesthetics with a favorable recovery profile; however, the precise mechanisms underlying its anesthetic action are still not completely understood. Here the authors show that sevoflurane activates a cluster of urocortin 1 (UCN1+ )/cocaine- and amphetamine-regulated transcript (CART+ ) neurons in the midbrain involved in its anesthesia. Furthermore, growth hormone secretagogue receptor (GHSR) is highly enriched in sevoflurane-activated UCN1+ /CART+ cells and is necessary for sleep induction. Blockade of GHSR abolishes the excitatory effect of sevoflurane on UCN1+ /CART+ neurons and attenuates its anesthetic effect. Collectively, their data suggest that anesthetic action of sevoflurane necessitates the GHSR activation in midbrain UCN1+ /CART+ neurons, which provides a novel target including the nucleus and receptor in the field of anesthesia.


Asunto(s)
Anestesia , Mesencéfalo , Sevoflurano/farmacología , Urocortinas , Sueño
17.
Cereb Cortex ; 33(6): 3026-3042, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35764255

RESUMEN

Ventromedial prefrontal cortex (vmPFC) processes many critical brain functions, such as decision-making, value-coding, thinking, and emotional arousal/recognition, but whether vmPFC plays a role in sleep-wake promotion circuitry is still unclear. Here, we find that photoactivation of dorsomedial hypothalamus (DMH)-projecting vmPFC neurons, their terminals, or their postsynaptic DMH neurons rapidly switches non-rapid eye movement (NREM) but not rapid eye movement sleep to wakefulness, which is blocked by photoinhibition of DMH outputs in lateral hypothalamus (LHs). Chemoactivation of DMH glutamatergic but not GABAergic neurons innervated by vmPFC promotes wakefulness and suppresses NREM sleep, whereas chemoinhibition of vmPFC projections in DMH produces opposite effects. DMH-projecting vmPFC neurons are inhibited during NREM sleep and activated during wakefulness. Thus, vmPFC neurons innervating DMH likely represent the first identified set of cerebral cortical neurons for promotion of physiological wakefulness and suppression of NREM sleep.


Asunto(s)
Sueño REM , Sueño , Sueño/fisiología , Sueño REM/fisiología , Nivel de Alerta , Vigilia/fisiología , Neuronas GABAérgicas/fisiología
18.
Cell Rep ; 41(11): 111824, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516774

RESUMEN

Heightened wakefulness in response to stressors is essential for survival but can also lead to sleep disorders like insomnia. The paraventricular thalamus (PVT) is both a critical thalamic area for wakefulness and a stress-sensitive brain region. However, whether the PVT and its neural circuitries are involved in controlling wakefulness in stress conditions remains unknown. Here, we find that PVT neurons projecting to the central amygdala (CeA) are activated by different stressors. These neurons are wakefulness-active and increase their activities upon sleep to wakefulness transitions. Optogenetic activation of the PVT-CeA circuit evokes transitions from sleep to wakefulness, whereas selectively silencing the activity of this circuit decreases time spent in wakefulness. Specifically, chemogenetic inhibition of CeA-projecting PVT neurons not only alleviates stress responses but also attenuates the acute stress-induced increase of wakefulness. Thus, our results demonstrate that the PVT-CeA circuit controls physiological wakefulness and modulates acute stress-induced heightened wakefulness.


Asunto(s)
Núcleo Amigdalino Central , Vigilia , Tálamo/fisiología , Optogenética , Neuronas/fisiología , Vías Nerviosas/fisiología
19.
Neuron ; 110(23): 4000-4014.e6, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36272414

RESUMEN

The hippocampal CA2 region plays a key role in social memory. The encoding of such memory involves afferent activity from the hypothalamic supramammillary nucleus (SuM) to CA2. However, the neuronal circuits required for consolidation of freshly encoded social memory remain unknown. Here, we used circuit-specific optical and single-cell electrophysiological recordings in mice to explore the role of sleep in social memory consolidation and its underlying circuit mechanism. We found that SuM neurons projecting to CA2 were highly active during rapid-eye-movement (REM) sleep but not during non-REM sleep or quiet wakefulness. REM-sleep-selective optogenetic silencing of these neurons impaired social memory. By contrast, the silencing of another group of REM sleep-active SuM neurons that projects to the dentate gyrus had no effect on social memory. Therefore, we provide causal evidence that the REM sleep-active hypothalamic neurons that project to CA2 are specifically required for the consolidation of social memory.


Asunto(s)
Consolidación de la Memoria , Animales , Ratones , Sueño
20.
Anal Chem ; 94(42): 14627-14634, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36226357

RESUMEN

Existing nucleic acid and antigen profiling methods for COVID-19 diagnosis fail to simultaneously meet the demands in sensitivity and detection speed, hampering them from being a comprehensive way for epidemic prevention and control. Thus, effective screening of COVID-19 requires a simple, fast, and sensitive method. Here, we report a rapid assay for ultrasensitive and highly specific profiling of COVID-19 associated antigen. The assay is based on a binding-induced DNA assembly on a nanoparticle scaffold that acts by fluorescence translation. By binding two aptamers to a target protein, the protein brings the DNA regions into close proximity, forming closed-loop conformation and resulting in the formation of the fluorescence translator. Using this assay, saliva nucleocapsid protein (N protein) has been profiled quantitatively by converting the N protein molecule information into a fluorescence signal. The fluorescence intensity is enhanced with increasing N protein concentration caused by the metal enhanced fluorescence using a simple, specific, and fast profiling assay within 3 min. On this basis, the assay enables a high recognition ratio and a limit of detection down to 150 fg mL-1. It is 1-2 orders of magnitude lower than existing commercial antigen ELISA kits, which is comparative to or superior than the PCR based nucleic acid testing. Owing to its rapidity, ultrasensitivity, as well as easy operation, it holds great promise as a tool for screening of COVID-19 and other epidemics such as monkey pox.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Proteínas de la Nucleocápside/análisis , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...